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Abstract—We propose Cloud of Things for Sensing as a
Service: a global architecture that scales up cloud computing
by exploiting the global sensing resources of the highly dynamic
and growing Internet of Things (IoT) to enable remote sensing.
The proposed architecture scales out by augmenting the role
of edge computing platforms ascloud agents that discover and
virtualize sensing resources of IoT devices. Cloud of Things
enables performing in-network distributed processing of sensing
data offered by the globally available IoT devices and provides
a global platform for meaningful and responsive sensing data
analysis and decision making. We design cloud agents algorithmic
solutions bearing in mind the onerous to track dynamics of the IoT
devices by centralized solutions. First, we propose a distributed
sensing resource discovery algorithm based on a gossip policy
that selects IoT devices with predefined sensing capabilities as fast
as possible. We also propose RADV: a distributed virtualization
algorithm that efficiently deploys virtual sensor networkson top of
a subset of the selected IoT devices. We show, through analysis and
simulations, the potential of the proposed algorithmic solutions to
realize virtual sensor networks with minimal physical resources,
reduced communication overhead, and low complexity.

I. I NTRODUCTION

Remote sensing applications will evolve through on-
demand sensing services provided by the global network of
sensor equipped devices in our homes, factories, cities, and
bodies known as the Internet of Things (IoT). Today in smat-
phones ’only’, there are seven sensors on average per device
including: magnetometer, barometer, light, heart, humidity, and
temperature sensors that one can use as participatory sensors
to carry out applications like short-term weather forecasting
[1], [2]. The density of smartphones’ sensors in London today
exceeds 14,000 sensor per square kilometer1. By 2020, the
global number of sensor-equipped and location-aware devices
(e.g. wearable, smart home, and fleet management devices)
will reach tens of Billions, potentially creating dense, dynamic,
location-aware, and onerous to manage networks of devices that
can realize the vision of providing a versatile remote sensing
services, known as ’Sensing as a Service’ [3], [4], [5].

We conjecture that employing IoT devices’ sensing re-
sources in acloud computing like platformto support remote
sensing applications may be an effective approach to realize
the Sensing as a Service vision [3]. The idea is to dynamically
augment and scale up existing cloud resources (compute,
storage, and network) by exploiting sensing capabilities of
devices through cloud agents near the network edge to form a
global system named theCloud of Things(see Figure 1). The
Cloud of Things is a geographically distributed infrastructure
with cloud agents elements that continuously discover and
pool sensing resources of IoT devices to be used by cloud
users on-demand. This infrastructure provides elastic sensing

1The population density in London exceeds 4,000 inhabitantsper square
kilometer and the UK smartphone penetration reaches 55%.

resources that scale and shrink according to remote sensing
applications demands, providing an optimized and controllable
sensing resource utilization and pricing based on measurable
usage.

Cloud of Things shifts the current conventional usage of
cloud platforms in remote sensing from a ’collect sensor
data now and analyze it later’ scenario to a usage scenario
that directly provides meaningful information from in-network
processing of sensing data by IoT devices. Without such
conjectured infrastructure, remote sensing users can still gain
access to sensing resources through conventional cloud back-
end systems (see [6], [4]), with less opportunities to scale
out sensing applications over the globally available sensing
resources and with intolerable performance to applications
that require responsive exploitation and fusion of sensing
data and agile in-network decisions (e.g. localization [7]and
estimation [8]).

Cloud of Things infrastructure- Cloud platforms near
the network edge already exist in different forms such as
smartphones, personal computers, gateways, and servers to
offer computation offloading to nearby devices in real-time
(e.g. cloudlets [9], [10] and edge computing platforms [11],
[12]). We envision a new role of edge platforms as cloud agents
that incorporate IoT devices as sensing resources (Figure 1)
to scale up the conventional cloud with global and location
specific sensing resources. We propose cloud agents algo-
rithmic solutions that provide: (1) fast discovery of devices’
dynamic sensing resources in specific geographical area, and
(2) optimized devices virtualization to serve as virtual sensor
networks by exploiting their discovered sensing resources.

