
Efficient Datacenter Resource Utilization Through
Cloud Resource Overcommitment

Mehiar Dabbagh∗, Bechir Hamdaoui∗, Mohsen Guizani† and Ammar Rayes‡
∗Oregon State University, dabbaghm,hamdaoub@onid.orst.edu | †Qatar University, mguizani@ieee.org | ‡Cisco Systems, rayes@cisco.com

Abstract—We propose an efficient resource allocation framework
for overcommitted clouds that makes great energy savings by 1)
minimizing PM overloads via resource usage prediction, and 2)
reducing the number of active PMs via efficient VM placement
and migration. Using real Google traces collected from a cluster
containing more than 12K PMs, we show that our proposed tech-
niques outperform existing ones by minimizing migration overhead,
increasing resource utilization, and reducing energy consumption.

Index Terms—Energy efficiency, VM migration, workload pre-
diction, cloud computing.

I. INTRODUCTION

Studies indicate that datacenter servers operate, most of the
time, at between 10% and 50% of their maximal utilizations,
and that idle/under-utilized servers consume about 50% of their
peak power [1]. Therefore, to minimize energy consumption of
datacenters, one needs to consolidate cloud workloads into as few
servers as possible and switch to sleep the redundant servers.

Upon receiving a client request, the cloud scheduler creates a
virtual machine (VM), allocates the requested resources (e.g.,
CPU and memory) to it, and assigns the VM to one of the
cluster’s physical machines (PMs). In current cloud resource
allocation methods, the amount of resources specified by the
client request remains reserved during the whole VM lifetime.
A key question arises now: what percentage of these reserved
resources is actually being utilized? To answer this question,
we conduct some measurements on real Google traces [2] and
show in Fig. 1 a one-day snapshot of this percentage. Observe
that VMs only utilize about 35% and 55% of the requested
CPU and memory resources. Our study indicates that CPU
and memory resources tend to be overly reserved, leading to
substantial resource wastage.

Resource overcommitment [3] is a technique that has been
recognized as a potential solution for addressing the above-
mentioned wastage issues. It essentially consists of allocating
VM resources to PMs in excess of their actual capacities,
expecting that these actual capacities will not be exceeded since
VMs are not likely to utilize their reserved resources fully.
Therefore, it has great potential for saving energy in cloud
centers, as VMs can now be hosted on fewer ON PMs.

Resource overcommitment may, however, lead to PM over-
loading, which occurs when the aggregate of requested resources
of the VMs scheduled on some PM does exceed the PM’s
capacity, potentially resulting in the degradation of the perfor-
mance of some or all of the VMs running on the overloaded
PM. VM migration [4], where some of the VMs hosted by the
overloaded PM are moved to other under-utilized or idle PMs,
has been adopted as a solution for handling PM overloading.
VM migration raises, however, two key challenges, which we

This work was supported in part by Cisco and NSF (NSF CAREER award CNS-0846044).

0 1 2 3 4 5 6 7 8 9 101112131415161718192021222324
20

30

40

50

60

Time (Hour)

%

 

 

Memory Utilization
CPU Utilization

Fig. 1. Resource utilization over one-day snapshot of Google traces.

address in this paper.
A. When should VMs be migrated?

Migrations can be triggered after overloads occur [5]. This
stops VMs from contending over the limited resources but clearly
results in some SLA violations. Another solution is to trigger
migrations once the VM’s aggregate demands exceeds a certain
threshold, but before overloads occur [6–8]. Such techniques
have the limitation of triggering many unnecessary migrations.
To tackle this, we dedicate in our proposed framework a module
that predicts the VM’s future resource demands and triggers VM
migrations once an overload is foreseen. Our module differs from
the previously proposed offline predictive-based techniques [9]
in that it learns and predicts the resource demands of VMs online
without requiring any aprior knowledge about the hosted VMs.
B. Which VMs should be migrated and which PMs these
VMs should be migrated to?

Largest First heuristics [10, 11] migrates VMs with the largest
resource usages to the PMs with the largest slacks. While these
techniques minimize the total number of migrations, they ignore
the migration energy overhead. VM moving costs are accounted
for in [6]. Although this heuristic tends to move VMs with the
lowest moving costs, it is not always guaranteed that there are
already-ON PMs with enough slack to host the migrated VMs,
forcing turning some PMs from sleep to ON, which comes with
a high energy cost [12]. Unlike previous work, our proposed
framework has an energy-aware migration module that makes
migration decisions in a way that minimizes the total migration
energy overhead which is made up of the energy spent to move
VMs and that of switching PMs ON to host the migrated VMs.

