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Abstract—We propose a credit-based resource allocation technique
for dynamic spectrum access that is robust against maliciaa and
selfish behaviors and ensures good overall system fairneserfor-
mance while also allowing spectrum users to achieve high amnts
of service. We also propose a new objective function that, vem
combined with the proposed credit-based technique, lead® tfurther
improvements of the system fairness performance. Our propsed
techniques overcome user misbehavior by masking the impadf the
users’ pursued private objectives on the overall system pésrmance.
They also improve fairness among users by allocating senécto
users adaptively by accounting for how much service each us@as
received in the past. Our simulation results show that our poposed
techniques maintain high system performance by allowing s to
achieve high amounts of service and by ensuring fair alloc&in of
spectrum resources among users even in the presence of mibheed
users. Using simulations, we also show that these high perfoances
are also achievable under various different network scenaos.

I. INTRODUCTION

Throughout literature, various researches have shown that
poorly designed objective functions can lead to poor system
performances [14]. As a result of this, some research sffort
have been put to develop efficient objective functions folADS
systems [8, 10, 15]. These previously proposed objectinetions
such as those proposed for elastic [10] and inelastic [8,15]
traffic models are shown to have good performances in terms of
optimality, scalability, and distributivity. However, ¢lf do have
some shortcomings which we aim to address in this work. At firs
they are not robust against malicious behavior in the sedmse t
if some users choose (intentionally or unintentionallyptosue
selfish and greedy objectives, the overall system perfocean
degrades, and such a degradation can be very severe dependin
on the level of maliciousness/selfishness [16]. Seconkigy are
unfair in that users that employ these proposed techniqugs m
not receive equal amounts of service.

In this paper, we propose a credit-based spectrum resource
allocation technique for DSA systems that, unlike the presi

Dynamic spectrum access (DSA) is a new paradigm that alloghniques, is robust against malicious and selfish betswiod
spectrum users to seek and use spectrum bands opportailystiGmproves fairess among users. In addition, we propose a new

in that users can switch across and access different bamdsrdy

ically and can share the same spectrum at the same time. In Dg

objective function that, when combined with the creditdshs
nigue, fairness among users is improved even furthde wh

systems, there are two types of users: licensed or prima#s Usstjl| maintaining high system performance. The robustrodssur
(PUs) and unlicensed or secondary users (SUs). DSA systajasposed techniques against users’ misbehavior (selfishaed
allow secondary users to sense the licensed spectra, agdupyo maliciousness) lies in its ability to mask the impact that tisers’
and use any spectrum band when it is not used by its primajyrsued private objectives have on the overall system perfo
users. However, these secondary users must be transpatéet t mance. Fairness improvements, on the other hand, are adhiev
primary users in that they have to leave the spectrum bands ajiocating service to users adaptively while accountiog

soon as they sense the presence of any primary users.

the amount of service each user has received in the pastgUsin

DSA has great potentials for overcoming spectrum shortagighulations, we show that the proposed techniques achigve h
problems [1,2]. As a result, several researches have been agystem performance by allowing users to receive high servic
ducted to address various aspects of DSA systems, suchieggls and by ensuring fair allocation of spectrum resasirce

designing efficient sensing techniques [3, 4], balancingveen
system utilization and its reliability [5], and overcominger

among users even when the system contains misbehaved users.
We also show that these high performances are also achéevabl

malicious behaviors during sensing [6, 7]. One of the keyl-chqnder various different network scenarios by consideriympahic
lenges arising from the complex and diverse nature of noyad:primary and secondary user activities.

emerging wireless systems is the design and development ofne rest of this paper goes as follows. In Section 11, we descr
efficient spectrum access techniques that can be implethémte o system model. In Section Ill, we state our motivation and
a distributed manner and scale well with the number of Usephjective by illustrating the shortcomings of existingttairjues.
Learning-based techniques have been considered as aigbte8kction |V presents our proposed framework. In Section V, we
solution candidate for such a challenge due to their inlere®yajuate and show the performance of our proposed techsique

distributed nature [8-13]. These techniques essentialiypgse

under various network settings. Section VI highlights arnst d

need for any control/central unit, thereby enabling seaond

users to distribute themselves among available bandsiefsn

without any guidance or direction from any third party orignt

Learning-based techniques allow secondary users to do so by
using their knowledge to be acquired through interactiothwi

the environment to decide what to do best in the future.
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techniques. Finally, we conclude the paper in Section VII.