Cloud agents implement remote sensing applications as
virtual sensor networks to be deployed on virtualizable IoT
devices in a geographical area that perform distributed in-
network processing of sensing data. These virtual sensor net-
works may employ devices’ sensing resources discovered by
multiple cloud agents. Conventional cloud platforms provide a
unified interface to cloud users to seamlessly use such global
sensing resources from anywhere and at anytime while hiding
complexities and supporting interaction between cloud agents.
In Cloud of Things, IoT devices become surrogates of federated
sensor networks (i.e administrated by a single organization) that
can potentially reduce the total cost of ownership for remote
sensing applications.

In this paper we propose a Cloud of Things architecture
for Sensing as a Services and efficient algorithms for sensing
resource discovery and optimized devices virtualization.We
discuss the technical challenges and our envisioned usage
scenario of the proposed architecture in Section II. In Sec-
tion III, we first propose a sensing resource discovery algo-
rithm that uses a gossip policy for propagating a sensing task
requirements to devices (or their virtual instance at the edge



cloud) and selects feasible devices to execute the task while
responding to dynamic changes of devices as fast as possible.
Then, we propose RADV, an efficient virtualization algorithm,
that deploys a virtual sensor network corresponding to the
sensing task on top of a subset of the selected devices with
minimal physical resources. Finally, we numerically evaluate
our proposed algorithms in Section IV and conclude this paper
in Section V.

II. A RCHITECTUREUSABILITY AND CHALLENGES

The proposed Cloud of Things architecture allows cloud
users to run remote sensing tasks, with certain specifications,
virtually on any sensor-equipped IoT devices (see Figure 1).
For example, a cloud user can profile pollution changes in cities
from real-time temperature and CO2 concentration measure-
ments collected by sensors in vehicles with defined precision
and accuracy. The architecture consists of three main elements:
IoT devices, first tier clouds, and cloud agents.IoT devices
are sensor-equipped devices that can serve both specific and
general purpose remote sensing applications, including for
example smart factory, smart grid, and smartphone devices.
An IoT device can communicate directly with proximate de-
vices.First tier clouds are conventional cloud platforms that
provide unified interfaces to users to access the system and
hide complexities underlying realization of sensing services.
Throughout, we refer to a first tier cloud as simply ’cloud’.
Finally, Cloud agentsare trusted and resource-rich elements
near the network edge that are well-connected to the Internet
and to conventional cloud platforms. Cloud agents can be as
powerful as supercomputers, or as flexible as smartphones
according to the types of devices they serve and the computing
resources these devices demand. Throughout, we refer to a
cloud agent as simply ’agent’.

This architecture offers new sensing features and service
level guarantees with several benefits. Deploying agents (cloud
agents) close to devices improves responsiveness to sensing
task requests and enables access to a globally available sensing
resources. From the devices’ viewpoint, cloud resources can
be split into local resources (agents’ resources) and global
resources (clouds’ resources) that can improve resiliencyby
migrating sensing tasks as the states of the devices, which
carry out the sensing task, change. A cloud (first tier cloud)
also acts as liaison to support coordination between distributed
agents, while these agents can rapidly capture dynamics of
the devices (e.g. utilization, connectivity, and availability). This
approach simplifies analytics and big data with possible direct
device access for agile in-network data processing and decision
making. The proposed architecture finally allows the designof
network-aware and performance-optimized cloud procedures.

A. Usage Scenario and System Model

A cloud (first tier cloud) handlessensing tasksinitiated by a
user with a unified interface (step 1in Figure 1). Asensing task
defines physical parameters (e.g pollution changes) that the user
wishes to estimate in a defined geographical area during a pre-
defined time with certain sensing capabilities of the IoT devices
carrying out the task. The sensing task objective can be in two
forms: information retrieval of raw sensor measurements from
devices (e.g. surveillance videos), or execution of distributed
algorithms on a virtual sensor network deployed on multiple
interconnected devices (e.g. online thermal analysis or target
localization). We represent asensing taskby the triple,〈g, c, δ〉,

where g denotes the number of virtual sensors requested to
perform the sensing task and the two parametersc andδ define
the center and the radius of a geographical area of interest to
the user’s remote sensing application.

