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Abstract—Augmenting the LTE evolved NodeB with cloud
resources offers a low-latency, resilient, and LTE-aware envi-
ronment for offloading the Internet of Things (IoT) services
and applications. By means of devices memory replication, the
IoT applications deployed at an LTE integrated edge cloud can
scale its computing and storage requirements to support different
resource-intensive service offerings. Despite this potential, the
massive number of IoT devices limits the LTE edge cloud
responsiveness as the LTE radio interface becomes the major
bottleneck given the unscalability of its uplink access anddata
transfer procedures to support a large number of devices that
simultaneously replicate their memory objects with the LTE
edge cloud. We propose REPLISOM ; an LTE-aware edge cloud
architecture and an LTE-optimized memory replication protocol
which relaxes the LTE bottlenecks by a delay and radio resource
efficient memory replication protocol based on the Device-to-
Device communication technology and the sparse recovery inthe
theory of compressed sampling.REPLISOM effectively schedules
the memory replication occasions to resolve contentions for the
radio resources as a large number of devices simultaneously
transmit their memory replicas. Our analysis and numerical
evaluation suggest that this system has significant potential in
reducing the delay, energy consumption, and cost for cloud
offloading of IoT applications given the massive number of devices
with tiny memory sizes.

Keywords—Internet of things, Mobile edge computing, Memory
replication, Compressed sampling, Long Term Evolution (LTE).

I. I NTRODUCTION

The LTE all-IP architecture, built-in security, and spectral
efficiency nominate LTE to become the dominant connectivity
technology for the Internet of Things (IoT), while IoT ser-
vices and applications create unprecedented traffic growthfor
3GPP LTE/LTE-A networks [1]. For IoT applications, it is
becoming a global consensus that cloud computing technology
is an essential driver for IoT computation speedup, energy
consumption, and service realizations [2], [3].IoT applications
include, for example, connected vehicles, smart grids and
cities, and wireless sensors and actuators networks [4]. In
such applications, IoT devices offload its computations by
replicating small-sized (tiny) memory objects and transferring
these memory replicas through LTE networks to a back-end
cloud computing infrastructure that enables the IoT applica-
tions to scale its computing resources on elastic infrastruc-
ture instead of resource limited devices besides many other
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benefits.Despite the potential of LTE to efficiently transport
these memory replicas to the scalable cloud infrastructure, the
massive number of devices per cell, which is projected to reach
50,000 devices by 2020 (see [5]), renders an LTE network as
the major communication bottleneck for cloud offloading that
can significantly limits offloading performance gains.

Memory replication is a disciplined process in which consis-
tency must be ensured such that a write operation is followed
by a memory update operation with the cloud for each device
[6]. On the other hand, the current LTE network access and
uplink scheduling procedures introduce a significant latency
and energy inefficiency to update a large number of tiny
memory replicas. An LTE cell can become easily blocked, if
only 10% of the devices it covers became active simultaneously
to update their memory replicas with the cloud. Unsurprisingly,
this bottleneck isnot a result of bandwidth limitation; as an
IoT device memory replica is typically a fewKilobytesand the
LTE network is optimized for high throughput and low latency
applications [7], [8], [9]. Nevertheless, the LTE standardis not
optimized to support a large simultaneous access from devices
while remaining delay and energy efficient; as this requires
allocating a large number of control channels and wastes radio
resources, which are primarily intended for transporting con-
ventional mobile users data. To remain a disciplined process,
we design anLTE-optimizedmemory replication architecture
and protocol to harvest the benefits of both LTE and cloud
computing technologies.

In this paper, we propose REPLISOM 1, a memory replica-
tion architecture and protocol based on: the emerging mobile
edge computing paradigm [10], the Device-to-Device (D2D)
communication technology [11], and the compressed sampling
theory [12]. We summarize our contribution as follows:
• Improve the cloud responsiveness for IoT services and

applications by distributing cloud resources geographi-
cally close to the IoT devices. Unlike Cloudlets, MAUI,
CloneCloud, and COSMOS [3], [13], [6], [14], the
proposed architecture enables the design of LTE-aware
cloud procedures in general and memory replication
protocols optimized for tiny-sized memory replication
from a massive number of IoT devices in LTE in specific.

