
Malicious-Proof and Fair Credit-based Resource
Allocation Techniques for DSA Systems

Tamara AlShammari, Bechir Hamdaoui, Mohsen Guizani, and Ammar Rayes

Abstract—We propose a credit-based resource allocation technique
for dynamic spectrum access that is robust against malicious and
selfish behaviors and ensures good overall system fairness perfor-
mance while also allowing spectrum users to achieve high amounts
of service. We also propose a new objective function that, when
combined with the proposed credit-based technique, leads to further
improvements of the system fairness performance. Our proposed
techniques overcome user misbehavior by masking the impactof the
users’ pursued private objectives on the overall system performance.
They also improve fairness among users by allocating service to
users adaptively by accounting for how much service each user has
received in the past. Our simulation results show that our proposed
techniques maintain high system performance by allowing users to
achieve high amounts of service and by ensuring fair allocation of
spectrum resources among users even in the presence of misbehaved
users. Using simulations, we also show that these high performances
are also achievable under various different network scenarios.

I. I NTRODUCTION

Dynamic spectrum access (DSA) is a new paradigm that allows
spectrum users to seek and use spectrum bands opportunistically,
in that users can switch across and access different bands dynam-
ically and can share the same spectrum at the same time. In DSA
systems, there are two types of users: licensed or primary users
(PUs) and unlicensed or secondary users (SUs). DSA systems
allow secondary users to sense the licensed spectra, and to occupy
and use any spectrum band when it is not used by its primary
users. However, these secondary users must be transparent to the
primary users in that they have to leave the spectrum band as
soon as they sense the presence of any primary users.

DSA has great potentials for overcoming spectrum shortage
problems [1, 2]. As a result, several researches have been con-
ducted to address various aspects of DSA systems, such as
designing efficient sensing techniques [3, 4], balancing between
system utilization and its reliability [5], and overcominguser
malicious behaviors during sensing [6, 7]. One of the key chal-
lenges arising from the complex and diverse nature of nowadays
emerging wireless systems is the design and development of
efficient spectrum access techniques that can be implemented in
a distributed manner and scale well with the number of users.
Learning-based techniques have been considered as a potential
solution candidate for such a challenge due to their inherent
distributed nature [8–13]. These techniques essentially propose
distributed DSA access methods that can perform without the
need for any control/central unit, thereby enabling secondary
users to distribute themselves among available bands/channels
without any guidance or direction from any third party or entity.
Learning-based techniques allow secondary users to do so by
using their knowledge to be acquired through interaction with
the environment to decide what to do best in the future.
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Throughout literature, various researches have shown that
poorly designed objective functions can lead to poor system
performances [14]. As a result of this, some research efforts
have been put to develop efficient objective functions for DSA
systems [8, 10, 15]. These previously proposed objective functions
such as those proposed for elastic [10] and inelastic [8, 15]
traffic models are shown to have good performances in terms of
optimality, scalability, and distributivity. However, they do have
some shortcomings which we aim to address in this work. At first,
they are not robust against malicious behavior in the sense that
if some users choose (intentionally or unintentionally) topursue
selfish and greedy objectives, the overall system performance
degrades, and such a degradation can be very severe depending
on the level of maliciousness/selfishness [16]. Secondly, they are
unfair in that users that employ these proposed techniques may
not receive equal amounts of service.

In this paper, we propose a credit-based spectrum resource
allocation technique for DSA systems that, unlike the previous
techniques, is robust against malicious and selfish behaviors and
improves fairness among users. In addition, we propose a new
objective function that, when combined with the credit-based
technique, fairness among users is improved even further while
still maintaining high system performance. The robustnessof our
proposed techniques against users’ misbehavior (selfishness and
maliciousness) lies in its ability to mask the impact that the users’
pursued private objectives have on the overall system perfor-
mance. Fairness improvements, on the other hand, are achieved
by allocating service to users adaptively while accountingfor
the amount of service each user has received in the past. Using
simulations, we show that the proposed techniques achieve high
system performance by allowing users to receive high service
levels and by ensuring fair allocation of spectrum resources
among users even when the system contains misbehaved users.
We also show that these high performances are also achievable
under various different network scenarios by considering dynamic
primary and secondary user activities.