The cloud translates a sensing task to a corresponding
sensing task requestthat it sends to its agents. Asensing
task requestdefines the set,V , of g virtual sensors to be
deployed ong connected devices, which are all located within
distanceδ from the area centerc. For each virtual sensor
j ∈ V , the cloud defines aminimum sensing capability, R(j),
that can, for e.g., represent the minimum storage capacity,
the minimum CPU computing power, and/or the minimum
amount of time that devices (to carry out the sensing task) shall
fulfill. The cloud may also choose a suitable virtual topology
that interconnects the virtual sensors so that they can execute
distributed algorithms for in-network processing of devices’
sensors measurements. The criteria used to choose a certain
topology is beyond the scope of our work and we focus on
three possible virtual topologies: complete, cyclic, and star.
For a given topology, letE denote the set of virtual links
connecting the virtual sensors andΥ = (V,E) be the graph
data structure that represents thevirtual sensor networkof
the virtual sensors (connected according to the given virtual
topology). After translating a sensing task to its corresponding
sensing task request, the cloud sends this request (i.e. the graph
data structureΥ) to its agents (step 2 in Figure 1).

Agents manage a large number of interconnectedIoT
devices. A device i, at time t, maintains its geographical
location denoted byloc(i) and its current sensing capability
denoted byC(i). C(i) defines the currently allowed sensing
time, available processing capacity, and/or available memory
capacity that thei-th device can allocate, at timet, to fulfill
the minimum sensing capability demanded by a virtual sensor
j (i.e. R(j)) to be deployed oni. The sensing capability
of a device can correspond to local device’s resources (i.e.
CPU, memory, storage, and sensors) or to resources at the
edge cloud (agent) that the device may opportunistically use
through computation offloading mechanisms.We assume that
two devices can directly communicate with each other if they
are within a transmission radius,r. We model the network of
all n devices, connected to a single agent, as the Euclidean
geometric random graph,G = (S,L), whereS denotes the set
of n devices, andL denotes the set of all links connecting the
devices.

Agents handle sensing task requests under agreed Service
Level Agreements (SLAs) with users through the cloud. An
SLA generally consists of:i) a maximum time within which the
sensing task must be completed,ii) a feasible selection of IoT
devices to carry out the sensing task under certain tolerances
of the results accuracy, andiii) a maximum task rejection
rate defined as the ratio of the number of failures to handle
sensing task requests to the total number of requests. The cloud
translates an SLA to parameters that agents can use in their al-
gorithmic solutions to discover sensing resources and virtualize
devices efficiently. Defining all possible parameters that reflect
any SLA is beyond the scope of this work and we will consider
only two parameters. One parameter, which we defined earlier,
is the minimum sensing capabilityR(j) of the j-th virtual
sensor. The other parameter is the maximum allowed path
length,hmax, between any pair of virtual sensors. The value of
hmax limits the number of devices/hops a message, exchanged
between virtual sensors, can go through. A virtual link between



Figure 1: Sensor network virtualization in Sensing as a Service by different cloud agents near the edge. First tier clouds are conventional cloud
computing platforms, and cloud agents are edge computing platform with evolved rule for Sensing as a Service. Arrows andnumbers illustrate
messages flow and sequence of the proposed usage scenario.

two virtual sensors may map to devices that do not necessarily
deploy a virtual sensor and the virtual sensor network just use
these devices for message forwarding. We usehmax to impose
an upper limit on these intermediate devices for two reasons.
First, restricting the number of intermediate devices shall bound
the sensing task performance in an SLA. Second, agent’s sensor
discovery and virtualization algorithms shall consider minimal
number of hops to deploy virtual links and generally minimal
possible physical resources in sensor network virtualization
to maximize the benefits of Sensing as a Service (step 3 in
Figure 1). We detail the implication ofhmax on virtualization
design objectives later in this section when we introduce
our notion of ’optimal’ virtualization and formulate the total
devices’ benefit in (3).

Finally in our proposed usage scenario, the successfully
deployed virtual sensor network carries out the requested
sensing task and reports the results to the agents, which make
these results available to the cloud, and hence to the user.
Figure 1 summarizes and illustrates the messages sequence and
flow between the different architectural elements.