Il. SYSTEM MODEL

We assume a fully-connected topology, i.e. all users iaterf

with each other. Also, we consider a wireless system withon-

overlapping spectrum bands (or channels). We assume tbhat ea
bandj offers an amount of service denoted by, the service
that the band offers could, for example, be throughputabdity,



data rate, etc. We also assume that there is an access poat (10006

monitoring agent) deployed in the system whose respoitgiksi 90%
to keep track of what and when users join the spectrum band _ ,,
We consider the elastic traffic model in which a user’s remgiv & 0%
. . . Q °
reward corresponds to the amount of service it receives frc T ou
using the spectrum when this received reward exceeds drcer § o0t
threshold,. On the other hand, when the received amount w% 0
service is less than the threshold, the user’s reward dreps v & “|
quickly and becomes unacceptable. We assume that userstdec so%r
leave their spectrum band (and try to find another band) anl¢ = 2°%
their received level of service goes below their requireetileln 10%¢r e o
addition, we adopt the adaptive service model, propose®]in [ O T TRy ey vy e ey
where the users’ required level of service changes depgratin Time
what they have received so far. Mathematically, the rewald), Fig. 1: Normalized global/total rewards achievable by aléns
of useri at timet can be written as [9]: under the functionsD;, r; andG.
Si(t) it Si(t) > Q(t)
ri(t) = ’ W =Si() - 1)
Q(t)e 550 otherwise
1601
whereS;(t) is useri's received level of service at timg Q(¢) is o ol
the required level of service at tinieand/ is the decaying factor. g
At last, we assume a time-slotted resource access and gha 3%
scheme, where users are assumed to arrive at the beginring _gé 1001
leave at the end of time steps. To ool
gz
[]
[1l. FAIRNESS AND MISBEHAVIOR 58 %

In learning-based DSA techniques, after a user determtaes § 40r 1
objective, it tries to maximize it using a learning algonithTwo 20 I I I 1
intuitive objective functions can be considered. The finse ds 0
the intrinsic reward functiony;, given in Eq. (1), where here o 00300 e e 0 0 800

a user aims to maximize its own received reward; this functio_, . , _ _
reflects the users’ expected selfish behaviors when goirey affi9- 2: Standard deviation of users’ received rewards ffieidint
maximizing their own received rewards. The other one is ghwimbers of users under ti@; function.

global/total reward function;, which aims to maximize the total

rewards received by all users. At timte G(¢) can formally be i ) L ) )
For illustration, we consider in this section a DSA systerthwi

written as A :
n(t) 10 bands and00 users. Also, for simplicity and without loss
G(t) = Zri(t) (2) of generality, we assume that all bands offer the same amount
i=1 of service; i.e.,V;=V=20 for all 5. In our figures, we normalize

wheren(t) is the total number of users accessing the systemthe global received reward with respect to an approximatibn
time t. The main drawback of using these two functions is th#te maximal global achievable reward, given in [10]. We pfot
they lead to poor system performance. This is because in ffig- 1 the normalized achievable global/total reward undgrr;
intrinsic function case, users’ objectives are not aligngtti one andG. As stated above, observe thatandG result in very poor
another, and in the global function case, users’ objectivesnot performance, whereds; results in high performance. In addition
sensitive enough to their own actions to lead to high reward@ achieving high rewards)); is shown to scale well with the
Detailed and good explanations of such performance betsavigumber of users, and can be implemented in a fully distribute
can be found in [10]. manner in fully connected networks, as reported in [10].