The rest of this paper goes as follows. In Section II, we describe
our system model. In Section III, we state our motivation and
objective by illustrating the shortcomings of existing techniques.
Section IV presents our proposed framework. In Section V, we
evaluate and show the performance of our proposed techniques
under various network settings. Section VI highlights and dis-
cusses some implementation and practical aspects of the proposed
techniques. Finally, we conclude the paper in Section VII.

II. SYSTEM MODEL

We assume a fully-connected topology, i.e. all users interfere
with each other. Also, we consider a wireless system withm non-
overlapping spectrum bands (or channels). We assume that each
bandj offers an amount of service denoted byVj ; the service
that the band offers could, for example, be throughput, reliability,
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data rate, etc. We also assume that there is an access point (or a
monitoring agent) deployed in the system whose responsibility is
to keep track of what and when users join the spectrum bands.

We consider the elastic traffic model in which a user’s received
reward corresponds to the amount of service it receives from
using the spectrum when this received reward exceeds a certain
threshold,Q. On the other hand, when the received amount of
service is less than the threshold, the user’s reward drops very
quickly and becomes unacceptable. We assume that users do not
leave their spectrum band (and try to find another band) unless
their received level of service goes below their required level. In
addition, we adopt the adaptive service model, proposed in [9],
where the users’ required level of service changes depending on
what they have received so far. Mathematically, the reward,ri(t),
of useri at time t can be written as [9]:

ri(t) =

{

Si(t) if Si(t) ≥ Q(t)

Q(t)e
−β

Q(t)−Si(t)

Si(t) otherwise
(1)

whereSi(t) is useri’s received level of service at timet, Q(t) is
the required level of service at timet, andβ is the decaying factor.
At last, we assume a time-slotted resource access and sharing
scheme, where users are assumed to arrive at the beginning and
leave at the end of time steps.

III. FAIRNESS AND M ISBEHAVIOR

In learning-based DSA techniques, after a user determines its
objective, it tries to maximize it using a learning algorithm. Two
intuitive objective functions can be considered. The first one is
the intrinsic reward function,ri, given in Eq. (1), where here
a user aims to maximize its own received reward; this function
reflects the users’ expected selfish behaviors when going after
maximizing their own received rewards. The other one is the
global/total reward function,G, which aims to maximize the total
rewards received by all users. At timet, G(t) can formally be
written as

G(t) =

n(t)
∑

i=1

ri(t) (2)

wheren(t) is the total number of users accessing the system at
time t. The main drawback of using these two functions is that
they lead to poor system performance. This is because in the
intrinsic function case, users’ objectives are not alignedwith one
another, and in the global function case, users’ objectivesare not
sensitive enough to their own actions to lead to high rewards.
Detailed and good explanations of such performance behaviors
can be found in [10].

To address this performance issue, the difference objective
function, Di, has instead been used in DSA networks for sup-
porting both elastic [10] and inelastic [15] traffic models,and is
shown to achieve near-optimal performances by outperforming
ri andG substantially. The reason behind the high performance
thatDi achieves lies in the fact that when the number of users in
the system exceeds the channels’ capacities,Di leads to a near-
optimal distribution of the users among the different available
spectrum bands. As shown in [10], the optimal distribution occurs
when(m−1) channels/bands each has exactly a number of users
equaling the channel’s capacity, and themth band has all the
other remaining users1.

1This is when all channels are assumed to offer the same service; i.e.,Vj = V

for all j. Refer to [9] whenVjs are not the same.
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Fig. 1: Normalized global/total rewards achievable by all users
under the functionsDi, ri andG.
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Fig. 2: Standard deviation of users’ received rewards for different
numbers of users under theDi function.

For illustration, we consider in this section a DSA system with
10 bands and500 users. Also, for simplicity and without loss
of generality, we assume that all bands offer the same amount
of service; i.e.,Vj=V =20 for all j. In our figures, we normalize
the global received reward with respect to an approximationof
the maximal global achievable reward, given in [10]. We plotin
Fig. 1 the normalized achievable global/total reward underDi, ri
andG. As stated above, observe thatri andG result in very poor
performance, whereasDi results in high performance. In addition
to achieving high rewards,Di is shown to scale well with the
number of users, and can be implemented in a fully distributed
manner in fully connected networks, as reported in [10].

Despite of its performance advantages,Di has some shortcom-
ings. First, it is unfair. This is because, underDi, some users may
end up staying in the most crowded channel more than others,
thereby receiving smaller amounts of service. To illustrate, we
show in Fig. 2 the standard deviation of users’ received rewards
under theDi function for different number of users. As it can
be seen from the figure, the standard deviations can be relatively
high, implying that users may receive unequal amounts of service
whenDi is used.

