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Abstract—We propose Cloud of Things for Sensing as a
Service: a global architecture that scales up cloud computig
by exploiting the global sensing resources of the highly dyamic
and growing Internet of Things (IoT) to enable remote sensig.
The proposed architecture scales out by augmenting the role
of edge computing platforms ascloud agents that discover and
virtualize sensing resources of loT devices. Cloud of Thirgy
enables performing in-network distributed processing of gnsing
data offered by the globally available 10T devices and proves
a global platform for meaningful and responsive sensing dat
analysis and decision making. We design cloud agents algtrimic
solutions bearing in mind the onerous to track dynamics of tle loT
devices by centralized solutions. First, we propose a disbuted
sensing resource discovery algorithm based on a gossip i
that selects 10T devices with predefined sensing capabilis as fast
as possible. We also propose RADV: a distributed virtualizéon
algorithm that efficiently deploys virtual sensor networkson top of
a subset of the selected IoT devices. We show, through analyand
simulations, the potential of the proposed algorithmic saltions to
realize virtual sensor networks with minimal physical resairces,
reduced communication overhead, and low complexity.

I. INTRODUCTION

resources that scale and shrink according to remote sensing
applications demands, providing an optimized and coratiode!
sensing resource utilization and pricing based on meakurab
usage.

Cloud of Things shifts the current conventional usage of
cloud platforms in remote sensing from a ’collect sensor
data now and analyze it later’ scenario to a usage scenario
that directly provides meaningful information from in-network
processing of sensing data by IoT devica§ithout such
conjectured infrastructure, remote sensing users cédngsiih
access to sensing resources through conventional cloud bac
end systems (see [6], [4]), with less opportunities to scale
out sensing applications over the globally available sensi
resources and with intolerable performance to application
that require responsive exploitation and fusion of sensing
data and agile in-network decisions (e.g. localization gmtl
estimation [8]).

Cloud of Things infrastructure Cloud platforms near
the network edge already exist in different forms such as
smartphones, personal computers, gateways, and servers to
offer computation offloading to nearby devices in real-time

Remote sensing applications will evolve through on-(e.g. cloudlets [9], [10] and edge computing platforms [11]

demand sensing services provided by the global network dfL2]). We envision a new role of edge platforms as cloud agents
sensor equipped devices in our homes, factories, citie$, arthat incorporate 10T devices as sensing resources (Figyre 1
bodies known as the Internet of Things (loT). Today in smatto scale up the conventional cloud with global and location
phones ’only’, there are seven sensors on average per devispecific sensing resources. We propose cloud agents algo-
including: magnetometer, barometer, light, heart, hutpidind  rithmic solutions that provide(1) fast discovery of devices’
temperature sensors that one can use as participatoryrsensdynamic sensing resources in specific geographical areh, an
to carry out applications like short-term weather foreicgst (2) optimized devices virtualization to serve as virtuahss

[1], [2]. The density of smartphones’ sensors in London yoda networks by exploiting their discovered sensing resources
exceeds 14,000 sensor per square kilometBy 2020, the . ) o

global number of sensor-equipped and location-aware devic _ Cloud agents implement remote sensing applications as
(e.g. wearable, smart home, and fleet management devicedjtual sensor networks to be deployed on virtualizable loT
will reach tens of Billions, potentially creating densendynic, ~ dévices in a geographical area that perform distributed in-
location-aware, and onerous to manage networks of deviees t Network processing of sensing data. These virtual senger ne
can realize the vision of providing a versatile remote semsi Works may employ devices’ sensing resources discovered by

services, known as 'Sensing as a Service’ [3], [4], [5]. mqlfciple_ cloud agents. Conventional cloud platforms pdeva
unified interface to cloud users to seamlessly use such lgloba