To address this performance issue, the difference obgectiv Despite of its performance advantag®s,has some shortcom-
function, D;, has instead been used in DSA networks for supgs. First, it is unfair. This is because, undey, some users may
porting both elastic [10] and inelastic [15] traffic modedsd is €nd up staying in the most crowded channel more than others,
shown to achieve near-optimal performances by outperfymithereby receiving smaller amounts of service. To illustratve
r; and G substantially. The reason behind the high performangBow in Fig. 2 the standard deviation of users’ received rdsa
that D; achieves lies in the fact that when the number of userstfider theD; function for different number of users. As it can
the system exceeds the channels’ capacifigsleads to a near- be seen from the figure, the standard deviations can beveiati
optimal distribution of the users among the different aalé high, implying that users may receive unequal amounts ofcer
spectrum bands. As shown in [10], the optimal distributicows When D; is used.
when(m — 1) channels/bands each has exactly a number of user$econd, theD; function is not robust against misbehaved
equaling the channel’s capacity, and thé" band has all the user. The issue is that even thougP; can increase the
other remaining usets achievable performances, it can only do so when all usersupur

1This is when all channels are assumed to offer the same eseidcV; =V 2Misbehaved users here refer to greedy users that try toseeasimuch service
for all 5. Refer to [9] whenV;s are not the same. as they can regardless of whether in doing so impacts what oters receive.



50% ‘ ‘ ‘ ‘ — techniques that ensure fair allocation of resources ammﬁsu
-- 50% Misbehaved users while also maximizing the achievable system performanea @v

75% Mishehaved users) the presence of misbehaved users. Our proposed stratedyyifoy
so consists of developing new resource allocation teclesidiat
are immune from the users’ objective function choices, iat th
even when users choose to deploy and pursue greedy goals and
objectives, their collective selfish behavior does not leagoor
and unfair system performance. In addition, with our depetb
techniques, the amount of service a user receives depehdslyo
on which channel the user selects, but also on how much servic

¥ ‘ ‘ ‘ : e : it has received so far, thereby ensuring fairness among.user
% 100 200 300 400 500 600 700 800 sum up, the proposed techniques possess two characteristic

40%r

30%f|

20%[

10%f

Normalized Global/Total Received Reward

Time « Robustness against user selfishnesdt achieves high
Fig. 3: Normalized global/total reward achievable by alenss performance regardless of what objective functions users

when D; is used for various percentages of misbehaved users. ~ choose. In other words, it reduces the effect that objective
functions have on the achievable performance.

« Fairness among userslt improves fairness among users by
oo T el Dena e allocating service to users adaptively based on how much
70%} -~ Misbehaved users only 1 service each user has received in the past.
soml el-benaved users only | In essence, this work makes two contributio)sit proposes a

credit-based resource allocation approach that allocaestrum

resources on an adaptive manner by accounting for what users
receive in the past; and) it proposes a new objective function
that aims to maximize the users’ contribution to the ovesgdtem
fairness. By combining the proposed objective functiorhwite
proposed credit-based allocation approach, we then peopns
| integrated resource management framework that alloca@es s
0wl ‘ ‘ ‘ ‘ ‘ ‘ ‘ trum resources among users fairly while ensuring robusinaga
° 100 2000 300 400 500 600 700 800 malicious and selfish behavior.
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Fig. 4: Normalized global/total received reward when 20%hef IV. THE PROPOSEDTECHNIQUES

users misbehave.
A. CREDIT-BASED RESOURCEALLOCATION

We propose a credit-based resource allocation technicate th
it as their objectives. In other words, when some users ehoQY€rcomes selfish behaviors and ensures fairness among} user

(intentionally or unintentionally) not to pursue this fdion, the _In_ Fhis technique, each user _is assigned a _credit value_with a
function can no longer lead to good performances. To iletr Nitial value of one. This credit value determines the proipa
this, we show in Fig. 3 the performance bf in the presence of of service that each user should receive; the greater ttditcre
misbehaved users. In the figure:% Misbehaved users” refersValue, the higher the service to be received. o

to the case when% of the users choose to pursue their greedy Under the proposed credit-based resource allocation igeén

objective function-;, while the othe100— )% users implement USers’ credit values get updated depending on the amount of
the D; function. The figure shows that as the percentage (i.8€"ViCe they receive when compared to the system fair-siiéze
number) of misbehaved users increases, the overall syslemd€fine the system fair-share as the amount of service thai eac
ceived reward decreases, and hence, so does the per-usageavs'Ser should receive in order to ensure fair allocation oflavke
received reward. This overall performance degradatios geen SE€rVice among all users. The maximum amount of system gervic
worse when the percentage of misbehaved users becomes high@chieved when the users are distributed among the crannel
and higher. as follows: each channel contains exactlyb; = V;/Q users