• Reduce the memory replication delay by diminishing the
need of initiating the LTE random access procedure for
each replica transfer, which introduces an undesirable
delay, increased energy consumption, and risk of insta-
bility given the large number of simultaneously active

1The name,REPLISOM , is inspired byreplisomesthat carries out replication
of DNA.



devices. Unlike the application of compressed sampling
in sensor network which relies on spatial and temporal
correlation of sensor data [15], [16], the proposed mem-
ory replication protocol relies on two level of sparsity
structures at the network and memory levels.

• Enhance the LTE signaling overhead and resource usage
for memory replication by avoiding the allocation of un-
necessary dedicated control channels per device, which
wastes the scarce radio resources and risks the blocking
of human communications. Unlike other protocols used
in general purpose machine type communications in LTE
[17], [18], our work relies on the disciplined nature of
memory replication to design a pull based memory repli-
cation protocol which uses a significantly less number of
control channels compared to direct memory replication
using the conventional LTE access and data transfer
procedures.

A. Solution Outline

The REPLISOM architecture is a mobile edge cloud ar-
chitecture (see Fig. 1) in which we augment the evolved
NodeB (eNB) with cloud computing resources and refer to
this augmented architecture by the LTE edge cloud. The
LTE edge cloud is a newintegrated radio access network
element that providesvirtualizable computing, storage, and
networking resources to clone device specific IoT applications
and services. The architecture is a highly responsive system
that neutralizes the back-hauling and routing bottleneckswhich
exist in current conventional cloud architecture. Deploying
cloud computing resources in the proximity of the IoT devices
allows developing an LTE radio interface which is optimized
for memory replication utilizing already in place technologies.
For example, an LTE capable IoT devices already incorporate
D2D technologies that support efficient proximal devices dis-
covery and direct communication. By utilizing the capabilities
of the D2D technology and the existing LTE control and data
channels, we show the possibility to improve the memory
replication performance through an LTE-optimized protocol.

The REPLISOM protocolis an LTE-optimized memory repli-
cation protocol(s) that relies on pulling the memory replicas
from the IoT devices instead of pushing the replicas from
the devices to the LTE edge cloud. We observe two sources
of sparsity in memory replication. The first source is at
the network level, where the ratio of the active devices to
the total number of devices is small even if the number of
simultaneously active devices is large under the traffic models
defined by 3GPP for machine communication. This source of
sparsity isindependenton any assumption about the devices
memory contents (e.g. spatial or temporal correlation). The
second source of sparsity is at the memory replica level, where
the deltas of memory replicas typically exhibit few non-zero
memory blocks. In REPLISOM , a device sends its updated
memory replica to some other neighbor devices using D2D
communication, while a receiving device compresses all the
received memory replicas into a single compressed replica.The
edge cloud then selects a number of devices, which is much
less than the total number of devices in the LTE cell, and pulls

the compressed replicas from these devices. By compressed
sampling reconstruction algorithms, the cloud can recoverthe
original replicas exactly utilizing thesparsity at the network
level. Moreover, we show possible further improvements to the
devices energy consumption and replication delay by utilizing
the sparsity at the memory replica level.

Since the cloud pulls compressed replicas from a number of
devices that is proportional to the number of updated replicas,
there is no need for initiating the random access procedure.As
an LTE device is already synchronized with its serving LTE
cell to decode the cell’s control channels, with REPLISOM a
device just wakes up in predefined sub-frames to verify its
pulling occasions and transmit its compressed replica while
remaining in a deep sleep state if it is not pulled. Unlike
directly pulling the original replicas from each device in the
cell, which also does not require initiating the random access
procedure, the number of control channels allocated for the
proposed protocol is significantly less than the number of
control channels allocated to pull replicas from each device
in the cell.

The remaining of this paper is organized as follows. We
first discuss the related work in Section II. Then, we present
the proposed architecture in Section III where we discuss
the LTE specific challenges and the architectural rule of the
D2D technology. Section IV delves into the proposed memory
replication protocol and its relation to the compressed sampling
theory and shows how we use the two sources of sparsity,
at the network level and at the memory replica level, to
design an efficient pull based memory replication protocol.
In Section V, we describe our performance benchmarks and
provide numerical evaluations of REPLISOM in comparison to
replica transfer using the conventional LTE procedures. Finally,
we conclude our paper in Section VI.