To recap, we propose in this paper an integrated energy-aware
resource allocation framework for overcommited clouds that:

• predicts future resource utilizations of scheduled VMs on-
line, and uses these predictions to make efficient cloud
resource overcommitment decisions to increase utilization.

• predicts PM overload incidents before occurring and trig-
gers VM migrations to avoid SLA violations.

• performs energy-efficient VM migration by determining
which VMs to migrate and which PMs need to host the
migrated VMs to reduce the number of active PMs.

The effectiveness of our techniques is evaluated by real traces
collected from a Google cluster containing more than 12K PMs.



2
The remainder is organized as follows. Section II briefly

describes the component of our proposed framework. Section III
presents our proposed prediction methods. Section IV formulates
the VM migration as an optimization problem, and section
V presents a heuristic for solving it. Section VI presents our
evaluation results. Finally, Section VII concludes the paper.

II. PROPOSED FRAMEWORK

Our proposed framework is suited for heterogeneous cloud
clusters whose PMs may or may not have different resource
capacities. We consider in this work two cloud resources: CPU
and memory, although our framework can easily be extended to
any number of resources. Thus, a PM j can be represented by
[Cjcpu, C

j
mem], where Cjcpu and Cjmem are the PM’s CPU and

memory capacities. Throughout, let P be the set of all PMs
in the cloud cluster, and ~Ccpu = (C1

cpu, C
2
cpu, . . . , C

|P |
cpu) and

~Cmem = (C1
mem, C

2
mem, . . . , C

|P |
mem). Recall that a client may,

at any time, submit a new VM request, say VM i, represented
by [Ricpu, R

i
mem] where Ricpu and Rimem are the requested

amounts of CPU and memory. Whenever the client no longer
needs the requested resources, it submits a VM release request.
Throughout, let V be the set of all VMs hosted by the cluster.

We briefly describe next our framework components so as the
reader will have a global picture of the entire framework before
delving into the details. Throughout this section, Fig. 2 is used
for illustration. Our framework is made up of five modules:

A. VM Utilization Predictor

This module predicts the resource utilizations of all of
the already admitted VMs. For each scheduled VM i, two
predictors (one for CPU and one for memory) monitor and
collect the VM’s CPU and memory usage traces, and use
them, along with other VM parameter sets (to be learned
online from the VM’s resource utilization behaviors), to pre-
dict the VM’s future CPU and memory utilizations, P icpu
and P imem. Throughout, these parameter sets will be denoted
for VM i by Param(cpu, i) and Param(mem, i) for CPU
and memory, respectively. The CPU and memory predictions
for all VMs, ~Pcpu = (P 1

cpu, P
2
cpu, . . . , P

|V |
cpu) and ~Pmem =

(P 1
mem, P

2
mem, . . . , P

|V |
mem), are then passed as an input to the

following module. These predictions are calculated for the
coming τ period and are done periodically at the end of each
period. Detailed description of how predictors work and how
these parameters are updated are given in section III.

B. PM Aggregator

This module takes as an input the VMs’ predicted
CPU and memory utilizations, ~Pcpu and ~Pmem, and re-
turns the PMs’ predicted aggregate CPU and memory uti-
lizations, ~Ucpu = (U1

cpu, U
2
cpu, . . . , U

|P |
cpu) and ~Umem =

(U1
mem, U

2
mem, . . . , U

|P |
mem), where U jcpu and U jmem are calcu-

lated for each PM j as

U jcpu =
∑

i∈V :θ(i)=j

P icpu and U jmem =
∑

i∈V :θ(i)=j

P imem

where θ : V → P is the VM-PM mapping function, with θ(i) =
j meaning that VM i is hosted on PM j.

C. PM Overload Predictor

This module monitors and predicts overloads before they
occur. It takes as input ~Ucpu and ~Umem along with PMs’
capacities, ~Ccpu and ~Cmem, and returns Opm, the set of PMs
that are predicted to overload. That is, a PM j is added to Opm
when U jcpu > Cjcpu or U jmem > Cjmem. As expected with any
prediction framework, it is also possible that our predictors fail
to predict an overload. We refer to such incidents as unpredicted
overloads, which will be eventually detected when they occur.
For any predicted PM overload, VM migration will be performed
before the overload actually occurs, thus avoiding it. But for each
unpredicted PM overload, VM migration will be performed upon
its detection. All VM migrations are handled by the next module.