What's even worse, not only do these misbehaved users IEX§eP the channel with the minimum capacity which should

to poor overall system performance, but also receive mogtef contain the remaining n_umber_ Of. users [9]. Whefh = V
available service, thereby leaving those well behavedsusith for all channelj, th|_s optimal distribution leads to a maximal
no to little service. This is illustrated in Fig. 4. Note ththie value of global received reward that can be approximatedko [
misbehaved users (which represent only 20% of all usergjuec GT”‘”” = (m —1)V. When the spectrum resources are aI.Iocated
about 40% of the optimal/total amount of achievable se[vicf@'rly among all users, each gseshould then receive at time
whereas the well behaved ones (which represent 80% of a&ps@ system fair-sharef;(t), that is equal to:

receive all together only about 10% of the total possible ambof ¢ (m—1)V

service. Also, it is worth mentioning that because of thespnee R;i(t) = Z W (3)

of these misbehaved users, the overall global/total sysssvard =t

goes down from about 85% when all users behave well (as showheret; is the time step at which usérjoins the DSA system

in Fig. 1) to about 50% only. andn(t) is again the total number of users present in the system

It is therefore important to devise efficient strategies arat timet.



Now, we want to generalize our service model to allow servi@€)'s to compensate the missing service. Let us also assurfrlwe, for
differentiation among users. That is, different users mayeh illustration, that at the same ting its credit value reaches that
different service priorities, and those that have higheorfiy threshold, i.eCr(t) = 2. Since its credit value is positive, this
should receive higher amounts of service. We assume thed theser is able to receive service. At time- 1, this user receives an
arec classes{1,2,...,c}, and we letp; denote the priority of amount of service that is equal € plus the fair-share amount for
classi. When considering service differentiation, the system faithis time step. Thus, its threshold at tirhe 1 gets updated, and
share is to be defined so that users with higher prioritiesilsho becomes equal to 1. This implies that user A needs now just one
be able to achieve amounts of service that are greater tlose thQ) to cover the missing service. Since its previous credite/édu
achievable by users with lower priorities. Formally, thestsyn greater than its current threshold, its current credit bexoequal
fair-share,R;(t), of user: with priority p;, can be written as to the threshold, i.eCr(t + 1) = 1. In the same manner, if this

¢ user at time + 2 receive2() plus the fair-share for one time step,
Ri(t)=(m -1V __ b (4) its threshold value gets updated and becomes equalltorhis
v, ZkeA(t’)pk means that this user is no longer missing any service, and has

actually received one extr@. The same credit updating process

where.A(#) denotes the set of all users using the system at timy "Wntinues with reversing the condition for the credit valibat

. Note that Eq. (3) is a special case of Eq. (4) in which all SISeS , the user credit value must not go below the new threshold.
have the same priority.
. Using useri’s credit at timet — 1, the amount of service that
At the end of each time step, if the user receives less than
. . : useri receives from accessing baridat timet is:
the system fair-share, its credit value increases by onedibés
not exceed a certain threshold, otherwise it is set to thastold Cri(t—1) Vi ifCri(t—1) >0
(T
K3

value. On the other hand, if the user receives more than ttersy OZ’“EBJ' (1):Cri(t=1)>0 O (=D
fair-share, its credit value gets decreased by one whemyieister
than a certain threshold, otherwise it is set to that thrielstelue. where B, (t) is the set of all users belonging to bapat timez.
Consequently, users’ credit values could be positive, ,zero It is worth mentioning that we here assume that our system is
negative. Whenever a user credit value reaches zero or diveegaassociated with an access point whose task is to monitor egyl k
value, the user is no longer able to receive service untidrigglit track of users (their ID, their activities, their check-imdacheck-
value becomes positive again. out times). One cannot rely on users to report their credites
Indeed, when the user receives less than the system fai;shas they might cheat in order to receive more service. Thus, we
our approach requires that its credit value does not exceedamsider that both users and the access point are cal@ukatich
certain threshold so as to prevent it from becoming verydargupdating users’ credit values. This way when a user lies abou
Otherwise, once the user receives its fair-share of thetigpac its credit value, the access point will know about the misat
it will take a relatively long time for its received service be between the value it calculated and the value the user ehort
reduced so as to not exceed its fair-share. Likewise, in &s& cAs a result of this user behavior, the access point will bltiik
of receiving more than the system fair-share, a user crediitev user from accessing and using the DSA system.
must not go below a certain threshold because otherwisesitstc
value would keep decreasing, and can reach a small vaIuenW@e FAIRNESS AWARE OBJECTIVE FUNCTION
this happens, if this user, after sometime, wants to ramptsup i
share again, it will take it a long time before it can actuaigrt
receiving service.
Mathematically, a usei’s credit value at timet, Cr;(t), is
calculated as:

otherwise

In order to increase the system fairness, we propose a new
fairness-aware objective function that, when combinedh weitir
proposed credit-based technique, ensueas-fair system perfor-
mance. In addition to improving fairness, the proposed aibje
function, coupled with the credit-based allocation, agbgenot

max{Cr;(t—1)—1,Cri"(t)} if Ri(t)< f: Si(t)) only performances that are as high as those achievable u@nder
Cri(t) = . h U=t ®) put also ensures robustness against misbehaved users.
min{C7i(t—1)+1,Cr (1)} otherwise Our proposed objective function, referred to s essentially
where the credit threshold bound is defined as: aims to maximize usei's contribution to the overall system
fairness. Formally, it can be written as
Crih(t) = Z S;(t . .
t'=t; Ri(t)— >0 Si(t)) i >0 Si(t) = Ri(t)
The numerator in the above equation represents either theFi(t) = ¢ H=t H=t (6)
missing service in case the user did not receive its whole fai > Si(t) otherwise
share or the extra service in case the user received mordtthan =t

fair-share. In this equation, the amount of missing/extnavise The intuition behind our objective function is that when a
is represented as a multiple/fraction of user’s requiradise at user receives more than its system fair-share, then it wilta
time t. This means that the user’s credit value threshold repteseminimize the gap between its fair-share and its receivedcser
how many(@s the user has to receive/miss in order to receive ithat is, users will try to positively contribute in a way that
fair-share. ensures an overall system fairness. On the other hand, iéma us
For more clarification, let us consider the following exaeplreceives less than its fair-share, then it will try to maxeni
where we assume that at time user A is missing 4 units of the amount of service it gets to also contribute to the system
service. If we further assume that user A¥(t) is equal to fairness. Here, we assume that users are willing to coaparat
2, then its credit threshold is 2. This means that user A neddshave a good contribution on the system fairness. Howdver,



this is not the case, and some users use other objectiveadnact 100%

then that fortunately will not hurt the system fairness timaich, 00% |
) . . M A S A A A \
thanks to our credit-based resource allocation approabichw o sowl 4 PA W A \w‘"/\ J %W\’_J\MI//\ i
alone is capable of maintaining a relatively good systemnésis. & A R A A Do e e L
. . . o 70%F /\m,l'\mﬁf SR N PR AT A B! y/ ‘/‘f ', /W Lt
These performance enhancements will be shown via simuolat = ‘;i\y‘ 1 L
. . or | 7
as reported in the next section. 8 ]
. . . . © 50%[ P q
It is worthy to mention that the total number of mterferlng% ’ f — — — Credit-based
; P . 40% - . 1
users that are using the system at this time step is needec S ™ / credi-based G
. . . 0% - o by
calculate user’s fair function. The methodology of knowthgs £ 30” e
information is left for future work. = 20%j
10% o B
I IS N PPN ot S /‘ TR L ,‘\' J
V. PERFORMANCEEVALUATION % 100 200 300 400 500 600 700 800

. . Time
In this section, we evaluate the performance of the proposeu

resource allocation technique in terms of the achievabdbajl Fig. 5: Normalized global reward of; and G with and without
reward as well as the coefficient of variations (C3\6f users’ the credit-based resource allocation (static case).
normalized received rewards. We apply this technique for each
of the four objective functions:;, G, D;, andF;. For simulation
purposes, we use thegreedy Q-learning algorithm. In this
algorithm, at the end of each time step, the user select$trmnel
whose Q-value is the highest with probabilitye,land selects a
random channel with probability. Whenever a user is tuned to
a channel, it measures the service it receives, and thenituse
to update the Q-value entry corresponding to the channelgbe
currently used. Readers are advised to refer to [10, 17] fmrem
detalils. :
In our simulations, we consider three different scenacas#s: 20%
static scenario, dynamic scenario without PUs, and dynan 10%|
scenario with PUs. In the static scenario, all SUs arrivertd a T T T T TR B
leave the system at the same time, whereas in the dynal time
scenarios, SUs may arrive and/or leave at different timeshé
following subsections, we study and present our evaluaésnlts
under each of these three scenarios. Throughout the sionla
section, we set = 10, and assign users’ priorities randomly; that