We conjecture that employing loT devices’ sensing re-sensing resources from anywhere and at anytime while hiding
sources in aloud computing like platfornio support remote complexities and supporting interaction between clouchtgye
sensing applications may be an effective approach to eealizin Cloud of Things, loT devices become surrogates of feddrat
the Sensing as a Service vision [3]. The idea is to dynanyicall sensor networks (i.e administrated by a single organiajptiat
augment and scale up existing cloud resources (computean potentially reduce the total cost of ownership for reamot
storage, and network) by exploiting sensing capabilitits osensing applications.
devices through cloud agents near the network edge to form a ) , i
global system named th€loud of Thinggsee Figure 1). The In this paper we propose a Cloud of Things architecture
Cloud of Things is a geographically distributed infrastuwe ~ for Sensing as a Services and efficient algorithms for sgnsin
with cloud agents elements that continuously discover ané€source discovery and optimized devices virtualizatidfe.
pool sensing resources of 10T devices to be used by clouliscuss the technical challenges and our envisioned usage

users on-demand. This infrastructure provides elastisisgn Scenario of the proposed architecture in Section II. In Sec-
tion Ill, we first propose a sensing resource discovery algo-

rithm that uses a gossip policy for propagating a sensing tas
requirements to devices (or their virtual instance at thgeed

1The population density in London exceeds 4,000 inhabitgets square
kilometer and the UK smartphone penetration reaches 55%.



cloud) and selects feasible devices to execute the taske whiwhere g denotes the number of virtual sensors requested to
responding to dynamic changes of devices as fast as passibfgerform the sensing task and the two parametensdo define
Then, we propose RADV, an efficient virtualization algomith  the center and the radius of a geographical area of intevest t
that deploys a virtual sensor network corresponding to thé¢he user’s remote sensing application.

sensing task on top of a subset of the selected devices with : .
g b The cloud translates a sensing task to a corresponding

minimal physical resources. Finally, we numerically ewzdd . . ; ;
pny y y sensing task requeshat it sends to its agents. Aensing

ﬁ.]urszgi%?qs\e/d algorithms in Section IV and conclude this papetask requestdefines the set)’, of ¢ virtual sensors to be

deployed ory connected devices, which are all located within
distanced from the area centee. For each virtual sensor
j € V, the cloud defines aminimum sensing capability?(j),

The proposed Cloud of Things architecture allows cloudthat can, for e.g., represent the minimum storage capacity,
users to run remote sensing tasks, with certain specifitgtio the minimum CPU computing power, and/or the minimum
virtually on any sensor-equipped 0T devices (see Figure 1l)Jamount of time that devices (to carry out the sensing tasid) sh
For example, a cloud user can profile pollution changesieit fulfill. The cloud may also choose a suitable virtual topglog
from real-time temperature and CO2 concentration measurdhat interconnects the virtual sensors so that they canuéxec
ments collected by sensors in vehicles with defined pratisiodistributed algorithms for in-network processing of desc
and accuracy. The architecture consists of three main efesme sensors measurements. The criteria used to choose a certain
IoT devices, first tier clouds, and cloud agentsT devices topology is beyond the scope of our work and we focus on
are sensor-equipped devices that can serve both specific atidee possible virtual topologies: complete, cyclic, anar.s
general purpose remote sensing applications, including foFor a given topology, letF denote the set of virtual links
example smart factory, smart grid, and smartphone devicesonnecting the virtual sensors afld= (V, E) be the graph
An |oT device can communicate directly with proximate de-data structure that represents thietual sensor networkof
vices. First tier clouds are conventional cloud platforms that the virtual sensors (connected according to the given alirtu
provide unified interfaces to users to access the system ardpology). After translating a sensing task to its correstiog
hide complexities underlying realization of sensing segsi  sensing task requeshe cloud sends this request (i.e. the graph
Throughout, we refer to a first tier cloud as simply 'cloud’. data structuréX’) to its agentsgtep 2in Figure 1).

Finally, Cloud agentsare trusted and resource-rich elements A | b fi T
near the network edge that are well-connected to the Irterne gents manage a large number of interconne

and to conventional cloud platforms. Cloud agents can be fec\gfigrsw ﬁegg;/e'geé' at.t”;'r? dt’itsmfl'ﬂg?tssgﬁS%eogga%ﬁfl
powerful as supercomputers, or as flexible as smartphonég Yoc(i) g capability

according to the types of devices they serve and the computiqienOted byC'(i). C(i) defines the currently allowed sensing

resources these devices demand. Throughout, we refer to e, ‘?‘V"J‘"ab'e processing capacity, and/or Qva"ab'e orgm
cloud agent as simply 'agent. capacity that the-th device can allocate, at timg to fulfill