II. BACKGROUND

Creating computing infrastructure back-ends for devices
such as cloud platforms has been in the heart of the IoT
research since its inception in 1991 [19]. The vision of cloud
computing for IoT has evolved through the years to what we
know today as Edge computing [10], [3] or Fog Computing [4].
These evolved platforms extend the cloud computing paradigm
with new characteristics such as: location awareness, low
latency networking, geographically distributed infrastructure,
support of mobility, wireless access awareness, and cloud
interoperability [2]. Our work focuses on the efficient design
of memory replication protocol for the purpose of computation
offloading in the LTE edge cloud with support of massive
number of IoT devices.

a) Cloud offloading near the edge: The idea of augment-
ing resource constrained devices with a resource-rich cloud
infrastructure accompanied the evolution of mobile computing
more than a decade ago [20], [21]. Computation offloading
with a fine-grain memory replication has been the focus of
research since then [6], [13], [22], [14]. New forms of cloud
platforms (e.g. cloudlets) emerged to provide computing re-
sources for proximate devices with a minimal communication
delay. The success of computation offloading to improve the



computational capacity and energy consumption in the Internet
of things era is conditioned by the limits of the underlying
networking technologies that support memory replication from
massive number of devices (see results in [23], [24]). Our
work investigates these limitations, architectural evolution, and
protocol design to support cloud-centric IoT services and
applications at LTE eNB.

b) Massive IoT devices in LTE: The energy consumption
and delay performance characteristics of Internet of Things
(Machine Type Communication) in LTE has been one main
focus of the cellular networks research and standardization
efforts [8], [25]. Particularly, the delay and energy charac-
teristics of the LTE random access and uplink transmission
procedures resemble the major bottlenecks under network
overload from massive number of IoT devices [9]. The existing
approaches to improve the LTE performance in such overload
situation focus on finding improvements for existing uplink
transmission mechanisms [17], [8]. Our work is related to
these research efforts as we anticipate the impact of the LTE
bottlenecks on the memory replication performance, hence
cloud offloading. Our proposed protocol isspecific to the
memory replication traffic, and not to any uplink traffic type,
and its validity is conditioned by the evolution of Device-to-
Device Communication technologies [11], [26], [27]. The LTE-
aware design of the proposed memory replication protocols
reduces the dependency on the LTE random access procedure
and requires significantly less number of control channels.

c) Compressed Sampling in networking: Our work is
an application of the theory of sparse recovery in compressed
sampling [28], which has several applications in networking.
Approaches to a decentralized compression of networked
data has gained a lot of attention in the last decade [15]
and had applications in: network coding [29], [30], sensor
measurements collection [31], [32], [16], network tomography
[33], and medium access [34]. The application of compressed
sensing in such applications utilizes the sparse properties of the
data in different forms. In sensor networks, for example, spatial
and temporal correlations of sensor measurements are the main
sources of sparsity [31] which requires finding a network
transformation to sparsify the network data (e.g. using graph
wavelets, or diffusion wavelets) [15]. Our work relies on the
sparsity of having a limited number of simultaneously active
devices out of a large number of devices at the network level
besides the sparsity of having a limited number of non-zero
memory blocks in memory deltas at the memory level. These
sources of sparsity do not require any particular transformation
to sparsify the memory replicas.

III. LTE A RCHITECTUREEVOLUTION FOR EDGE
COMPUTING AND MASSIVE IOT DEVICES

The current LTE architecture performs specialized process-
ing that supports radio communication with LTE devices and
traffic back-hauling. When an IoT device, in an LTE cell,
offloads its computation to a cloud computing platform, it
carries out LTE network access and uplink data transfer pro-
cedures including: initiating a random access, sending uplink
scheduling requests, receiving uplink grants, and transmitting
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Fig. 1: Proposed Memory replication architecture in LTE/LTE-A with
Mobile Edge Computing and Device to Device communication.

its uplink data (memory replica) using radio resource blocks
(see Fig. 6). Then, a memory replica (received packets at the
LTE cell) passes through multiple stages of packet forwarding
from the LTE cell through the serving gateway, to the packet
data network gateway, to the Internet routers, to the data center
routers until it finally reaches a cloud computing node that
hosts a virtual machine - corresponding to the IoT device -
that updates the replicated memory block. The current LTE
architecture is well optimized for voice and data packet com-
munication. However, given the service requirements of IoT
including the support of: massive number of devices, reduced
complexity, and power efficiency, the LTE architecture is not
optimized for cloud computing offloading for IoT services and
applications which requires tighter delay bounds on packets
transmission.