B. Technical Challenges and Solutions Objectives

The proposed Cloud of Things architecture and usage
scenario envision designing algorithmic solutions with specific
objectives, given the following set of challenges:

Sensing Resource Discovery:In the sensor network virtual-
ization (step 3 in Figure 1), an agent searches for devices with
sensing capabilities that meet the sensing task requirements
specified by the virtual sensor network data structureΥ. For a
givenΥ, the agent discovers devices’ sensing capabilities and
searches for a subset of devices,S′ ⊂ S, such that a device
i ∈ S′, if it is geographically located withinδ distance from the
centerc, and the discovered sensing capabilityC(i) satisfies
the minimum sensing capabilityR(j) demanded by at least one
virtual sensorj ∈ V . For each devicei we define its virtual
domain,D(i), as

D(i) =

{

{j ∈ V : C(i) ≥ R(j)} if ‖loc(i)− c‖ ≤ δ

∅ otherwise,
(1)

hence
S′ = {i ∈ S : |D(i)| > 0}. (2)

The design objective of a sensing resource discovery algorithm
is to construct the virtual domains,D(i) for all i ∈ S, as fast as
possible and with minimal communication overhead between
the agent and the devices as well as between the devices.

The challenges related to sensing resource discovery arise
from the large number of devices and their onerous to maintain
dynamics. The large number of devices connected to an agent
requires a scalable solution to discover devices’ sensing capa-
bilities and to decide if a device current state (e.g. connectivity
to other devices) allows it to deploy a particular virtual sen-
sor. Moreover, the dynamics and rapid changes in the whole
networkG including: devices availability, mobility, connection
state, and resource utilization complicate maintaining devices’
states in a centralized solution. We address these challenges by
proposing a distributed sensing resources discovery algorithm
that propagates the graph data structureΥ to devices inG using
a gossip policy as detailed in Section III-A.

Virtualization: After performing the sensing resource dis-
covery, an agent deploys the virtual sensor network,Υ, by
means of devices virtualization. The virtualization task consists
of finding: i) a setA ⊂ S′ of exactly g connected devices
according to the virtual topology chosen by the cloud, andii)
a setMA ⊂ {(i, j) ∈ A × V : j ∈ D(i)} of (device,virtual
sensor) mapping pairs such that one virtual sensor maps to
exactly one device and a device maps to one and only one
virtual sensor ing. Also, the lengthh(i, i′) of any simple path
connecting two distinct devicesi, i′ ∈ A that maps a virtual
link (j, j′) ∈ E must be less than or equal tohmax. We refer
to a {A,MA} pair that satisfies the previous conditions as a
feasible virtualizationof the requested virtual sensor network
Υ. Note that for any possible setA, there can exist multiple
mappings,MA, and each can form a feasible virtulization.
The design objective of a virtualization algorithm is to find
the ’optimal’ feasible virtualization,{A,MA}∗, that uses the
minimal possible physical resources (devices and physical
links).



We now define and introduce what an ’optimal’ feasible
virtualization means. We consider that the number of virtual
sensors and the number of virtual links of a givenΥ = (V,E)
determine the cloud cost of providing the sensing service given
by Cost(Υ) = α|V |+ β|E|. The scalarα denotes an incentive
paid to each device that maps a virtual sensor, and the scalar
β denotes an incentive divided and paid to each device on a
physical path that maps to a virtual link. An incentive couldbe
monetary or could be in any other form (e.g., credits, services,
etc.). On the other hand, the total devices’ benefit from mapping
the virtual sensors and the virtual links ofΥ can be expressed
as

Benefit=
∑

(i,j)∈MA

α
C(i) −R(j)

C(i)
+

∑

(i,i′)∈P

β
hmax − h(i, i′)

hmax
,

(3)
where h(i, i′) is again the path length (in number of hops)
of the path connecting the devices pair(i, i′) mapping the
virtual link betweenj and j′ and P = {(i, i′) ∈ A × A :
(i, j), (i′, j′) ∈ MA , (j, j′) ∈ E} denotes the set of all such
pairs.

The total devices’ benefit in (3) implies that the lesser the
used physical resources, the greater the benefit to the devices.
The first term of (3) captures the benefit loss of thei-th
device from allocating resources to map a virtual sensorj. As
the demanded minimum sensing capabilityR(j) tends to be
negligible to the sensing capabilityC(i), i gets higher benefit
as it invests less fraction of its resources (e.g. energy, CPU,
or memory) to mapj for the same incentiveα. Similarly, the
second term captures the benefit loss of devicesi andi′, which
map the virtual sensorsj andj′ respectively. Such benefit loss
results from mapping the virtual link betweenj and j′ with
more intermediate devices, as the same incentiveβ for the
virtual link (j, j′) divides on a greater number of devices (i.e.
number of hopsh(i, i′)) compared tohmax. The virtualization
algorithm that we propose in Section III-B consists of finding
an ’optimal’ feasible virtualization that maximizes the total
benefit given in (3). We refer to the optimal solution as
{A,MA}

∗. Clearly, finding{A,MA}
∗ is a hard problem due

to the factorial size of the solution space inn and to the same
scale and dynamics challenges discussed earlier in the sensing
resources discovery challenge.