the minimum sensing capability demanded by a virtual sensor
This architecture offers new sensing features and servicg (i.e. R(j)) to be deployed on. The sensing capability
level guarantees with several benefits. Deploying agefdsidc  of a device can correspond to local device’s resources (i.e.
agents) close to devices improves responsiveness to gensi@PU, memory, storage, and sensors) or to resources at the
task requests and enables access to a globally availaldmgen edge cloud (agent) that the device may opportunistically us
resources. From the devices’ viewpoint, cloud resources cathrough computation offloading mechanisriide assume that
be split into local resources (agents’ resources) and Ylobawo devices can directly communicate with each other if they
resources (clouds’ resources) that can improve resilidncy are within a transmission radius, We model the network of
migrating sensing tasks as the states of the devices, whidl n devices, connected to a single agent, as the Euclidean
carry out the sensing task, change. A cloud (first tier cloudjgeometric random graply, = (S, L), whereS denotes the set
also acts as liaison to support coordination between diged  of n devices, and. denotes the set of all links connecting the
agents, while these agents can rapidly capture dynamics dafevices.
the devices (e.g. utilization, connectivity, and availi&pi. This
approach simplifies analytics and big data with possibleadir
device access for agile in-network data processing andideci
making. The proposed architecture finally allows the design
network-aware and performance-optimized cloud procedure

Il. ARCHITECTUREUSABILITY AND CHALLENGES

Agents handle sensing task requests under agreed Service
Level Agreements (SLAs) with users through the cloud. An
SLA generally consists of) a maximum time within which the
sensing task must be completét), a feasible selection of IoT
devices to carry out the sensing task under certain tolesanc
of the results accuracy, andi) a maximum task rejection
rate defined as the ratio of the number of failures to handle

A cloud (first tier cloud) handlesensing taskmiitiated by a  sensing task requests to the total number of requests. ©hd cl
user with a unified interfaces{ep lin Figure 1). Asensing task translates an SLA to parameters that agents can use in their a
defines physical parameters (e.g pollution changes) teatshr  gorithmic solutions to discover sensing resources andalige
wishes to estimate in a defined geographical area during-a prdevices efficiently. Defining all possible parameters tlefiect
defined time with certain sensing capabilities of the loTides  any SLA is beyond the scope of this work and we will consider
carrying out the task. The sensing task objective can be an twonly two parameters. One parameter, which we defined earlier
forms: information retrieval of raw sensor measuremerdmfr is the minimum sensing capability(j) of the j-th virtual
devices (e.g. surveillance videos), or execution of disted sensor. The other parameter is the maximum allowed path
algorithms on a virtual sensor network deployed on multiplelength, ..., between any pair of virtual sensors. The value of
interconnected devices (e.g. online thermal analysis yeta h,,., limits the number of devices/hops a message, exchanged
localization). We representsensing tasky the triple,(g, ¢, 9), between virtual sensors, can go through. A virtual link tesdw

A. Usage Scenario and System Model
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Figure 1: Sensor network virtualization in Sensing as a i€erby different cloud agents near the edge. First tier cdoagk conventional cloud
computing platforms, and cloud agents are edge computifiopn with evolved rule for Sensing as a Service. Arrows aathbers illustrate
messages flow and sequence of the proposed usage scenario.

two virtual sensors may map to devices that do not necegsarihence

deploy a virtual sensor and the virtual sensor network jgst u S"={ieS:|D@)| > 0}. (2
these devices for message forwarding. We lgg, to impose , o . . i

an upper limit on these intermediate devices for two reasond Ne design objective of a sensing resource discovery ahyori
First, restricting the number of intermediate devicesldimind IS to construct the virtual domain®)(:) for all i € S, as fast as

the sensing task performance in an SLA. Second, agent’slsensooss'b|e and with minimal communication overhead between
discovery and virtualization algorithms shall considenimial ~ the agent and the devices as well as between the devices.

number of hops to deploy virtual links and generally minimal  The challenges related to sensing resource discovery arise
possible physical resources in sensor network virtuafinat from the large number of devices and their onerous to maintai
to maximize the benefits of Sensing as a Servitel 3in  gynamics. The large number of devices connected to an agent
Figure 1). We detail the implication df.n.x on virtualization  yequires a scalable solution to discover devices' sensipa-c
design objectives later in this section when we introducgjjities and to decide if a device current state (e.g. cotiiee
our.n0t|'0n of ’_opt|mal’ virtualization and formulate thetéd {5 other devices) allows it to deploy a particular virtuahse
devices’ benefit in (3). sor. Moreover, the dynamics and rapid changes in the whole