is, each usef is assigned a priority level;, selected randomly _ ] o _ o
from 1.2. ... .10. in their robustness against maliciousness and in theiityahd

ensure fairness, as will be illustrated in the next sectiot the
) other following ones.

A. Satic DSA system 2) Robustness against objective function choice: We now show

In this section, we consider a static DSA system, i.e. SUs&rrihat the proposed credit-based technique reduces the inopac
and leave at the same time. We assume that the system doeg{ibpjective function choice on the system performanag. Fi
have any PUs. We seti(t)=n=500 for allz, V;=V'=20 for all j shows the system performance achievable when users choose
unless stated otherwise. to pursue different objectives under the credit-based ureso

1) Optimality: We show in Fig. 5 the normalized global rewardjocation technique. Consider the case when 25% of thesuser
of r; andG with and without the proposed credit-based resourggishehave (i.e., use the function instead of theD; function)
allocation technique. Fig. 5 shows that the proposed ctetied while the other users usl; (the plot in the figure corresponding
technique allows users to achieve high rewards/service when o "25% r, 75% D;"). Observe that when the proposed credit-
they choose to chase their greedy objectivg, or the global pased technique is not used, the normalized overall system
objective,G. Fig. 6, on the other hand, shows the normalizegerformance is about 40% only, whereas when the technique
global reward also under the proposed credit-based resoug ysed, the system performance reaches about 80%. In this
allocation technique but for the; and D; functions. While the specific scenario, the adoption of our technique doubles the
function D; already performs well in terms of the amount obyerall achievable performance. As you can see from thedigur
achievable rewards, adding the credit-based feature dug®ve thjs performance improvement can be even greater when the
its achievable performance even more. The figure also shwats tpercentage of misbehaved users is higher. This is illuestran
when coupled with the credit-based resource allocatiomcgmh, the figure via the case corresponding to when 75% of the users
our proposed fairness-aware functiBnoutperforms the function misbehave while the rest of the users use the funciipr(i.e.,
D; in terms of the amount of achievable service. As we statedpim)t; "75% r;,25% D;"). Note how low the achievable system
earlier, the real benefit of our proposed techniques lie,dvew performance is in this case.

3(CoV) is defined as the ratio of the standard deviation to tiearm In Condusmn.' our reSl.JItS discussed i.n the above paragraph

4All normalized received rewards presented in this sectienvéth respect to show that the incorporation of the credit-based approaats do
the maximal possible achievable reward approximated if [10 improve the achievable performance significantly in ternis o
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Fig. 6: Normalized global reward dD; and F; with and without
{he credit-based resource allocation (static case).
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Fig. 7: Normalized global reward with and without the credit Number of Users

based resource allocation in the presence of misbehavad use o o )
(static case). Fig. 8: Coefficient of variation of users’ received rewarasler

different objective functions (static case).

robustness against misbehaved users even ubger

Let us now reflect on the performance behaviors when cons
ering the proposed fairness-aware function. In the sameefigL
Fig. 7, we also show the performance when 25% of use 80%
misbehave by using the; function while the rest of the users 70%
use the proposed; function. Observe that even when som:
users pursue their greedy objectives, the system can chilbee
high performance. This achieved performance is also hitjtzer
what D; achieves even when combined with our credit-bast
approach. We also show the performance even when 75% of us 209 :
pursue greedy goals (i.er;) while the rest use the proposec 10% o
F; function (i.e., plot:"75% credit-based r;, 25% credit-based o il
F;"). Observe that the achievable performance is still highl, a oo 2o s AR S0 eeo Teo moo
regardless of how large the misbehaving percentage isyéuitc ) o o
based technique can still prove its robustness againss'us&id: 9: Normalized global reward of all objective functiomsh
objective function choices. Also, this performance, aedibunder @nd without credit-based resource allocation=0.1, £=1000
F;, is higher than that achievable under even when combined (dynamic without PUs case).
with the credit-based technique. Therefore, we conclude tthe
proposed credit-based, fair objective function outpenfotheD;
function in terms of its robustness vis-a-vis of maliciousda with arrival rate A, and they stay in the system for an expo-
selfish behavior. nentially distributed duration of meap. On average, at each