Second, theDi function is not robust against misbehaved
users2. The issue is that even thoughDi can increase the
achievable performances, it can only do so when all users pursue

2Misbehaved users here refer to greedy users that try to receive as much service
as they can regardless of whether in doing so impacts what other users receive.
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Fig. 3: Normalized global/total reward achievable by all users
whenDi is used for various percentages of misbehaved users.
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Fig. 4: Normalized global/total received reward when 20% ofthe
users misbehave.

it as their objectives. In other words, when some users choose
(intentionally or unintentionally) not to pursue this function, the
function can no longer lead to good performances. To illustrate
this, we show in Fig. 3 the performance ofDi in the presence of
misbehaved users. In the figure, "x% Misbehaved users" refers
to the case whenx% of the users choose to pursue their greedy
objective functionri, while the other(100−x)% users implement
the Di function. The figure shows that as the percentage (i.e.,
number) of misbehaved users increases, the overall system re-
ceived reward decreases, and hence, so does the per-user average
received reward. This overall performance degradation gets even
worse when the percentage of misbehaved users becomes higher
and higher.

What’s even worse, not only do these misbehaved users lead
to poor overall system performance, but also receive most ofthe
available service, thereby leaving those well behaved users with
no to little service. This is illustrated in Fig. 4. Note thatthe
misbehaved users (which represent only 20% of all users) receive
about 40% of the optimal/total amount of achievable service,
whereas the well behaved ones (which represent 80% of all users)
receive all together only about 10% of the total possible amount of
service. Also, it is worth mentioning that because of the presence
of these misbehaved users, the overall global/total systemreward
goes down from about 85% when all users behave well (as shown
in Fig. 1) to about 50% only.

It is therefore important to devise efficient strategies and

techniques that ensure fair allocation of resources among users
while also maximizing the achievable system performance even in
the presence of misbehaved users. Our proposed strategy fordoing
so consists of developing new resource allocation techniques that
are immune from the users’ objective function choices, in that
even when users choose to deploy and pursue greedy goals and
objectives, their collective selfish behavior does not leadto poor
and unfair system performance. In addition, with our developed
techniques, the amount of service a user receives depends not only
on which channel the user selects, but also on how much service
it has received so far, thereby ensuring fairness among users. To
sum up, the proposed techniques possess two characteristics:

• Robustness against user selfishness.It achieves high
performance regardless of what objective functions users
choose. In other words, it reduces the effect that objective
functions have on the achievable performance.

• Fairness among users.It improves fairness among users by
allocating service to users adaptively based on how much
service each user has received in the past.

In essence, this work makes two contributions:i) it proposes a
credit-based resource allocation approach that allocatesspectrum
resources on an adaptive manner by accounting for what users
receive in the past; andii) it proposes a new objective function
that aims to maximize the users’ contribution to the overallsystem
fairness. By combining the proposed objective function with the
proposed credit-based allocation approach, we then propose an
integrated resource management framework that allocates spec-
trum resources among users fairly while ensuring robust against
malicious and selfish behavior.

IV. T HE PROPOSEDTECHNIQUES

A. CREDIT-BASED RESOURCEALLOCATION

We propose a credit-based resource allocation technique that
overcomes selfish behaviors and ensures fairness among users.
In this technique, each user is assigned a credit value with an
initial value of one. This credit value determines the proportion
of service that each user should receive; the greater the credit
value, the higher the service to be received.

Under the proposed credit-based resource allocation technique,
users’ credit values get updated depending on the amount of
service they receive when compared to the system fair-share. We
define the system fair-share as the amount of service that each
user should receive in order to ensure fair allocation of available
service among all users. The maximum amount of system service
is achieved when the users are distributed among the channels
as follows: each channelj contains exactlybj = Vj/Q users
except the channel with the minimum capacity which should
contain the remaining number of users [9]. WhenVj = V
for all channelj, this optimal distribution leads to a maximal
value of global received reward that can be approximated to [9]:
Ĝmax = (m − 1)V . When the spectrum resources are allocated
fairly among all users, each useri should then receive at timet
a system fair-share,Ri(t), that is equal to:

Ri(t) =

t
∑

t′=ti

(m− 1)V

n(t′)
(3)

whereti is the time step at which useri joins the DSA system
andn(t) is again the total number of users present in the system
at time t.
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Now, we want to generalize our service model to allow service

differentiation among users. That is, different users may have
different service priorities, and those that have higher priority
should receive higher amounts of service. We assume that there
are c classes,{1, 2, . . . , c}, and we letpi denote the priority of
classi. When considering service differentiation, the system fair-
share is to be defined so that users with higher priorities should
be able to achieve amounts of service that are greater than those
achievable by users with lower priorities. Formally, the system
fair-share,Ri(t), of useri with priority pi can be written as

Ri(t) = (m− 1)V
t

∑

t′=ti

pi
∑

k∈A(t′) pk
(4)

whereA(t) denotes the set of all users using the system at time
t. Note that Eq. (3) is a special case of Eq. (4) in which all users
have the same priority.

At the end of each time step, if the user receives less than
the system fair-share, its credit value increases by one if it does
not exceed a certain threshold, otherwise it is set to that threshold
value. On the other hand, if the user receives more than the system
fair-share, its credit value gets decreased by one when it isgreater
than a certain threshold, otherwise it is set to that threshold value.
Consequently, users’ credit values could be positive, zero, or
negative. Whenever a user credit value reaches zero or a negative
value, the user is no longer able to receive service until itscredit
value becomes positive again.

Indeed, when the user receives less than the system fair-share,
our approach requires that its credit value does not exceed a
certain threshold so as to prevent it from becoming very large.
Otherwise, once the user receives its fair-share of the spectrum,
it will take a relatively long time for its received service to be
reduced so as to not exceed its fair-share. Likewise, in the case
of receiving more than the system fair-share, a user credit value
must not go below a certain threshold because otherwise its credit
value would keep decreasing, and can reach a small value. When
this happens, if this user, after sometime, wants to ramp up its
share again, it will take it a long time before it can actuallystart
receiving service.

Mathematically, a useri’s credit value at timet, Cri(t), is
calculated as:

Cri(t) =







max{Cri(t−1)−1, Crthi (t)} if Ri(t)<
t
∑

t′=ti

Si(t
′)

min{Cri(t−1)+1, Crthi (t)} otherwise
(5)

where the credit threshold bound is defined as:

Crthi (t) = (Ri(t)−
t

∑

t′=ti

Si(t
′))/Q(t)

The numerator in the above equation represents either the
missing service in case the user did not receive its whole fair-
share or the extra service in case the user received more thanits
fair-share. In this equation, the amount of missing/extra service
is represented as a multiple/fraction of user’s required service at
time t. This means that the user’s credit value threshold represents
how manyQs the user has to receive/miss in order to receive its
fair-share.

For more clarification, let us consider the following example
where we assume that at timet, user A is missing 4 units of
service. If we further assume that user A’sQ(t) is equal to
2, then its credit threshold is 2. This means that user A needs

2Q’s to compensate the missing service. Let us also assume, for
illustration, that at the same timet, its credit value reaches that
threshold, i.e.Cr(t) = 2. Since its credit value is positive, this
user is able to receive service. At timet+1, this user receives an
amount of service that is equal toQ plus the fair-share amount for
this time step. Thus, its threshold at timet+1 gets updated, and
becomes equal to 1. This implies that user A needs now just one
Q to cover the missing service. Since its previous credit value is
greater than its current threshold, its current credit becomes equal
to the threshold, i.e.Cr(t + 1) = 1. In the same manner, if this
user at timet+2 receives2Q plus the fair-share for one time step,
its threshold value gets updated and becomes equal to−1. This
means that this user is no longer missing any service, and has
actually received one extraQ. The same credit updating process
continues with reversing the condition for the credit value. That
is, the user credit value must not go below the new threshold.

Using useri’s credit at timet− 1, the amount of service that
useri receives from accessing bandj at time t is:

Si(t) =

{

Cri(t−1)∑
k∈Bj(t):Crk(t−1)>0 Crk(t−1)Vj if Cri(t−1) > 0

0 otherwise

whereBj(t) is the set of all users belonging to bandj at timet.
It is worth mentioning that we here assume that our system is

associated with an access point whose task is to monitor and keep
track of users (their ID, their activities, their check-in and check-
out times). One cannot rely on users to report their credit values
as they might cheat in order to receive more service. Thus, we
consider that both users and the access point are calculating and
updating users’ credit values. This way when a user lies about
its credit value, the access point will know about the mismatch
between the value it calculated and the value the user reported.
As a result of this user behavior, the access point will blockthis
user from accessing and using the DSA system.