Finally in our proposed usage scenario, the successfullpetworkg including: devices availability, mobility, connection
deployed virtual sensor network carries out the requestegtate, and resource utilization complicate maintaining s’
sensing task and reports the results to the agents, whice makgtates in a centralized solution. We address these chabeng
these results available to the cloud, and hence to the usdifoposing a distributed sensing resources discovery igthgor
Figure 1 summarizes and illustrates the messages sequathce dhat propagates the graph data structdr® devices ing using
flow between the different architectural elements. a gossip policy as detailed in Section IlI-A.

Virtualization: After performing the sensing resource dis-
covery, an agent deploys the virtual sensor netwdfk,by

The proposed Cloud of Things architecture and usageneans of devices virtualization. The virtualization tasksists
scenario envision designing algorithmic solutions witkeafic  of finding: i) a setA C S’ of exactly g connected devices
objectives, given the following set of challenges: according to the virtual topology chosen by the cloud, and

Sensing Resource Discoveryt the sensor network virtual- & SetMa C {(i,j) € Ax V' j € D(i)} of (device,virtual
ization (step 3in Figure 1), an agent searches for devices withS€NSOr) Mapping pairs such that one virtual sensor maps to
sensing capabilities that meet the sensing task requirismene.xaCtIy one d.eV'Ce and a device ”.‘"’?PS to one_and only one
specified by the virtual sensor network data structirécor a  Virtual sensor wyd_Al_so, tge I_engt.rlh(z,;l) ﬁf any simple _pathl
given Y, the agent discovers devices’ sensing capabilities anﬁglrgnectmg two distinct devices: € A that maps a virua

7
searches for a subset of devicé8,C S, such that a device ¢ (31’43 j)\f E mystthb(ta Ie?sf_thar;hor eq“"?“ Qe \é\/? refer
1 € 5, if itis geographically located within distance from the 0 a{A Ma} pair that satisfies the previous conditions as a

centerc, and the discovered sensing capabilityi) satisfies fTeaﬂblte \t/;]rtl:a}llzanomf the.gfqu(‘:;t?ﬁ virual senstor n?tt_wlork
the minimum sensing capabilit§(;j) demanded by at least one _* ote that Tor any possible Sel, thereé can exist mullipie

virtual sensorj € V. For each devicé we define its virtual MaPPings. M., and each can form a feasible virtulization.
domain, D(i), as The design objective of a virtualization algorithm is to find

_ _ o . the "optimal’ feasible virtualization{ A, M 4}*, that uses the
L JieV:CGE) = R(G)} if |loc(i) —cl| <6 minimal possible physical resources (devices and physical
D(i) = : (1) ]

0 otherwise, links).

B. Technical Challenges and Solutions Objectives



We now define and introduce what an 'optimal’ feasible
virtualization means. We consider that the number of virtua
sensors and the number of virtual links of a givén= (V, E)
determine the cloud cost of providing the sensing servicergi
by CostY) = «|V| + B|E|. The scalarx denotes an incentive
paid to each device that maps a virtual sensor, and the scal
£ denotes an incentive divided and paid to each device on
physical path that maps to a virtual link. An incentive cobél
monetary or could be in any other form (e.g., credits, sesjic
etc.). On the other hand, the total devices’ benefit from rirapp
the virtual sensors and the virtual links ®¥fcan be expressed

as
>«

(4,5)EMa

hmax — h(i,7)

Benefit=

)

(3)
where h(i,i') is again the path length (in number of hops)
of the path connecting the devices p&iri’) mapping the
virtual link between;j and ;' and P = {(i,7) € A x A :
(1,7),(#,7) € Ma,(j,7) € E} denotes the set of all such
pairs.

C(i) — R(j)
c@ (l%épﬂ

hmax

while True do

wait At
s «— random neighbor
if Y is () then
solicit T from s
ar else
a sendY to s while True do
end if receiveY’ or
receiveY’ from s solicit request froms
if Y/ =7 then if Y is not( then
stop sendingl’ sendY to s
else end if
T’ is newer tharl’ if Y/ is newthen
T+ 7T T+— 1Y
evaluateD(7) evaluateD(i)
end if end if
end while end while

i) active thread at device i) passive thread at

Figure 2: proposed sensing resources discovery gossipl baeads
at device:.