III. PROPOSEDSOLUTIONS FORSENSING RESOURCE
DISCOVERY AND V IRTUALIZATION

A. Sensing Resource Discovery

Although devices are directly accessible by cloud agents,
contacting the devices at fine-grain time slots to discover their
current sensing capabilities creates a significant communication
and computation inefficiency for a largen. Such centralized
approach requires exchangingO(n) messages, in each time
slot, while constructing virtual domains given by (1) requires
O(n) time. Moreover, activating devices periodically to update
their current sensing capabilities to their cloud agent is power
inefficient, especially if the devices are battery operated.

We propose to perform sensing resource discovery through
a gossip based algorithm that requires a time complexity of
O(r−1 logn) and an averageΘ(1) messages per device. In this
algorithm, an agent propagates information about a received
sensing task request,Υ, using the following ’gossip policy’.
The agent sendsΥ to a randomly chosen device starting

while True do
wait ∆t
s←− random neighbor
if Υ is ∅ then

solicit Υ from s
else

sendΥ to s
end if
receiveΥ′ from s
if Υ′ = Υ then

stop sendingΥ
else
Υ′ is newer thanΥ
Υ←− Υ′

evaluateD(i)
end if

end while
i) active thread at devicei

while True do
receiveΥ′ or
solicit request froms
if Υ is not ∅ then

sendΥ to s
end if
if Υ′ is new then
Υ←− Υ′

evaluateD(i)
end if

end while
ii) passive thread ati

Figure 2: proposed sensing resources discovery gossip based threads
at devicei.

t = 0. Then, any device that receivesΥ continue sendingΥ
to a random device of its direct neighbors until one neighbor
acknowledges that it has already double received the same
version of Υ in a previous step; by then the device stops
sendingΥ. The agent does not need to sendΥ to each device
as the utilized gossip policy allows devices to disseminateΥ
autonomously and the network of devices is guaranteed to be
connected with high probability, if each device is connected to
k neighbors andk ≥ 0.5139 logn [13]. SinceG is a connected
network, this simple gossip policy guarantees thatΥ reaches all
the devices inO(r−1 logn) time (see [14] for time complexity
analysis of general gossip protocols in Euclidean geometric
random graphs). Hence a devicei can constructD(i) according
to (1) once it receivesΥ and the agent can discover sensing
resources of devices that are capable of fulling the requirements
of Υ as fast as possible with minimal communication overhead.

The agent and all its connected devices implement the
active and passive threads shown in Figure 2. At thek-th
time slot, let the devicei be active and contacts a random
neighbor devicei′ (i.e., (i, i′) ∈ L) with probabilityTi,i′ > 0.
The probabilityTi,i denotes the probability thati does not
contact any other device. Let then× n matrix T = [Ti,i′ ] be
a doubly stochastic transition matrix of non-negative entries
[15]. A natural choice ofTi,i′ is

Ti,i′ =







1

di + 1
, if i = i′ or (i, i′) ∈ L,

0, otherwise,
(4)

wheredi = |{i′ ∈ S : (i, i′) ∈ L}| is the degree ofi.

When i contactsi′, they exchange information as follows
(Figure 2 ). The devicei pushesΥ to i′ only if i′ does not have
Υ, or pullsΥ from i′ only if i does not haveΥ. If i contacts
i′ and both devices have receivedΥ before,i stops contacting
any other device.

The actual running time of the proposed algorithm depends
on the choice of the transition matrixT and the communication
range of the considered device-to-device communication tech-
nology. The running time is related to the mixing time of any



random walk onG [15], which suggests that there is an optimal
value of Ti,i′ to minimize the mixing time and it is related
to the second eigenvalue of the transition matrix. Moreover,
in case of smallr, the proposed algorithm is generally slow.
Practically, this algorithm is suitable for device-to-device com-
munication technologies that support communication ranges of
few hundreds of meters, as in WiFi direct and LTE D2D and
whenG is sufficiently dense.