3) Fairness. Fig. 8 shows the CoV of users’ normalized retime step, the number of users)(is equal then to Xu). In this
ceived rewards unddp; without using the credit-based techniquesection, we investigate dynamic DSA systems without canrsid
as well as under;, G, D;, and F; when using the credit- the existence of PUs.
based technique for different numbers of userg)=n=400, 700, 1) Optimality: Figs. 9 and 10 show the normalized global
and 1000). Since the priorities in the case of thie; function reward ofr;, G, F;, andD; with and without the proposed credit-
when not using the credit-based allocation have no effest, fhased resource allocation technique when1(00,)\/=0.1) and
the sake of comparison, we assume in this paragraph that(ak700,)\/;,=0.14), respectively. WheN;=0.1, The figures show
users have the same priority. There are two observationsam What, even in the dynamic scenarios, the proposed credéeba
to make out of Fig 8. First, observe that the proposed credigchnique is able to achieve high amounts of service regssd|
basedF; function reduces CoV drastically and outperforms alif the objective function that users choose to maximize; &een
other cases significantly, thereby improving fairness agnasers when users choose the intrinsig, or the global objectives;,
substantially. Second, observe also that our proposed-trased as their objectives. For example, the global achievablearéw
technique does reduce CoVs even for other function choicegider the functiorD; goes from aboui0% when the credit-based
Note, for e.g., the gap difference in CoVs for the functibay approach is not used to ab@t% when the approach is used. The
without and with the credit-based technique. (Similar diehave second point we observe is that the credit-based approdwn w
also been observed for the and G functions, but they are not used with theF; function, achieves higher amounts of service
plotted in the figure, so as to focus on the and F; functions). than what other functions achieve.

2) Robustness against objective function choice: We now show
B. Dynamic DSA system without PUs that the proposed credit-based technique reduces the inopac
We now assume that SUs arrive and leave at different timejective function choice on the system performance even in
Also, we assume that SUs arrive according to a Poisson moct® dynamic scenarios. Figs. 11 and 12 show the system perfor
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Fig. 10: Normalized global reward of all objective functiowith Fig. 12: Normalized global reward with and without credit-
and without credit-based resource allocation:=0.14, k=700 based resource allocation/u=0.14, k=700 (dynamic without
(dynamic without PUs case). PUs case).
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Fig. 11: Normalized global reward with and without credit

I;?Jssegarsees)ource allocation/u=0.1, £=1000 (dynamic without Fig. 13: Coefficient of variation of users’ normalized rees

rewards under different objective functions (dynamic caikout
PUs).

mance achievable when users choose to pursue differertivieje

functions under the credit-based resource allocatiomigele for .. 4t <o technique when the number of users, on average

(#=1000,)/1=0.1) and £=700,\/u=0.14), respectively. Consider o .15 400, 700, and 1000; i.e.= 400, 700, and 1000. Like in

0, i .
thtﬁ ca;go/when t?wo /Of of tthe usec;s utf]e elth:j{e_rtol; Di, danlfl th? the static case, we also make two observations vis-a-vaofdss
otner o use the; function under the credit-based allocation, o, considering dynamic behavior of secondary userst, Firs
scheme. Note that regardless of what users choose to pu

r . . .
as their objectives, the credit-based technique ensugstite SHServe that the proposed credit-basédunction achieves better

o . fairness levels than the other functions, especially fghtaverage
system as a whole reaches and maintains high performance. Uhbers of users. Second, note that the use of the propa=sitt cr

proposedF; function _does,_howe_ver, achieve better performan%(;;)ﬂsed technique helps in reducing the CoV of ihefunction as
than the other functions, including;. Although we show our well, thus making it even fairer; similar trends have als@rbe

results only for the case when 50% of the users choose gregi.ereq for the; and G functions, but are not plotted in the
objectives, similar performance behaviors have been vbddor Jigure so as to focus on the: and F functions
1 (2 (2 .
I