The total devices’ benefit in (3) implies that the lesser the

used physical resources, the greater the benefit to theedevic
The first term of (3) captures the benefit loss of thth
device from allocating resources to map a virtual sersa@s
the demanded minimum sensing capabiliyj) tends to be
negligible to the sensing capability (i), < gets higher benefit
as it invests less fraction of its resources (e.g. energy),CP
or memory) to mag for the same incentive.. Similarly, the
second term captures the benefit loss of deviasd:’, which
map the virtual sensorsandj’ respectively. Such benefit loss
results from mapping the virtual link betwegnand ;' with
more intermediate devices, as the same incenfivior the
virtual link (4, ;') divides on a greater number of devices (i.e.
number of hops(i,4')) compared toh,,.x. The virtualization
algorithm that we propose in Section IlI-B consists of firglin
an ’optimal’ feasible virtualization that maximizes thetab
benefit given in (3). We refer to the optimal solution as
{A, M4}*. Clearly, finding{A, M 4}* is a hard problem due
to the factorial size of the solution spacerirand to the same
scale and dynamics challenges discussed earlier in thengens
resources discovery challenge.

IIl. PROPOSEDSOLUTIONS FORSENSING RESOURCE

DISCOVERY AND VIRTUALIZATION

A. Sensing Resource Discovery

Although devices are directly accessible by cloud agents,

contacting the devices at fine-grain time slots to discoleirt
current sensing capabilities creates a significant comeatinn
and computation inefficiency for a large Such centralized
approach requires exchangirig(n) messages, in each time
slot, while constructing virtual domains given by (1) regsi
O(n) time. Moreover, activating devices periodically to update
their current sensing capabilities to their cloud agentawer
inefficient, especially if the devices are battery operated

We propose to perform sensing resource discovery throug
a gossip based algorithm that requires a time complexity o
O(r~1logn) and an averag®(1) messages per device. In this

t = 0. Then, any device that receivés continue sendingl

to a random device of its direct neighbors until one neighbor
acknowledges that it has already double received the same
version of T in a previous step; by then the device stops
sendingY. The agent does not need to sefido each device

as the utilized gossip policy allows devices to dissemingte
autonomously and the network of devices is guaranteed to be
connected with high probability, if each device is connddte

k neighbors and > 0.51391ogn [13]. Sinceg is a connected
network, this simple gossip policy guarantees thataches all

the devices irO(r~! logn) time (see [14] for time complexity
analysis of general gossip protocols in Euclidean geometri
random graphs). Hence a devicean construcD(i) according

to (1) once it receive§ and the agent can discover sensing
resources of devices that are capable of fulling the remerds

of T as fast as possible with minimal communication overhead.

The agent and all its connected devices implement the
active and passive threads shown in Figure 2. At khth
time slot, let the device be active and contacts a random
neighbor device’ (i.e., (i,i") € L) with probability T; ;; > 0.

The probability7; ; denotes the probability that does not
contact any other device. Let thex n matrix T' = [T} ;] be
a doubly stochastic transition matrix of non-negative iestr
[15]. A natural choice off; ;s is

1
di—l—l’
0,

Ty = if i =14 or(i,¢)e L, @

otherwise,

whered; = |{i’ € S : (i,i') € L}| is the degree of.

When i contactsi’, they exchange information as follows
(Figure 2). The device pushesY to ' only if i’ does not have
T, or pulls Y from ¢’ only if + does not havér. If ; contacts

" and both devices have receivédbefore,i stops contacting
%ny other device.

The actual running time of the proposed algorithm depends

algorithm, an agent propagates information about a redeiveon the choice of the transition matrixand the communication

sensing task request;, using the following 'gossip policy’.
The agent sendsl to a randomly chosen device starting

range of the considered device-to-device communicatioh-te
nology. The running time is related to the mixing time of any



random walk org [15], which suggests that there is an optimal messages communicated per devic®is). However, as we
value of T; ; to minimize the mixing time and it is related restrict that messages to be communicated upg. hops,

to the second eigenvalue of the transition matrix. Moreoverthe average number of messages per device is typically small
in case of small, the proposed algorithm is generally slow.
Practically, this algorithm is suitable for device-to-d&vcom-
munication technologies that support communication ramje
few hundreds of meters, as in WiFi direct and LTE D2D and
wheng is sufficiently dense.