B. Virtualization

We propose RADV: a randomized and asynchronous dis-
tributed virtualization algorithm for Sensing as a Servicewhich
consists of three phases:(I) pruning of virtual domainsD(i)
for all i ∈ S to limit the devices executing RADV to those that
can feasibly deploy a givenΥ, (II) construction of benefit
matrices locally in devices in a distributed manner to allow
maximizing the total devices’ benefit (3), and(III) solving an
assignment problems locally at some devices with|D(i)| > 0
to find an optimal feasible virtualization. This approach results
in multiple solutions each evaluated by a different device,and
a cloud agent selects the solution with the maximum benefit.
These multiple solutions also allow the agent to offer better
resiliency by enabling rapid migration of a virtual sensor in
case of failure or sensing capability change of the device which
maps the virtual sensor.

We now present each of the four phases in details.

Phase I—Virtual Domain Pruning: During this phase,
we ensure that all virtualized devices maintain the topology
described byE or a virtual sensor networkΥ by allowing
a device to receive the virtual domains of other devices and
delete a virtual sensorj from its domain if there exists a virtual
link (j, j′) such thatj′ is not included in any other received
domains. LetDs ⊂ {D(i) : i ∈ S} denotes the set of domains
that a devices has received at timek. Initially Ds = {D(s)}
andh(i, s) = 0 for all i ∈ S2. Using the same transition matrix,
T , defined in (4),s contacts only one of its neighborss′ at time
k. Then, for allD(i) ∈ Ds : i 6= s′, s pushesD(i) to s′ only
if s′ did not receiveD(i) before andh(i, s) < hmax. Also,
for allD(i) ∈ Ds′ : i 6= s, s pulls D(i) from s′ only if s did
not receiveD(i) before andh(i, s′) < hmax. If no domain is
exchanged betweens ands′ at timek, s stops contacting any of
its neighbors. However,s may restart contacting its neighbors
again if it updatedDs after timek+1. This part of the protocol
is a multi-piece information dissemination gossip policy that
requires simple modification to the threads in Figure 2.

When s constructs itsDs, it starts by pruningD(s). The
pruning is performed by deleting a virtual sensorj ∈ D(s)
(i.e., D(s) ← D(s) \ {j}) if none of the virtual sensors that
are connected toj, {j′ ∈ V : (j, j′) ∈ E}, is not included in
any receivedD(i), i.e. j /∈ D(i) : D(i) ∈ Ds. This pruning
rule ensures that the devices maintain the required topology E
and the constructed benefit matrices shall result in a feasible
virtualization.

The time required to spread information in the pruning
phase isO(r−1n logn). A devicei examinesg received virtual
domains, each having at mostg entries, hence requiresO(g2)
time to pruneD(i). Since every device exchanges a maximum
of n domains each of sizeO(g), the average number of

2Knowledge about other devices existence is not needed, andh is dynami-
cally evaluated.

messages communicated per device isO(n). However, as we
restrict that messages to be communicated up tohmax hops,
the average number of messages per device is typically small.

Phase II—Construction of Benefit Matrices:As mentioned
earlier, finding a feasible virtualization,{A,MA}∗, that max-
imizes the total benefit (3) is a hard problem due to the large
size of the solution space. Therefore, this phase proposes an
efficient way of solving this virtualization problem.

During this phase, each devices locally constructs its own
set, A(s), of g candidate devices thats chooses to map the
virtual sensors inV . Each devices also maintainsg row
vectors,B(s)

i ∈ R1×g and i ∈ A(s), that we define as the
benefit vector of thei-th device seen bys, where thej-th
element,B(s)

i,j , denotes the benefit of mapping the device
i ∈ A(s) to the virtual senorj ∈ V as seen bys, and is
given by

B
(s)
i,j =







α
C(i)−R(j)

C(i)
+ β

hmax − h(j, s)

hmax
if j ∈ D(i),

0 otherwise.

Our objective is to construct, for eachs ∈ S, the benefit
matrixB(s) = [B

(s)

i∈A(s) ] as fast as possible, and find a feasible
virtualization,{A,MA}, that maximizes the total benefit,

∑

(i,j)∈MA

B
(s)
i,j ,

among alls ∈ S without central knowledge of the completeG
structure. Obviously, the path length between a devices and
any other devicei thats includes in its benefit matrix must not
exceedhmax. Finally, a devices shall include only the benefit
vectors of theg devices with the largest possible benefit.