D. Energy-Aware VM Migration

This module determines which VM(s) among those hosted
on the PMs in Opm need to be migrated so as to keep the
predicted aggregate CPU and memory utilizations below the
PM’s capacity. To make efficient decisions, the module needs to
know the energy costs for moving each scheduled VM, referred
to by ~m = {m1,m2, ...,m|V |} where mi is the cost (in Joules)
for moving the ith VM. This module also determines which PM
each migrating VM needs to migrate to. Such a PM must have
enough CPU and memory slack to accommodate the migrated
VM(s), and thus the module needs to know the PMs’ capacities
(i.e., ~Ccpu and ~Cmem), as well as the PMs’ predicted aggregate
utilizations (i.e., ~Ucpu and ~Umem). These are provided to the
module as input in addition to the ON-sleep states of the PMs
γ, where the state function γ(j) returns PM j’s power state (ON
or sleep) prior to migration. The output of this module is the new
VM-PM mapping θ and the new ON-sleep PM state γ after all
VM migrations are taken place. Details on how the the migration
problem is formulated as an optimization problem and how it is
solved by our module are provided in sections IV and V.

E. PM Allocation

This module decides where to place newly submitted VMs
and also handles VM release events. The new VM placement
are handled with two objectives in mind: saving energy and
minimizing PM overload occurrence probability. In order to do
so, the predicted CPU and memory slacks, Sjcpu and Sjmem, are
first calculated for each PM j ∈ P as:

Sjcpu = Cjcpu − U jcpu and Sjmem = Cjmem − U jmem (1)

Then, the PM allocation module sorts PMs based on the
following criteria (in ascending order):

(i) PMs that are ON
(ii) PMs with the largest predicted slack metric which is

defined for a PM j as Sjcpu×mem = Sjcpu × Sjmem.
The intuition behind our sorting criteria is as follows: It is

better to host a newly submitted VM request on an ON PM,
so as to avoid wakening up asleep machines. This saves energy.
On the other hand, our predictions imply that the PM with the
largest slack is less likely to experience an overload. Hence, it
is desirable to pick the PM with the largest predicted slack so
as to decrease the chances of overloading PMs.

Once PMs are sorted as above, we then check each PM in
the ordered list to see whether it has enough CPU and memory



3

VM Utilization Predictor

PM 

Aggregator

Predictor
VM

1
Resource 

Monitor
Predictor

Predictor
Resource 

Monitor

Predictor

VM
|V|

...

Energy-

Aware VM 

Migration PM 

Allocation

Overload 

Predictor

VM 

Request

VM 

Release

...

...

Param(cpu,1)

Param(cpu, |V|)

Param(mem,1)

Param(mem,|V|)

CPU 

Traces

mem 

Traces

mem 

Traces

CPU 

Traces

Fig. 2. Flow chart of the proposed framework

resource slack to host the newly submitted VM, and if one PM is
found, we schedule the new VM on it. If the found PM happens
to be in the sleep state, it is turned ON to host the VM. For
this newly scheduled VM, two predictors (one for CPU and one
for memory) are then built to monitor the resource utilization
behaviors of the VM, as described earlier.

When a client no longer needs its VM, it submits a VM
release. Upon receiving a VM release, the PM allocation module
releases the VM’s allocated CPU and memory resources, frees
all system parameters associated with the VM (e.g., predictors),
and updates the aggregate CPU and memory predictions of the
hosting PM accordingly. The PM is switched to the sleep state
if it becomes idle after releasing the VM.

III. VM UTILIZATION PREDICTOR

We explain in this section how a predictor for a scheduled VM
predicts its future resource demands in the coming τ minutes,
where the term resource will be used to refer to either the CPU
or memory. In our framework, we choose to use the Wiener
filter prediction approach for several reasons. First, it is simple
and intuitive, as the predicted utilization is a weighted sum of
the recently observed utilization samples. Second, it has a sound
theoretical basis. Third, weights can easily be updated without
requiring heavy calculations or large storage space. Finally, it
performs well on real traces as will be seen later.