Phase | |—Construction of Benefit Matrice#is mentioned
earlier, finding a feasible virtualizatiod A, M 4 }*, that max-
imizes the total benefit (3) is a hard problem due to the large
size of the solution space. Therefore, this phase propases a
efficient way of solving this virtualization problem.

B. Virtualization During this phase, each deviedocally constructs its own
set, A®), of ¢ candidate devices that chooses to map the

~ We propose RADV: a randomized and asynchronous disyirtual sensors inV’. Each devices also maintainsg row
tributed virtualization algorithm for Sensing as a Serwidech  \ectors B ¢ R'™%andi € A®). that we define as the

K2

consists of three phase§f) pruning of virtual domain(i)  penefit vector of thei-th device seen by, where thej-th
for all i € S to limit the devices executing RADV to those that element, Bi(sj)’ denotes the benefit of mapping the device

can feasibly deploy a givefl', (II) construction of benefit A6 10 the virtual _ b di
matrices locally in devices in a distributed manner to allow® € to the virtual senorj € V' as seen bys, and is
maximizing the total devices’ benefit (3), aafl 1) solving an ~ 9Iven by

assignment problems locally at some devices Wi#)| > 0 C(i) — R(j) hmax — h(j,8) .. . ,
to find an optimal feasible virtualization. This approachules B® =170 +8 oo if j € D),
in multiple solutions each evaluated by a different devared " 0 otherwise

a cloud agent selects the solution with the maximum benefit.
These multiple solutions also allow the agent to offer bette
resiliency by enabling rapid migration of a virtual sensar i
case of failure or sensing capability change of the devicielwvh
maps the virtual sensor.

Our objective is to construct, for eache S, the benefit
matrix B() = [B'®), ] as fast as possible, and find a feasible
virtualization,{A, M 4 }, that maximizes the total benefit,

We now present each of the four phases in details. Z Bi(,sj)v

Phase |—Virtual Domain Pruning: During this phase, . (hy)eMa
we ensure that all virtualized devices maintain the topplog @mong alls € S without central knowledge of the complefe
described byE or a virtual sensor networR® by allowing  Structure. Obviously, the path length between a deviend
a device to receive the virtual domains of other devices an@ny other device thats includes in its benefit matrix must not
delete a virtual sensgrfrom its domain if there exists a virtual €Xceedhnax. Finally, a devices shall include only the benefit
link (j,;') such thatj’ is not included in any other received vectors of they devices with the largest possible benefit.
domains. LetD, C {D(i) : i € S} denotes the set of domains  Each devices initially sets A®) = A®) U {s}if D(s) ¢ 0,
that a devices has received at timé. Initially D, = {D(s)}  setsh(i,s) = Ofor alli € S, and sets
andh(i,s) = Ofor alli € S2. Using the same transition matrix,

T, defined in (4) s contacts only one of its neighbossat time L) — R() 48 jeD(s)
k. Then, for altD(i) € Dy : i # s, s pushesD(i) to s’ only BS; = C(s) ’ ’
if s’ did not receiveD(i) before andh(i,s) < hmax. Also, 0, otherwise.

for allD(i) € Dy : i # s, s pulls D(i) from s’ only if s did o . i o
not receiveD(i) before andh(i, s') < hmax. If N0 domain is Also, s maintains a scala"", defined as the minimum total

exchanged betweenands’ at timek, s stops contacting any of Penefit it has received from any other device

its neighbors. However may restart contacting its neighbors pmin — i Z B®

again if it updatedD, after timek+1. This part of the protocol s i R

is a multi-piece information dissemination gossip polibwatt eV

requires simple modification to the threads in Figure 2. where the minimum corresponding device is
When s constructs itsDy, it starts by pruningD(s). The i = argminz Bi(fj).

pruning is performed by deleting a virtual sengore D(s) ¢ jev

(i.e., D(s) «+ D(s) \ {4}) if none of the virtual sensors that .. i . s
are connected tg, {j € V : (j,j') € E}, is not included in 'nitially, b = 0 and remains so untA®)] = g.