Each devices initially setsA(s) = A(s) ∪ {s} if D(s) /∈ ∅,
setsh(i, s) = 0 for all i ∈ S, and sets

B
(s)
s,j =







α
C(s)−R(j)

C(s)
+ β, j ∈ D(s),

0, otherwise.

Also, s maintains a scalar,bmin
s , defined as the minimum total

benefit it has received from any other device

bmin
s = min

i

∑

j∈V

B
(s)
i,j ,

where the minimum corresponding device is

imin
s = argmin

i

∑

j∈V

B
(s)
i,j .

Initially, bmin
s = 0 and remains so until|A(s)| = g.

Using the same transition matrix,T , s contacts its neighbor
s′ only once at each timek. Then, for alli ∈ A(s) : i 6= s′, s
pushes the benefit vectorB(s)

i to s′ only if h(i, s) < hmax and
∑

j∈V

(

B
(s)
i,j −

β

hmax

)

> bmin
s′ .

Also, for alli ∈ A(s′) : i 6= s, s pulls the benefit vectorB(s′)
i

from s′ only if h(i, s′) < hmax and
∑

j∈V

(

B
(s′)
i,j −

β

hmax

)

> bmin
s .



If no benefit vector is exchanged betweens ands′ at timek,
s stops contacting its neighbors at timek+1. However,s may
restart contacting its neighbors again ifB(s) is updated after
time k + 1.

Whens receivesB(s′)
i , s updatesB(s)

i,j as

B
(s)
i,j =







B
(s)
i,j −

β

hmax
if j ∈ D(i),

0 otherwise.

If i /∈ A(s), then we have two scenarios. In the first scenario,
s has not receivedg benefit vectors, sobmin

s = 0 and|A(s)| < g,
thens updates its set of candidate devices asA(s) = A(s)∪{i}.
In the other scenario in which|A(s)| = g, s replaces the device,
imin
s , that corresponds to the minimum total benefit withi so

thatA(s) = A(s) \ {imin
s }∪{i}. On the other hand, ifi ∈ A(s),

thens updatesB(s)
i,j if

∑

j∈V

B
(s′)
i,j >

∑

j∈V

B
(s)
i,j . Finally, s updates

bmin
s , imin

s , andh(i, s) ash(i, s) = h(i, s′) + 1.

Finding a feasible virtualization that maximizes the benefit
matrix B(s) = [ B

(s)

i∈A(s) ] instead of the total benefit in (3)
makes the problem easier because every device has a different
value for the benefitBi,j that depends only on the length of
the physical path betweeni and s instead of the path lengths
of all possible combinations of sensor pairs(i, i′) that can
map a virtual link.Intuitively, this relaxation still leads to an
optimal virtualization for star virtual topology or near optimal
virtualization for other topologies. For a solution found by
s, the worst case path length between any two devices(i, i′)
other thans in this solution is at most double the maximum
of the path lengths between(i, s) or (i′, s). We evaluate the
effectiveness of this relaxation in Section IV and show that
our virtualization algorithm performs well for large and dense
enoughG.
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Figure 3: The average messages per device and the maximum time
at which all devices inG prune their virtual domains and construct
benefit matrices (in the time unit of∆t ).

The time required to construct the benefit matrices is
O(r−1n logn). Figure 3 shows the total time and the average
number of messages per device required during both the
domain pruning and the benefit construction phases. The time
in Figure 3 is linearithmic inn when the agent sendsΥ initially
to exactly one device, which can be significantly improved with
a better implementation such that the agent continue sending
Υ to random devices. As analyzed, the average number of
messages per device is shown to scale linearly withn. The
benefit construction phase dominates the number of message
exchanged which is typically a very small fraction ofn.

Phase III—Solving Local Assignment Problem:After the
reception of theg benefit vectors,s proceeds to this phase of
the algorithm only if it stops communicating and|A(s)| = g.
Each devices ∈ S with |A(s)| = g solves locally the following
assignment problem:

maximize
∑

i∈A(s)

∑

j∈D(i)

B
(s)
i,j mij

subject to
∑

j∈D(i)

mij = 1, i ∈ A(s),
∑

{i:j∈D(i)}

mij = 1, j ∈ V,

mij ∈ {0, 1},

(5)

where mij is a binary variable indicating whether thei-th
device maps to the virtual sensorj. The problem formulated
in (5) is equivalent to the maximum weight perfect matching
problem in a bipartite graph, allowing us to use the well known
Hungarian method to solve it inO(g3) worst case time [16].