A. Proposed Architecture

We propose to address the LTE architectural bottlenecks
by deploying local cloud computing resources within the
radio access network based on the mobile cloud computing
paradigm [10]. Once the device memory replica reaches the
LTE eNB, it becomes available to the IoT services and
applications deployed at these local cloud resources. This
architectural change improves the cloud responsiveness by
distributing the cloud resources geographically close to the
IoT devices (Fig. 1) and paves the road to:i) an improved
IoT services and applications resiliency by splitting the cloud
resources to local resources (to devices) and global resources
(conventional cloud),ii) simplified analytics and big data by
capturing key information from devices with possible direct
device access,iii) reduced latency as applications react faster
to devices and context changes away from possible congestion
in other parts of the LTE network other than the radio network,
and iv) optimized cloud protocols that are aware of network
information (e.g. radio conditions, performance statistics, and
technology limitations).

1) Technical Challenges:Several technical challenges per-
tain to this LTE edge cloud architecture such as: the design
of highly distributed applications, support of optimized ap-
plications and virtual machines portability, integrationcloud
security with current 3GPP-security requirements and prac-
tices, improving applications and cloud hardware resilience to
match 3GPP availability and service continuity requirements,
and design of LTE radio interface aware cloud protocols.



The LTE radio interface, in specific, resembles the major
bottleneck for efficient memory replication in LTE edge com-
puting. Three benchmarks capture the system wide efficiency
of a memory replication protocol: the total delay, the total
consumed energy, and the total number of control channels
required to transferall the updated memory replicas from all
the active devicesto the edge cloud (see Section V for a
detailed description and evaluation). For example, the memory
replication efficiency implies minimizing the time a singlede-
vice waits between two successive replica updates. During that
time the the eNB is busy transporting memory replicas from
other devices (besides conventional human communication).
Several characteristics and observations render an LTE radio
interface as the major bottleneck and motivate the design of
an LTE-optimized memory replication protocol.

a) Large simultaneous replica updates:Although the
majority of IoT devices exhibit a memory change every few
minutes, the massive number of devices per cell results in a
large simultaneous replica updates per minute. Recent 3GPP
studies on enhancements of LTE for IoT suggest new traffic
models of IoT devices that can cause memory changes every
30 minutes down to 10 seconds in case of major failures
which require the design of rapid network access procedures
[35]. Let n denote the number of devices in an eNB, and
k = ρn denote the number of devices with an updated replica
at time t (active devices) whereρ is the ratio of the active
devices to the total number of devices in one minute. Under the
suggested 3GPP models, the parameterρ typically ranges from
0.1 to 0.3 (i.e. 1000 to 15,000 simultaneous active devices per
minute). The LTE physical layer, besides other system aspects,
restricts a large number of simultaneous replica transfersdue
to several physical layer design aspects. For example, the finite
sounding reference signal periodicity restricts the number of
simultaneous active devices so that the eNB is able to estimate
the uplink channel quality with a finite accuracy (see [36] for
more details on physical layer scalability limitations).

b) Access latency and control channels:As the devices
are not engaged in frequent packet transmission and reception,
devices will typically remain in idle mode (not connected to
the cell) for a long time to save their energy and reduce the
cell interference. Unfortunately transitioning back fromthe idle
mode to the connected mode results in an excessive access
latency as every memory update involves an initiation of the
random access procedure (see Section 5.1 in [37] for details
on the random access procedure). We refer to this scenario
as the idle to active scenario. Every device accessing the
network from the idle mode transmits and receives at least four
control messages (illustrated in Fig. 2) : the random accessre-
quest (device initiates the procedure), random access response
(cell acknowledges the request and assigns initial resources),
uplink connection/scheduling request (device requests uplink
resources), and uplink grant (cell allocates uplink resources for
data transmission). Random access requests can also collide.
Let L denote the random access opportunities per second andγ
denote the random access requests per second, the probability
of collisions during the random access procedure is given by
the Pr collision = 1− e−γ/L [5]. Even if an operator was able
to increaseL such that the random access initiation is collision
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Fig. 2: Theidle to activescenario: LTE signaling for a replica transfer
from the idle mode to the active state.