other percentages as well. Finally, note that when the Ere

based technique is not used, having misbehaved users caaddeg

the system performance substantially. This can be seenein $h Dynamic DSA system with PUs

figures when considering the; function without the credit-based \We now consider a dynamic DSA system with the presence of

approach (plot: 50% r;, 50% D;"). PUs. We use a ON/OFF renewal process to mimic PUs’ activities
In conclusion, our results show that tifé function coupled and presence in the system. For each spectrum pame assume

with the credit-based technique is more robust against enislthat ON and OFF durations are exponentially distributedhwit

havior and reaches higher system performances than the otheansuoy anduorr, respectively. We define PUs loagl) (to

functions. be pon/(orr + pon). Moreover, we assume that PUs arrive
3) Fairness. Fig. 13 shows the CoV of users’ normalizedo and leave the system at different times.

received rewards undeP; when not using the credit-based 1) Optimality: We show in Figs. 14a and 14b the normalized

technique, as well as undey, G, D;, and F; when using the global reward of;, G, F;, andD; with and without the proposed
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Fig. 14: Normalized global reward of all objective functiowith Fig. 15: Normalized global reward of all objective functsowith

and without credit-based resource allocationz=0.1, k=1000 and without credit-based resource allocation when useasech

(dynamic with PUs case). different objective functions:\/=0.1, k=1000 (dynamic with
PUs case).

credit-based resource allocation technique for diffeRigs loads.
Itis clear that even when considering primary users’ aitigj the prevents the overall system performance from degrading. Fo
proposed credit-based technique still improves signifigathe example, observe that when 50% of the users use eftheor
achievable system rewards, and this is regardless of tleemlg F; function while the rest use the function (e.g.: plot:"50%
function being used. This is true in both cases20% and credit-based r;, 50% credit-based F;"), the use of the credit-based
1n=40%. We also observe that our proposed function does leggproach moves the overall achievable rewards from alneost z
to better performance when compared with that achievaldemunto about70% (whenn=20%, Fig. 15a) and0% (whenn=40%,
the D; function even wherD,; uses the credit-based technique.Fig. 15b). Also, observe that thig function is more robust against
We want to mention that the fluctuations in the achievabivalicious behavior than thé®; function, but as PUs loadn)
performance are due to the random presence and return of Ridseases, the performance difference becomes smaller.
to their channels, which makes the system unavailable fas SU Also as mentioned in the previous subsection, the channel
from time to time. During the presence of PUs, the performanoutage due to the return of PUs to their channels results in
in terms of achievable rewards degrades since SUs musttleavefluctuating performance behaviors, since SUs cannot adbess
system upon the return of any PUs. band when PUs are using it. Such PUs’ activities do, however,
2) Robustness against objective function choice: In this sub- as expected affect the performance achievable under anyeof t
section, we show that the proposed credit-based techniguoie nebjective functions.
imizes the effect of the objective function choice on thetays  3) Fairness: Figs. 16 shows the CoV of users’ normalized
performance even in the presence of PUs. Figs. 15a and 18b sheceived rewards unddp; without the credit-based technique, as
the system performance achievable with and without theiteredvell as under-;, G, D;, and F; with the credit-based technique
based technique when 50% of users pursudihar D; functions for different average numbers of secondary usé¢®s, 700, and
while the other half pursues. Again, two observations could be1000, while considering primary users’ activities with= 20%.
drawn: At first, observe that the achievable performancawvthe We again observe that even in the presence of primary users, t
credit-based technique is used is insensitive to the uebjsttive use of our proposed credit-based technique reduces stibiyan
function choices. That is, when there are selfish users in tiee CoV value achievable under thB; function, especially
system that choose to go after their intrinsic objectiveyppleying for high average numbers of users. We also observe that the
our proposed credit-based technique with the objectivetions proposed credit-based technique when coupled with theogexp



. . 9
" ‘ achieves good performance independently of what userssettoo

o [Ceaoaseay | pursue as their objectives. It also improves fairness lycating
[[Jeredit-based F equal amounts of spectrum service to users. We also propose

& =gsg:iggzzgg 1 fairness-aware objective function that when coupled witdit-

7t B ‘ 1 based technique, the overall fairness is improved evehdurt
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