any receivedD(i), i.e. j ¢ D(i) : D(i) € D,. This pruning Using the same transition matriX, s contacts its neighbor
rule ensures that the devices maintain the required togaldg ' only once at each timg. Then, for alli € Al .y £, s
and the constructed benefit matrices shall result in a fleasib 5 shes the benefit vect@™® to s only if A(i, s) < hmax and
virtualization. ' ’ e

The time required to spread information in the pruning Z (stg) - hﬁ ) > b,
phase i (r~'nlogn). A devicei examineg; received virtual jeV max
domains, each having at magtentries, hence require3(g?)
time to pruneD(i). Since every device exchanges a maximu
of n domains each of siz&(g), the average number of

Iso, for alli € A : i £ s, s pulls the benefit vectoBz.(Sl)
from s’ only if h(i,s’) < hmax and

/ 15} )
2Knowledge about other devices existence is not neededhasdlynami- Z (Bl(sj) " > b?m-
cally evaluated. jev max



If no benefit vector is exchanged betweemand s’ at time k, Phase I11—Solving Local Assignment Problemifter the

s stops contacting its neighbors at tirhe- 1. However,s may  reception of they benefit vectorss proceeds to this phase of
restart contacting its neighbors againBf*) is updated after the algorithm only if it stops communicating and®)| = ¢.
time k + 1. Each devices € S with |A(®)| = g solves locally the following

When s receivesBi(Sl), s updatestfj) as assignment problem:

3 maximize > > Bf_sj)mij
« ) BY — if j D), i€A® jED(i)
Bij= 7 himax _ subjectto > my; =1, i€ A®),
0 otherwise. JED() (5)
mi; = 1, €V,
If i ¢ A(), then we have two scenarios. In the first scenario, {ijeD()}
s has not receiveg benefit vectors, st = 0 and|A®)| < g, m; € {0,1},

thens updates its set of candidate devicestaS = A®)U{i}.  where m,; is a binary variable indicating whether theth
In the other scenario in whidh(*)| = g, s replaces the device, device maps to the virtual sensgr The problem formulated
iy, that corresponds to the minimum total benefit witso  in (5) is equivalent to the maximum weight perfect matching
that A®) = A\ {imMn} {i}. On the other hand, if € A®, " problem in a bipartite graph, allowing us to use the well know
thens updatest_Sj) it Bi(:;) >3 Bf_sj). Finally, s updates Hungarian method to solve it i®(¢%) worst case time [16].
pmin_ M andh(i, s) ;.GS‘;L(i,S) _ ;L?ZS/) +1. We can improve this time complexity to Iinea( time, if we
tolerate an erroe > 0 of the resulting total benefit and relax
Finding a feasible virtualization that maximizes the benefi the restriction of finding a perfect matching for larggi.e it
matrix B(*) = | Bi(é)A(S) | instead of the total benefit in (3) is not necessary to map all virtual sensors to devices. lh suc
makes the problem easier because every device has a differetenario, we can use the linear tinie — ¢)-approximation
value for the benefiB; ; that depends only on the length of algorithm that is proposed recently in [17] to solve (5). &ist
the physical path betweehand s instead of the path lengths of these algorithms are omitted due to space limitation (see
of all possible combinations of sensor paiiisi’) that can [16], [17] for details).
map a virtual link.Intuitively, this relaxation still leads to an
optimal virtualization for star virtual topology or near ¢émal
virtualization for other topologies. For a solution found/ b
s, the worst case path length between any two devi¢e$)
other thans in this solution is at most double the maximum
of the path lengths betwedn, s) or (i, s). We evaluate the
effectiveness of this relaxation in Section IV and show tha
our virtualization algorithm performs well for large andnde

In RADV, each device solves locally the optimization
problem given in (5) using the Hungarian method and sends
its obtained solution to the cloud agent. The agent then
selects the solution that leads to the maximum total benefit,
and keeps all other solutions for use in case virtual sensors

igration is needed. The overall complexity of RADV is
ounded by either solving the assignment problem at each
sensor, or the time required to prune the virtual node domain