free (Pr collision ≈ 0), recent studies suggest that in such
hypothetical case the average random access latencyper device
ranges from 47 ms to 55 ms (measured from the initiation
till the first uplink transfer) in such hypothetical collision free
scenario [5], [9].

c) Over-allocated scheduling opportunities:Preventing
devices from transitioning to the idle mode can improve the ac-
cess latency significantly. In such scenario, a device staysin a
dormant state for monitoring the control channels in predefined
occasions, and does not need to initiate random access except
if, for example, it lost frame synchronization, or there were
no uplink resources available to send scheduling requests (see
[37]). Optimized discontinues reception/transmission achieves
energy saving for always connected devices (in dormant state)
where devices go into deep sleep and wake up only in prede-
fined occasions to maintain, for example, frame synchroniza-
tion and decode other control channels. Fig. 3 illustrates replica
transfer from the dormant state where the device first identify
a scheduling opportunity and sends an uplink scheduling re-
quests. Once, the LTE cell allocates uplink radio resourcesfor
the device, the cell sends an uplink grant message to the device
to start its transfer. We will refer to this scenario as thedormant
to activescenario. This procedure exhibits the least possible
latency, but ideally requires allocating scheduling opportunities
for n devices, which is not necessarily feasible for a large
number of devices (see [36] and [37]) and is inefficient due
to the unnecessary allocation of control channels as we will
detail in Section V.

d) Untraceable memory changes:A memory replication
protocol can be pull based, where the edge cloud initiates the
replicas transfer through paging the IoT devices, hence the
random access procedure is not initiated and the scheduling
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requests are allocated only for pulled devices. With the current
LTE specification, the cell can page a device to initiate an
uplink transfer. There are two challenges accompanying this
process. First, the paging process is not ideal and involves
latency, collisions, and capacity challenges that are as difficult
as the random access procedure. Second, it is not trivial for
the edge cloud to determine which devices are active to pull
replicas from, without initiating unnecessary paging or pulling
replicas from all the devices in the worst case.

2) Architectural Rule of D2D Communication:We address
the previously discussed challenges by designing a pull based
memory replication protocol using D2D communication (in
specification starting 3GPP Release 12) and compressed sam-
pling (Section IV).Architecturally, IoT devices can commu-
nicate directly with each other using the licensed cellular
spectrum (in-band), or the unlicensed spectrum (out-band). In-
band D2D can use the same operating band of the LTE cell in
an underlay mode or a different band in an overlay mode. D2D
communication requires: interference management, resource
allocation, and device discovery services that devices can
perform autonomously or by the LTE infrastructure assistance
(i.e. small and home cells other than the macro cell in Fig. 1)
[11].

In the proposed architecture, device pairs can communicate
autonomously in parallel with low power radio. Typically, the
D2D transmission power,Pd2d, is a fraction of mW (e.g. 1 mW
[38]). A device is also capable of communicating with a group
of devices in multicast, and the total time required in transfer-
ring a replica from one device to the other is comparable to
the idle to active scenario (Fig. 2). Letr denote the maximum
communication range of the LTE D2D technology2. A device
is connected to aNeigh(i) = {j : Dist(i, j) ≤ r} neighbor
set, whereDist(i, j) denote the Euclidean distance between
any two devicesi andj. With an LTE cell that covers an area

2Early commercial solutions show LTE D2D communication range up to
500 meters and we assumer < 200 meters.

a and servesn devices3 , a devicei is directly connected to
E{Neigh(i)} = ηπr2 on average, whereη = n

a denote the
network density.

IV. M EMORY REPLICATION PROTOCOLS

The main intuition behind the proposed REPLISOM memory
replication protocol is to recognize that during a short time
interval, the memory replicas of all then devices in an eNB
resemble a sparse vector,x, of lengthn that hask non-zero
entries which represent replicas fromk active devices. We refer
to this observation asthe sparsity at the network level. Hence.
it is possible to recover all the replicas (the vectorx) from
few memory replica samplesm < n by the use of compressed
sampling reconstruction algorithms [12], [15]. Efficient replica
recovery is possible with compressed sampling: if we designed
a low complexityprotocol that samples the replicasincoher-
entlywith few control channels; and if we treated the memory
replicas asblocks of finite precision floating numbersinstead
of low level binary bit streams. These insights enable the
development of the proposed pull based memory replication
protocol that doesnot have to learn which devices are active
with an updated memory contents, while it pulls only memory
replicas from a number of devices that isfar lessthann. The
protocol works as follows (see Fig. 4 for the messages flow).