B. FAIRNESS-AWARE OBJECTIVE FUNCTION

In order to increase the system fairness, we propose a new
fairness-aware objective function that, when combined with our
proposed credit-based technique, ensuresnear-fair system perfor-
mance. In addition to improving fairness, the proposed objective
function, coupled with the credit-based allocation, achieves not
only performances that are as high as those achievable underDi,
but also ensures robustness against misbehaved users.

Our proposed objective function, referred to asFi, essentially
aims to maximize useri’s contribution to the overall system
fairness. Formally, it can be written as

Fi(t) =















Ri(t)−
t
∑

t′=ti

Si(t
′) if

t
∑

t′=ti

Si(t
′) ≥ Ri(t)

t
∑

t′=ti

Si(t
′) otherwise

(6)

The intuition behind our objective function is that when a
user receives more than its system fair-share, then it will try to
minimize the gap between its fair-share and its received service.
That is, users will try to positively contribute in a way that
ensures an overall system fairness. On the other hand, if a user
receives less than its fair-share, then it will try to maximize
the amount of service it gets to also contribute to the system
fairness. Here, we assume that users are willing to cooperate and
to have a good contribution on the system fairness. However,if
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this is not the case, and some users use other objective functions,
then that fortunately will not hurt the system fairness thatmuch,
thanks to our credit-based resource allocation approach, which
alone is capable of maintaining a relatively good system fairness.
These performance enhancements will be shown via simulation
as reported in the next section.

It is worthy to mention that the total number of interfering
users that are using the system at this time step is needed to
calculate user’s fair function. The methodology of knowingthis
information is left for future work.

V. PERFORMANCEEVALUATION

In this section, we evaluate the performance of the proposed
resource allocation technique in terms of the achievable global
reward as well as the coefficient of variations (CoV)3 of users’
normalized4 received rewards. We apply this technique for each
of the four objective functions:ri, G, Di, andFi. For simulation
purposes, we use theǫ-greedy Q-learning algorithm. In this
algorithm, at the end of each time step, the user selects the channel
whose Q-value is the highest with probability 1-ǫ, and selects a
random channel with probabilityǫ. Whenever a user is tuned to
a channel, it measures the service it receives, and then usesit
to update the Q-value entry corresponding to the channel being
currently used. Readers are advised to refer to [10, 17] for more
details.

In our simulations, we consider three different scenarios/cases:
static scenario, dynamic scenario without PUs, and dynamic
scenario with PUs. In the static scenario, all SUs arrive to and
leave the system at the same time, whereas in the dynamic
scenarios, SUs may arrive and/or leave at different times. In the
following subsections, we study and present our evaluationresults
under each of these three scenarios. Throughout the simulation
section, we setc = 10, and assign users’ priorities randomly; that
is, each useri is assigned a priority levelpi, selected randomly
from 1, 2, . . . , 10.

A. Static DSA system

In this section, we consider a static DSA system, i.e. SUs arrive
and leave at the same time. We assume that the system does not
have any PUs. We set:n(t)=n=500 for allt, Vj=V =20 for all j
unless stated otherwise.

1) Optimality: We show in Fig. 5 the normalized global reward
of ri andG with and without the proposed credit-based resource
allocation technique. Fig. 5 shows that the proposed credit-based
technique allows users to achieve high rewards/service even when
they choose to chase their greedy objective,ri, or the global
objective,G. Fig. 6, on the other hand, shows the normalized
global reward also under the proposed credit-based resource
allocation technique but for theFi andDi functions. While the
function Di already performs well in terms of the amount of
achievable rewards, adding the credit-based feature does improve
its achievable performance even more. The figure also shows that,
when coupled with the credit-based resource allocation approach,
our proposed fairness-aware functionFi outperforms the function
Di in terms of the amount of achievable service. As we stated it
earlier, the real benefit of our proposed techniques lie, however,

3(CoV) is defined as the ratio of the standard deviation to the mean.
4All normalized received rewards presented in this section are with respect to

the maximal possible achievable reward approximated in [10].
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Fig. 5: Normalized global reward ofri andG with and without
the credit-based resource allocation (static case).