We can improve this time complexity to linear time, if we
tolerate an errorǫ > 0 of the resulting total benefit and relax
the restriction of finding a perfect matching for largeg; i.e it
is not necessary to map all virtual sensors to devices. In such
scenario, we can use the linear time(1 − ǫ)-approximation
algorithm that is proposed recently in [17] to solve (5). Details
of these algorithms are omitted due to space limitation (see
[16], [17] for details).

In RADV, each device solves locally the optimization
problem given in (5) using the Hungarian method and sends
its obtained solution to the cloud agent. The agent then
selects the solution that leads to the maximum total benefit,
and keeps all other solutions for use in case virtual sensors
migration is needed. The overall complexity of RADV is
bounded by either solving the assignment problem at each
sensor, or the time required to prune the virtual node domain,
i.e. O(max{r−1n logn, g3}).

IV. N UMERICAL RESULTS

In this section, we numerically evaluate the performance
of the proposed RADV algorithm implemented in our own
simulator in Python, NetworkX, and Simpy. In our simulations,
G andΥ are generated considering the parameters summarized
in Table I. The topology of anyΥ can either be complete,
cyclic, or star. To evaluate RADV’s solutions closeness to
optimal, we consider a cloud agent that receives and services
only one virtual sensing task request,Υ, at a time.

Table I: Simulation Parameters

Parameter r C(i) R(j) δ hmax

Value 0.1 ∼ U(50, 100) ∼ U(25, 50) 0.2 20

We also consider the maximum total benefit that any virtu-
alization algorithm can achieve to assess RADV performance.
Such an upper bound is attained by mapping the virtual sensors
of Υ to g devices with the maximum sensing capability and by
assuming that virtual links always map to paths of exactly one
hop. This simple bound has a theoretically wide optimization
gap, as mapping virtual links to single-hop paths can be
attained only for a large enoughG; whereG has a clique of size
g such that all devices in this clique can feasibly map virtual
sensors ofΥ (i.e. sensing capabilities of devices are always
greater than demands, and sensing tasks are not restricted in a
certain location).
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Figure 5: Virtual sensor network rejection rate encountered by RADV
for different number of devices. For dense and unloaded network (n >

1000), RADV discovers sensing resources and finds a solution to the
virtualization problem almost surely.

This suggested bound, despite the fact that it creates a wide
optimization gap, enlightens sufficient insights about theclose-
ness of RADV’s solutions to optimal. Figure 4 numerically
evaluates the total benefit in (3) that is achieved by RADV for
different virtual topologies and compares it to the maximum
total benefit bound we just introduced. As the network gets
denser, RADV achieves a total benefit that is very close to the
upper bound.

Figure 5 shows the rejection rate encountered with different
Υ topologies andn values. As we only consider oneΥ at
a time, the results shown in this figure reflect the impact
of Υ topology, the number of devicesn, and the simulation
parameters given in Table I on the rejection rate. Observe that
the denser theG, the lower the rejection rate, implying that the
cloud is capable of granting higher number of requests as we
discussed earlier.

V. CONCLUSION

We have described our initial research in Cloud of Things.
We have shown the potential of Cloud of Things to scale
cloud computing vertically by exploiting sensing resources
of IoT devices to provide Sensing as a Service. We have
proposed a global architecture that scales Cloud of Things
horizontally by employing edge computing platforms in a
new role as cloud agents that discover and virtualize sensing
resources of IoT devices. We have described cloud agents
technical challenges and design objectives for sensing resources

discovery and virtualization that can dispatch offering virtual
sensor networks deployed on IoT devices to cloud users
with in-network processing capabilities. We have proposedour
sensing resource discovery solution based on a gossip policy
to discover sensing resrouces as fast as possible and RADV:
our virtualization solution. We have shown through analysis
and simulations the potential of RADV to achieve reduced
communication overhead, low complexity, and closeness to
optimal such that RADV employs minimal physical resources
in devices virtualization with maximal benefit.
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