Let n be the time at which resource predictions for a VM need
to be made. We use the following notations:
• z[n − i]: is the VM’s average resource utilization during

period [n− (i+ 1)τ, n− iτ ] minutes.
• d[n]: is the VM’s actual average resource utilization during

period [n, n+ τ ].
• d̂[n]: is the VM’s predicted average resource utilization

during period [n, n+ τ ].
Wiener filters predict resource utilizations while assuming

wide-sense stationarity of z[n]. The predicted average resource
utilization, d̂[n], is a weighted average over the L most recent
observed utilization samples; i.e., d̂[n] =

∑L−1
i=0 wiz[n − i],

where wi is the ith sample weight. The prediction error, e[n],
is then the difference between the actual and predicted utiliza-
tions; i.e., e[n] = d[n] − d̂[n] = d[n] −

∑L−1
i=0 wiz[n − i].

The objective is to find the weights that minimize the Mean
Squared Error (MSE) of the training data, where MSE =
E[ e2[n] ]. Differentiating MSE with respect to wk and setting
this derivative to zero yields, after some algebraic simplifications,

E
[
d[n]z[n − k]

]
−
∑L−1
i=0 wiE

[
z[n − k]z[n − i]

]
= 0. It then

follows that rdz(k) =
∑L−1
i=0 wirzz(i− k) where

rdz(k) = E
[
d[n]z[n− k]

]
(2)

rzz(i− k) = E
[
z[n− k]z[n− i]

]
(3)

Similar equations expressing the other weights can also be
obtained in the same way. These equations can be presented
in a matrix format as Rdz = RzzW , where

Rzz =


rzz(0) rzz(1) . . . rzz(L− 1)
rzz(1) rzz(0) . . . rzz(L− 2)

...
...

. . .
...

rzz(L− 1) rzz(L− 2) . . . rzz(0)


W =

[
w0 w1 . . . wL−1

]T
Rdz =

[
rdz(0) rdz(1) . . . rdz(L− 1)

]T
Given Rzz and Rdz , the weights can then be calculated as:

W = R−1zz Rdz (4)

The elements of Rzz are calculated using the unbiased corre-
lation estimation as:

rzz(i) =
1

N − i

N−i−1∑
j=0

z[j + i]z[j] (5)

where N is the VM’s number of observed samples with each
sample representing an average utilization over τ minutes.

The elements of Rdz can also be estimated using the corre-
lation coefficients. Since d[n] represents the average resource
utilization in the coming τ minutes, we can write d[n] =
z[n + 1]. Plugging the expression of d[n] in Eq. (2) yields
rdz(k) = E[z[n + 1]z[n − k]] = rzz(k + 1), and thus Rdz =[
rzz(1) rzz(2) . . . rzz(L)

]T
. The elements of Rdz can

be calculated using Eq. (5). An MSE estimation of the weight
vector follows then provided Rdz and Rzz .

Recall that each VM requests two resources: CPU and mem-
ory. Hence, two predictions d̂vcpu[n] and d̂vmem[n] are calculated
as described above for each VM v. Since the resource utilizations
can’t exceed the requested capacity specified by the client
then our final resource predictions for VM v are: P vcpu =

min(d̂vcpu[n], R
v
cpu) and P vmem = min(d̂vmem[n], Rvmem).

Note that N = L+1 samples need to be observed in order to
calculate the predictor’s weights. When the number of samples



4
available during the early period is less than L+1, no prediction
will be made and we assume that VMs will utilize all of their
requested resources. Once the predictor observes N = L + 1
samples, the correlations rzz(i) can then be calculated for all i
allowing the weights to be estimated.

When N > L + 1, the predictor adapts to new changes by
observing the new utilization samples, updates the correlations,
and calculates the new updated weights. This results in increasing
the accuracy of the predictor over time, as the weights are to be
calculated based on a larger training data. From Eq. (5), the
coefficient rzz(i) can be written as Sum(i)/Counter(i), where
Sum(i) =

∑N−i−1
j=0 z[j+i]z[j] and Counter(i) = N−i are two

aggregate variables. Now recall that every τ minutes, a new re-
source utilization sample z[k] is observed, and hence, the aggre-
gate variables can be updated as Sum(i)← Sum(i)+z[k]z[k−i]
and Counter(i)← Counter(i)+1 and the correlation rzz(i) is
updated again as Sum(i)/Counter(i). The updated weights are
then calculated using Eq. (4), which will be used to predict the
VM’s future resource utilizations. Note that only two variables
need to be stored to calculate rzz instead of storing all the
previous traces, and thus the amount of storage needed to update
these weights is reduced significantly.