0 100 200 300 400 500 600 700 800
 0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

time

No
rm

ali
ze

d 
glo

ba
l r

ew
ar

d

 

 

credit−based D
i

D
i

credit−based F
i

Fig. 6: Normalized global reward ofDi andFi with and without
the credit-based resource allocation (static case).

in their robustness against maliciousness and in their ability to
ensure fairness, as will be illustrated in the next section and the
other following ones.

2) Robustness against objective function choice: We now show
that the proposed credit-based technique reduces the impact of
the objective function choice on the system performance. Fig. 7
shows the system performance achievable when users choose
to pursue different objectives under the credit-based resource
allocation technique. Consider the case when 25% of the users
misbehave (i.e., use theri function instead of theDi function)
while the other users useDi (the plot in the figure corresponding
to "25% ri, 75% Di"). Observe that when the proposed credit-
based technique is not used, the normalized overall system
performance is about 40% only, whereas when the technique
is used, the system performance reaches about 80%. In this
specific scenario, the adoption of our technique doubles the
overall achievable performance. As you can see from the figure,
this performance improvement can be even greater when the
percentage of misbehaved users is higher. This is illustrated in
the figure via the case corresponding to when 75% of the users
misbehave while the rest of the users use the functionDi (i.e.,
plot: "75% ri, 25% Di"). Note how low the achievable system
performance is in this case.

In conclusion, our results discussed in the above paragraph
show that the incorporation of the credit-based approach does
improve the achievable performance significantly in terms of
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robustness against misbehaved users even underDi.
Let us now reflect on the performance behaviors when consid-

ering the proposed fairness-aware function. In the same figure,
Fig. 7, we also show the performance when 25% of users
misbehave by using theri function while the rest of the users
use the proposedFi function. Observe that even when some
users pursue their greedy objectives, the system can still achieve
high performance. This achieved performance is also higherthan
what Di achieves even when combined with our credit-based
approach. We also show the performance even when 75% of users
pursue greedy goals (i.e.,ri) while the rest use the proposed
Fi function (i.e., plot:"75% credit-based ri, 25% credit-based
Fi"). Observe that the achievable performance is still high, and
regardless of how large the misbehaving percentage is, the credit-
based technique can still prove its robustness against users’
objective function choices. Also, this performance, achieved under
Fi, is higher than that achievable underDi even when combined
with the credit-based technique. Therefore, we conclude that the
proposed credit-based, fair objective function outperforms theDi

function in terms of its robustness vis-a-vis of malicious and
selfish behavior.

3) Fairness: Fig. 8 shows the CoV of users’ normalized re-
ceived rewards underDi without using the credit-based technique,
as well as underri, G, Di, and Fi when using the credit-
based technique for different numbers of users (n(t)=n=400, 700,
and 1000). Since the priorities in the case of theDi function
when not using the credit-based allocation have no effect, for
the sake of comparison, we assume in this paragraph that all
users have the same priority. There are two observations we want
to make out of Fig 8. First, observe that the proposed credit-
basedFi function reduces CoV drastically and outperforms all
other cases significantly, thereby improving fairness among users
substantially. Second, observe also that our proposed credit-based
technique does reduce CoVs even for other function choices.
Note, for e.g., the gap difference in CoVs for the functionDi

without and with the credit-based technique. (Similar trends have
also been observed for theri andG functions, but they are not
plotted in the figure, so as to focus on theDi andFi functions).

B. Dynamic DSA system without PUs

We now assume that SUs arrive and leave at different times.
Also, we assume that SUs arrive according to a Poisson process
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Fig. 8: Coefficient of variation of users’ received rewards under
different objective functions (static case).
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Fig. 9: Normalized global reward of all objective functionswith
and without credit-based resource allocation:λ/µ=0.1, κ=1000
(dynamic without PUs case).

with arrival rateλ, and they stay in the system for an expo-
nentially distributed duration of meanµ. On average, at each
time step, the number of users (κ) is equal then to (λµ). In this
section, we investigate dynamic DSA systems without considering
the existence of PUs.