enoughg. ;
ghg i.e. O(max{r—1nlogn, g3}).
24 2.4
Do, IV. NUMERICAL RESULTS
23 F ] 2.
. e SR g In this section, we numerically evaluate the performance
L I 118 & of the proposed RADV algorithm implemented in our own
ar e 1,6 2 simulator in Python, NetworkX, and Simpy. In our simulaton
.§ 20 g Messages —— ° G andY are generated considering the parameters summarized
T e in Table I. The topology of anyl' can either be complete,
o/ 1128 cyclic, or star. To evaluate RADV’'s solutions closeness to
s IEN optimal, we consider a cloud agent that receives and sexvice
17 & 108 only one virtual sensing task requedt, at a time.
%00 200 1200 600 2000°¢ Table I: Simulation Parameters
n | Parameter || r | C(3) | R(j) | 5 | Amax |
Figure 3: The average messages per device and the maximwm tim [ Value [01 ] ~U(0,100) | ~U(25,50) [ 0.2 [ 20 |

at which all devices inG prune their virtual domains and construct

benefit matrices (in the time unit akt ). We also consider the maximum total benefit that any virtu-

The time required to construct the benefit matrices isalization algorithm can achieve to assess RADV performance
O(r~'nlogn). Figure 3 shows the total time and the averageSuch an upper bound is attained by mapping the virtual sensor
number of messages per device required during both thef T to g devices with the maximum sensing capability and by
domain pruning and the benefit construction phases. The timessuming that virtual links always map to paths of exactlg on
in Figure 3 is linearithmic im when the agent sen@sinitially hop. This simple bound has a theoretically wide optimizatio
to exactly one device, which can be significantly improvethwi gap, as mapping virtual links to single-hop paths can be
a better implementation such that the agent continue sgndirattained only for a large enough whereg has a clique of size
T to random devices. As analyzed, the average number gf such that all devices in this clique can feasibly map virtual
messages per device is shown to scale linearly withtThe  sensors ofY (i.e. sensing capabilities of devices are always
benefit construction phase dominates the number of messageecater than demands, and sensing tasks are not restrcted i
exchanged which is typically a very small fractionof certain location).



16 ¢ - discovery and virtualization that can dispatch offeringual
155 sensor networks deployed on loT devices to cloud users
5 with i_n-network proqessing capab!lities. We have propa:md _
" sensing resource discovery solution based on a gossipypolic
5 145 % to discover sensing resrouces as fast as possible and RADV:
2 14 our virtualization solution. We have shown through analysi
3 1ss and simulations the potential of RADV to achieve reduced
Complete —x— communication overhead, low complexity, and closeness to
3 Bound - Compte 5 1 optimal such that RADV employs minimal physical resources
125 Bound - Cyelic —%— in devices virtualization with maximal benefit.
Bound - Star ----e--

12
200 400 600 800 1000 1200 1400 1600 1800 2000
Number of Devices (n)

Figure 4: The total benefit achieved by RADV when compared to
the upper bound for different topologies and number of deidhe
performance gap of the star topology quantifies the looseogshe
upper bound. The shown total benefit is very close to the uppend
as the network becomes denser.

1
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Figure 5: Virtual sensor network rejection rate encountdrg RADV

for different number of devices. For dense and unloaded orétw >

1000), RADV discovers sensing resources and finds a solutiondo th (6]
virtualization problem almost surely.

This suggested bound, despite the fact that it creates a widé’]
optimization gap, enlightens sufficient insights aboutdlose-
ness of RADV’s solutions to optimal. Figure 4 numerically
evaluates the total benefit in (3) that is achieved by RADV for 8]
different virtual topologies and compares it to the maximum
total benefit bound we just introduced. As the network gets
denser, RADV achieves a total benefit that is very close to the[9]
upper bound.

Figure 5 shows the rejection rate encountered with differenyy o
T topologies andn values. As we only consider on¥ at
a time, the results shown in this figure reflect the impactii]
of T topology, the number of devices, and the simulation
parameters given in Table | on the rejection rate. Obserae th
the denser th¢, the lower the rejection rate, implying that the [12]
cloud is capable of granting higher number of requests as we
discussed earlier.

[13]
V. CONCLUSION

We have described our initial research in Cloud of Thingsyi4;
We have shown the potential of Cloud of Things to scales
cloud computing vertically by exploiting sensing resowrce
of 10T devices to provide Sensing as a Service. We haveig
proposed a global architecture that scales Cloud of Things
horizontally by employing edge computing platforms in a
new role as cloud agents that discover and virtualize sgnsin[17]
resources of loT devices. We have described cloud agents
technical challenges and design objectives for sensimayiress
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