IV. ENERGY-AWARE VM MIGRATION

VM migration must be performed when an overload is pre-
dicted in order to avoid SLA violations. Since energy con-
sumption is our primal concern, we formulate the problem of
deciding which VMs to migrate and which PMs to migrate to
as an optimization problem with the objective of minimizing the
migration energy overhead as described next.
Decision Variables. Let Ovm be the set of VMs that are currently
hosted on all the PMs that are predicted to overload in Opm.
For each VM i ∈ Ovm and each PM j ∈ P , we define a binary
decision variable xij where xij = 1 if VM i is assigned to PM
j after migration, and xij = 0 otherwise. Also, for each j ∈ P ,
we define yj = 1 if at least one VM is assigned to PM j after
migration, and yj = 0 otherwise.
Objective Function. Our objective is to minimize VM migration
energy overhead, which can be expressed as∑

i∈Ovm j∈P
xij aij +

∑
j∈P

yj bj (6)

and is constituted of two components: VM moving energy over-
head and PM switching energy overhead. VM moving energy
overhead, captured by the left-hand summation term, represents
the energy costs (in Joule) associated with moving VMs from
overloaded PMs. The constant aij represents VM i’s moving
cost, and is equal to mi when VM i is moved to a PM j different
from its current PM, and equal to 0 when VM i is left on the
same PM where it has already been hosted. Formally, aij = 0
if, before migration, θ(i) = j, and aij = mi otherwise. Here mi

denotes VM i’s moving energy overhead.
PM switching energy overhead, captured by the right-hand

term of the objective function (Eq. (6)), represents the energy
cost associated with switching PMs from sleep to ON to host
the migrated VMs. The constant bj = 0 if PM j has already
been ON before migration (i.e., γ(j) = ON before migration),
and bj = Es→o otherwise, where Es→o is the transition energy
consumed when switching a PM from sleep to ON.

Constraints: The optimization problem is subject to the follow-
ing constraints. One,∑

j∈P
xij = 1 ∀i ∈ Ovm

dictating that every VM must be assigned to only one PM. Two,∑
i∈Ovm

xij P
i
cpu ≤ Cjcpu ∀j ∈ Opm

∑
i∈Ovm

xij P
i
mem ≤ Cjmem ∀j ∈ Opm

which state that the predicted CPU and memory usage of the
scheduled VMs on any overloaded PM must not exceed the PM’s
available CPU and memory capacities. Three,∑

i∈Ovm

xij P
i
cpu ≤ Sjcpu ∀j ∈ P\Opm

∑
i∈Ovm

xij P
i
mem ≤ Sjmem ∀j ∈ P\Opm

where P\Opm is the set of PMs predicted not to be overloaded.
Sjcpu and Sjmem are the predicted CPU and memory slacks for
PM j calculated using Eq.(1). Recall that some VMs will be
migrated to PMs that already have some scheduled VMs, and
the above constraints ensure that there will be enough resource
slack to host any of the migrated VMs. Four,∑

i∈Ovm

xij ≤ |Ovm| yj ∀j ∈ P (7)

which forces yj to be one (i.e., PM j needs to be ON) if one or
more VMs in Ovm will be assigned to PM j after migration.

Note that if none of the VMs in Ovm is assigned to PM j, then
the constraint (7) can still hold even when yj takes on the value
one. In order to force yj to be zero when no VM is assigned
to PM j (i.e. PM j maintains the same power state that it had
prior to migration as no VM will be migrated to it), we add the
following constraint. Five,

1 +
∑
i∈Ovm

xij > yj ∀j ∈ P (8)

Note that if one or more VMs is assigned to PM j, constraint
(8) does not force yj = 1 either, but constraint (7) does. Thus,
constraints (7) and (8), together, imply that yj = 1 if and only
if one or more VMs are assigned to PM j after migration.

After solving the above problem, the optimal yjs indicate
whether new PMs need to be turned ON (also reflected via the
γ function), and the optimal xijs indicate whether new VM-PM
mappings are needed (also reflected via the θ function).