1) Optimality: Figs. 9 and 10 show the normalized global
reward ofri, G, Fi, andDi with and without the proposed credit-
based resource allocation technique when (κ=1000,λ/µ=0.1) and
(κ=700,λ/µ=0.14), respectively. Whenλ/µ=0.1, The figures show
that, even in the dynamic scenarios, the proposed credit-based
technique is able to achieve high amounts of service regardless
of the objective function that users choose to maximize; i.e., even
when users choose the intrinsic,ri, or the global objectives,G,
as their objectives. For example, the global achievable reward
under the functionDi goes from about50% when the credit-based
approach is not used to about85% when the approach is used. The
second point we observe is that the credit-based approach, when
used with theFi function, achieves higher amounts of service
than what other functions achieve.

2) Robustness against objective function choice: We now show
that the proposed credit-based technique reduces the impact of
objective function choice on the system performance even in
the dynamic scenarios. Figs. 11 and 12 show the system perfor-
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Fig. 10: Normalized global reward of all objective functions with
and without credit-based resource allocation:λ/µ=0.14, κ=700
(dynamic without PUs case).
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Fig. 11: Normalized global reward with and without credit-
based resource allocation:λ/µ=0.1, κ=1000 (dynamic without
PUs case).

mance achievable when users choose to pursue different objective
functions under the credit-based resource allocation technique for
(κ=1000,λ/µ=0.1) and (κ=700,λ/µ=0.14), respectively. Consider
the case when 50% of the users use eitherFi or Di, and the
other 50% use theri function under the credit-based allocation
scheme. Note that regardless of what users choose to pursue
as their objectives, the credit-based technique ensures that the
system as a whole reaches and maintains high performance. Our
proposedFi function does, however, achieve better performance
than the other functions, includingDi. Although we show our
results only for the case when 50% of the users choose greedy
objectives, similar performance behaviors have been observed for
other percentages as well. Finally, note that when the credit-
based technique is not used, having misbehaved users can degrade
the system performance substantially. This can be seen in the
figures when considering theDi function without the credit-based
approach (plot: "50% ri, 50% Di").

In conclusion, our results show that theFi function coupled
with the credit-based technique is more robust against misbe-
havior and reaches higher system performances than the other
functions.

3) Fairness: Fig. 13 shows the CoV of users’ normalized
received rewards underDi when not using the credit-based
technique, as well as underri, G, Di, andFi when using the

0 100 200 300 400 500 600 700 800
  0%

 10%

 20%

 30%

 40%

 50%

 60%

 70%

 80%

 90%

100%

Time

No
rm

ali
ze

d 
Gl

ob
al 

Re
wa

rd

 

 

50% credit−based r
i
, 50% credit−based D

i

50% credit−based r
i
, 50% credit−based F

i

50% r
i
, 50% D

i

Fig. 12: Normalized global reward with and without credit-
based resource allocation:λ/µ=0.14, κ=700 (dynamic without
PUs case).
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Fig. 13: Coefficient of variation of users’ normalized received
rewards under different objective functions (dynamic casewithout
PUs).

credit-based technique when the number of users, on average,
equals 400, 700, and 1000; i.e.,κ = 400, 700, and 1000. Like in
the static case, we also make two observations vis-a-vis of fairness
when considering dynamic behavior of secondary users. First,
observe that the proposed credit-basedFi function achieves better
fairness levels than the other functions, especially for high average
numbers of users. Second, note that the use of the proposed credit-
based technique helps in reducing the CoV of theDi function as
well, thus making it even fairer; similar trends have also been
observed for theri andG functions, but are not plotted in the
figure, so as to focus on theDi andFi functions.

C. Dynamic DSA system with PUs

We now consider a dynamic DSA system with the presence of
PUs. We use a ON/OFF renewal process to mimic PUs’ activities
and presence in the system. For each spectrum bandj, we assume
that ON and OFF durations are exponentially distributed with
meansµON andµOFF , respectively. We define PUs load (η) to
be µON/(µOFF + µON ). Moreover, we assume that PUs arrive
to and leave the system at different times.

1) Optimality: We show in Figs. 14a and 14b the normalized
global reward ofri, G, Fi, andDi with and without the proposed
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(a) η=20%
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(b) η=40%

Fig. 14: Normalized global reward of all objective functions with
and without credit-based resource allocation:λ/µ=0.1, κ=1000
(dynamic with PUs case).

credit-based resource allocation technique for differentPUs loads.
It is clear that even when considering primary users’ activities, the
proposed credit-based technique still improves significantly the
achievable system rewards, and this is regardless of the objective
function being used. This is true in both cases:η=20% and
η=40%. We also observe that our proposed function does lead
to better performance when compared with that achievable under
theDi function even whenDi uses the credit-based technique.

We want to mention that the fluctuations in the achievable
performance are due to the random presence and return of PUs
to their channels, which makes the system unavailable for SUs
from time to time. During the presence of PUs, the performance
in terms of achievable rewards degrades since SUs must leavethe
system upon the return of any PUs.

2) Robustness against objective function choice: In this sub-
section, we show that the proposed credit-based technique min-
imizes the effect of the objective function choice on the system
performance even in the presence of PUs. Figs. 15a and 15b show
the system performance achievable with and without the credit-
based technique when 50% of users pursue theFi or Di functions
while the other half pursuesri. Again, two observations could be
drawn: At first, observe that the achievable performance when the
credit-based technique is used is insensitive to the users’objective
function choices. That is, when there are selfish users in the
system that choose to go after their intrinsic objectives, employing
our proposed credit-based technique with the objective functions
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Fig. 15: Normalized global reward of all objective functions with
and without credit-based resource allocation when users chase
different objective functions:λ/µ=0.1, κ=1000 (dynamic with
PUs case).

prevents the overall system performance from degrading. For
example, observe that when 50% of the users use eitherDi or
Fi function while the rest use theri function (e.g.: plot:"50%
credit-based ri, 50% credit-based Fi"), the use of the credit-based
approach moves the overall achievable rewards from almost zero
to about70% (whenη=20%, Fig. 15a) and40% (whenη=40%,
Fig. 15b). Also, observe that theFi function is more robust against
malicious behavior than theDi function, but as PUs load (η)
increases, the performance difference becomes smaller.

Also as mentioned in the previous subsection, the channel
outage due to the return of PUs to their channels results in
fluctuating performance behaviors, since SUs cannot accessthe
band when PUs are using it. Such PUs’ activities do, however,
as expected affect the performance achievable under any of the
objective functions.

3) Fairness: Figs. 16 shows the CoV of users’ normalized
received rewards underDi without the credit-based technique, as
well as underri, G, Di, andFi with the credit-based technique
for different average numbers of secondary users,400, 700, and
1000, while considering primary users’ activities withη = 20%.
We again observe that even in the presence of primary users, the
use of our proposed credit-based technique reduces substantially
the CoV value achievable under theDi function, especially
for high average numbers of users. We also observe that the
proposed credit-based technique when coupled with the proposed
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Fig. 16: Coefficient of variation of users’ normalized received
rewards under different objective functions:η=20% (dynamic case
with PUs).

Fi function outperforms all other functions, including theDi

function even when using the credit-based technique.
It is worth mentioning that nearly similar CoVs are achieved

under different objective functions, and regardless of average
number of users. That is due the fact that the credit system splits
the spectrum among existing users in a way that no matter what
their objective is, they will not take more than their fair-shares.
The same applies for different average number of users.

VI. D ISCUSSION

We have seen that the use of the proposed credit-based tech-
nique makes learning techniques robust against objective function
choice and improves system fairness while still achieving high
system rewards. Without this technique, theDi function, on the
other hand, does achieve good rewards as well, but only when
all users use it as their objectives. In other words, if some (or
all) users pursue other objectives, the overall system performance
can degrade substantially. In addition, ensuring fairnesscan
be very challenging due to the way users end up distributing
themselves among the channels. One key advantage of theDi

function, however, lies in its fully distributed capability; it can be
implemented and fully realized without needing any cooperation
or centralized entity5. Ours can still be viewed as a distributed
technique in the sense that users can still choose and switchto
their bands on their own will and without having any third entity
tell them to do so. However, since our approach relies on and
accounts for what users have received in the past to be able to
decide what should be allocated in the future so that misbehavior
can be prevented, it requires the deployment of access points to
keep track of and monitor users’ activities. This, however,is not
unrealistic and can be done with minimum overhead.

VII. C ONCLUSION

This paper proposes a credit-based resource allocation tech-
nique that improves fairness among spectrum users and combats
malicious and selfish behavior in DSA systems. The proposed
technique reduces the effect of user’s objective function choice
on the system performance. It is robust against misbehaviorand

5This depends to some extent on network topology as well as other factors [10].

achieves good performance independently of what users choose to
pursue as their objectives. It also improves fairness by allocating
equal amounts of spectrum service to users. We also propose
fairness-aware objective function that when coupled with credit-
based technique, the overall fairness is improved even further.
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