V. PROPOSED HEURISTIC

In the previous section, we formulated the VM migration
problem as an integer linear program (ILP). The limitation of
this formulation lies in its complexity, arising from the integer
variables, as well as the large numbers of PMs and VMs. To
overcome this complexity, we instead propose to solve this
problem using the following proposed fast heuristic.

Instead of deciding where to place the VMs that are currently
hosted on all the overloaded PMs, our proposed heuristic (shown
in Algorithm 1) takes only one overloaded PM Po at a time



5
(line 1), and solves a smaller optimization problem to decide
where to place the VMs that are currently hosted on the picked
PM Po. We refer to these VMs that are hosted on Po prior
to migration by Os (line 2). Another feature adopted by our
heuristic that reduces the complexity further is to consider only
a set of Non ON PMs and Nsleep asleep PMs as destination
candidates for VM migrations. The set of selected ON PMs,
denoted by Pon, is formed by the function PickOnPMs in line
4. The returned PMs by this function are the ON PMs that have
the largest predicted slack metric (Scpu × Smem). The intuition
here is that the PM with the largest predicted slack has higher
chances for having enough space to host the VMs that need
to be migrated. Furthermore, moving VMs to these PMs has
the lowest probability to trigger an overload on these PMs. The
set of selected PMs that are asleep is denoted by Psleep and
formed using the function PickSleepPMs. The returned PMs
are the ones that are asleep and that have the largest capacity
(Ccpu×Cmem). Again the intuition here is that PMs with larger
capacity have larger space to host the migrated VMs and hence,
the lowest probability of causing an overload.

The heuristic then forms the set Ps (line 5) which is made up
of the picked overloaded PM, Po, the selected ON PMs, Pon,
and the selected sleep PMs, Psleep. An optimization problem
similar to the one explained in Section IV is solved with the only
exception that P = Ps and Ovm = Os. Solving the optimization
problem determines which VMs in Os need to be migrated to
avoid the PM overload. The VMs that are assigned to one of the
ON PMs are then migrated to the assigned ON PMs. As for the
VMs that are assigned to one of the PMs that are in sleep, we
try first to place them in any already ON PMs. To do so, all the
ON PMs apart from those in Pon are ordered in a decreasing
order of their slacks. The VMs that are assigned to the PMs in
sleep are also ordered from largest to smallest. We iterate over
these VMs while trying to fit them in one of the ordered ON
PMs. This is done in order to make sure that no ON PMs (other
than the selected PMs in Non) have enough space to host the
migrated VMs. If an already ON PM has enough space to host
one of these VMs, then the VM is migrated to the ON PM rather
than to the PM in sleep so as to avoid incurring switching energy
overhead. Otherwise, the VMs are migrated to the assigned PMs
that are asleep, as indicated in line 6.

As for Non and Nsleep, these parameters affect the size of the
optimization problem. The larger the values of these parameters,
the higher the number of PM destination candidates, and the
longer the time needed to solve the problem. Our experimental
results reported in the following section show that for small
values of Non = 1 and Nsleep = 1, the problem can be solved
very quickly while achieving significant energy savings.

VI. FRAMEWORK EVALUATION

The experiments presented in this section are based on real
traces of the VM requests submitted to a Google cluster that is
made up of more than 12K PMs (see [2] for further details).
Since the size of the traces is huge, we limit our analysis to a
chunk spanning a 24-hour period. Since the traces do not reveal
the energy costs associated with moving the submitted VMs (~m
in Fig. 2), we assume that the VM’s moving overhead follows a
Gaussian distribution with a mean µ = 350 Joule and a standard
deviation δ = 100. The selection of these numbers is based on

Algorithm 1 [ θ, γ ] = Proposed Heuristic
(
Non, Nsleep

)
1: for each Po ∈ Opm do
2: Os = {∀ i ∈ V s.t. θ(i) = Po}
3: Pon ← PickOnPMs(Non)
4: Psleep ← PickSleepPMs(Nsleep)
5: Ps ← Pon ∪ Psleep ∪ Po

6: [~x, ~y] = SolveOptimization(Ps, Os)
7: Migrate VMs that should be placed on a PM ∈ Pon

8: Try placing VMs that should be placed on a PM ∈ Psleep on any ON
PM /∈ Pon

9: Update θ and γ
10: end for

the energy measurements reported in [4], which show that the
moving overhead varies between 150 and 550 Joules for VM
sizes between 250 and 1000 Mega Bytes. These moving costs
include the energy consumed by the source PM, the destination
PM, and the network links.

As for the power consumed by an active PM, P (η), it
increases linearly from Pidle to Ppeak as its CPU utilization,
η = Ucpu/Ccpu, increases from 0 to 100% [1]. More specifically,
P (η) = Pidle + η(Ppeak − Pidle), where Ppeak = 300 and
Pidle = 150 Watts. A sleeping PM, on the other hand, consumes
Psleep = 100 Watts. The energy consumed when switching a
PM from sleep to ON is Es→o = 4260 Joules, and that when
switching a PM from ON to sleep is Eo→s = 5510 Joules. These
numbers are based on real servers’ specs [13].

Overload Prediction. We start our evaluations by showing in
Fig. 3 the number of overloads predicted when our framework is
run over the 24-hour trace period. These overload predictions are
based on predicting the VM’s CPU and memory demands in the
coming τ = 5 minutes. Although our framework works for any
τ value, the selection of τ = 5 is based on the fact that Google
traces report resource utilization for the scheduled VMs every
5 minutes. The number of the most recent observed samples
considered in prediction is L = 6 as our experiments showed
that considering more samples would increase the calculation
overhead while making negligible accuracy improvements. For
the sake of comparison, we also show in Fig. 3 the number
of overloads that were not predicted by our predictors. Observe
how low the number of unpredicted overloads is; it is actually
zero with the exception of three short peaks. This proves the
effectiveness of our framework vis-a-vis of predicting overloads
ahead of time, thus avoiding VM performance degradation.

VM Migration Energy Overhead. We plot in Fig. 4 the
total migration energy overhead (including both VM moving and
PM switching overheads) incurred by the migration decisions of
our proposed heuristic to avoid/handle the overloads reported
in Fig. 3 along with the total energy overhead associated with
the migration decisions of the two existing heuristics: Largest
First [10, 11] and Sandpiper [6]. Both of these heuristics handle
multi-dimensional resources by considering the product metrics,
and both select the PM with the largest slack as a destination
for each migrated VM.

Observe in Fig. 4 that our proposed heuristic incurs signifi-
cantly lesser overhead when compared to the other two heuris-
tics. This is attributed to the fact that unlike previous approaches,
our heuristic takes both the VM moving overhead and the PM
switching overhead when making migration decisions leading
into lower total migration energy overhead.



6

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
0

50

100

150

200

250

300

350

Time (Hour)

Nu
m

be
r o

f O
ve

rlo
ad

s

 

 

Predicted Overloads
Unpredicted Overloads

Fig. 3. Number of predicted and unpredicted overloads over time.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
0

500

1000

1500

2000

2500

3000

Time (Hour)

To
ta

l M
ig

.C
os

ts
 (K

ilo
 J

ou
le

)

 

 

Sandpiper
Largest First
Proposed Heuristic

Fig. 4. Total migration energy overhead under each of the three heuristics.

Number of Active PMs. Since the energy consumed by ON
PMs constitutes a significant amount, we analyze in Fig. 5 the
number of ON PMs when running our framework on the Google
traces under each of the three studied migration heuristics. Recall
that each migration heuristic makes different decisions to handle
PM overloads, and these decisions affect the number of ON
PMs, as new PMs may be switched ON to accommodate the
migrated VMs. We also show the number of ON PMs when no
overcommitment is applied. This represents the case when the
exact amount of requested resources is allocated for each VM
during its entire lifetime. By comparing these results, observe
that after a couple of learning hours, our proposed prediction
framework leads to smaller numbers of ON PMs when compared
with the case of no overcommittment, and this is true regardless
of the VM migration heuristic being used. Also, observe that our
proposed prediction techniques, when coupled with our proposed
VM migration heuristic, leads to the smallest number of ON PMs
when compared with Largest First and Sandpipper heuristics,
resulting in greater energy savings. It is worth mentioning that

0 1 2 3 4 5 6 7 8 9 101112131415161718192021222324
0

1000

2000

3000

4000

5000

Time (Hour)

Nu
m

be
r o

f A
cti

ve
 P

M
s

 

 

No Overcommitment
Our Framework with Sandpiper

 

 

Our Framework with Largest First
Our Framework with Our Migration Heuristic

Fig. 5. Number of PMs needed to host the workload.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
0

20

40

60

80

100

Time (Hour)En
er

gy
 S

av
in

gs
 (G

ig
ga

 J
ou

le
)

Fig. 6. Energy savings our resource allocation framework achieves when
compared to allocation without overcommitment.

during the first couple of hours, the number of ON PMs is
the same regardless of whether resource overcommitment is
employed and regardless of the migration technique being used,
simply because prediction can’t be beneficial at the early stage,
as some time is needed to learn from past traces to be able to
make good prediction about VMs’ future utilizations.

Energy Savings. Finally, Fig. 6 shows the total energy savings
when the Google cluster adapts our integrated framework (the
proposed prediction approach and the proposed migration heuris-
tic) compared to no overcommitment. Observe that savings are
not substantial at the beginning as the prediction module needs
some time to learn the resource demands of the hosted VMs, but
these savings quickly increase over time as the predictors start to
observe larger traces and tune their parameters more accurately.
Finally, it is clear from Fig 6 that although our framework incurs
migration energy overheads (due to both VM moving and PM
switching energy overheads) that would not otherwise be present
when no overcommitment is applied, the amount of energy saved
due to the reduction of the number of ON PMs is much higher
than the amount of energy incurred due to migration energy,
leading, at the end, to greater energy savings.

VII. CONCLUSION

We propose an integrated energy-efficient, prediction-based
VM placement and migration framework for cloud resource
allocation with overcommitment. We show that our proposed
framework reduces the number of PMs needed to be ON and
decreases migration overheads, thereby making significant en-
ergy savings. All of our findings are supported by evaluations
conducted on real traces from a Google cluster.

REFERENCES

[1] L. Barroso and U. Holzle, “The case for energy-proportional computing,”
Computer Journal, vol. 40, pp. 33–37, 2007.

[2] C. Reiss, J. Wilkes, and J. Hellerstein, “Google cluster-usage traces:
format+ schema,” Google Inc., White Paper, 2011.

[3] M. Dabbagh, B. Hamdaoui, M. Guizani, and A. Rayes, “Towards energy-
efficient cloud computing: Prediction, consolidation, and overcommitment,”
IEEE Network Magazine, 2015.

[4] H. Liu, C. Xu, H. Jin, J. Gong, and X. Liao, “Performance and
energy modeling for live migration of virtual machines,” in international
symposium on High performance distributed computing, 2011.

[5] X. Wang and Y. Wang, “Coordinating power control and performance
management for virtualized server clusters,” IEEE Transactions on Parallel
Distributed Systems, vol. 22, no. 2, pp. 245–259, 2011.

[6] T. Wood, P. Shenoy, A. Venkataramani, and M. Yousif, “Sandpiper: Black-
box and gray-box resource management for virtual machines,” Computer
Networks, vol. 53, no. 17, pp. 2923–2938, 2009.

[7] “Vmware distributed power management concepts and use,” VMware Inc.,
White Paper, 2010.

[8] A. Beloglazov and R. Buyya, “Optimal online deterministic algorithms
and adaptive heuristics for energy and performance efficient dynamic
consolidation of virtual machines in cloud data centers,” Concurrency and
Computation: Practice and Experience, 2012.

[9] L. Chen and H. Shen, “Consolidating complementary VMs with
spatial/temporal-awareness in cloud datacenters,” in Proceedings of IEEE
INFOCOM, 2014, pp. 1033–1041.

[10] M. Andreolini, S. Casolari, M. Colajanni, and M. Messori, “Dynamic
load management of virtual machines in cloud architectures,” in Cloud
Computing, pp. 201–214. Springer, 2010.

[11] X. Zhang, Z. Shae, S. Zheng, and H. Jamjoom, “Virtual machine migration
in an over-committed cloud,” in Network Operations and Management
Symposium (NOMS), 2012.

[12] M. Dabbagh, B. Hamdaoui, M. Guizani, and A. Rayes, “Energy-efficient
cloud resource management,” in Proceedings of IEEE INFOCOM Work-
shop on Moblie Cloud Computing, 2014.

[13] M. Dabbagh, B. Hamdaoui, M. Guizani, and A. Rayes, “Release-time
aware VM placement,” in Proceedings of IEEE Globecom, 2014.