A. Proposed Protocol

Suppose thatk devices are active and updated their memory.
Let p denote the memory page of a devicei which is split intol
blocks that are represented as finite precision floating numbers.

1. An active devicei, upon updatingp at timet, performs
the following:
1.1. creates thei-th memory replica,xi ∈ R, as:xi =

float(device : i, time : t, memory : p), where
float is a function that casts the replica bits to a
fixed point floating number.

1.2. pushesxi to randomly chosen neighbors in a
multicastD2D communication.

2. A receiving neighbor devicej performs the following:
2.1. solicits memory replicas periodically from neigh-

bor devices until it receives at leastd =
O(log(n/k)/ǫ updated replicas (ǫ ∈ (0, 1)) from
N ⊂ Neigh(j) neighbor devices,

2.2. aggregates all the received replicas into one com-
pressed replicayj = φjjxj +

∑

∀i∈N φjixi and
stores onlyyj, where φji ∈ R is a predefined
signature that the LTE edge cloudinitially gener-
ates and assigns to thej-th device upon declaring
another devicei as a direct neighbor,

3. The LTE edge cloudperforms the following:
3.1. randomly selectsm = O(k log(n/k)) out of n

devices,
3.2. sends pulling requests to the selected devices

using pre-scheduled uplink grantssuch that: the
eNB can pull a devicej only at (j mod m)

33GPP suggestsa ≈ 1 square Kilometer as detailed in [35].



occasions in the LTE frame, and the uplink grants
include initial radio block allocation information
for uplink transfer.

4. A devicej remains in the dormant state and decodes
possible uplink grants only at(j mod m) occasions;
otherwise it remains in deep sleep to save energy. Ifj
is pulled, it transfersyj using the assigned radio blocks
in its uplink grant (further dedicated control channels
ensure that a radio conditions optimized radio blocks
allocation after the initial assignment).

5. The LTE edge cloud, upon receiving the replica sam-
ples, finally recovers thek updated replicas by solving
the l1-minimization problem:

minimize
x

‖ x ‖1 subject to Φx = y,

where x is the n × 1 column vector such that itsi-
th element corresponds to the original replicaxi, y is
the m × 1 column vector such that itsj-th element
corresponds to the compressed replicayj, andΦ is the
m × n matrix such that its element in thej-th row
and thei-th column corresponds to the signatureφji or
equals zero if such signature was not used in computing
yj (i.e. j did not receivexi) or the cloud never defined
it (i.e. i is not a direct neighbor toj).
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1) Protocol Correctness:The REPLISOM memory replica-
tion protocol is an application of the theory of compressed
sampling with sparse measurement matrices [28]. The correct-
ness of REPLISOM depends on the properties of theΦ matrix
(step 5 in the protocol) from the compressed sampling theory
[12], and the minimum number of direct neighbors|Neigh(i)|
of any IoT devicei. On the other hand, the computation and
communication overheads of the D2D communication steps of
REPLISOM (steps 1.2 and 2.1) depend on the minimum value

of d (step 2.1) for an accurate recovery by the theory of sparse
compressed sampling recovery [28], [39].

The matrixΦ shall satisfy theRestricted Isometry Property
(RIP), to ensure the correctness of REPLISOM and an accurate
replicas recovery.

Definition 4.1: An m × n matrix Φ is said to satisfy the
RIP(q) if, for any vectorx that is k sparse, there exists a
constantδ such that

(1 − δ)‖x‖q ≤ ‖Φx‖q ≤ ‖x‖q

An accurate recovery is possible if the matrixΦ is sparse
and satisfies theRIP(1) property (see Theorem 4 in [28] for
formalism).

Theorem 4.1:The m × n signature matrixΦ, with m =
O(k log(n/k)) andd = O(log(n/k)/ǫ), satisfies theRIP (1)
property forδ = 2ǫ.

Proof: see Appendix A.
Numerically, a correct recovery depends on the exact num-

ber of neighbors,d, to which a device sends its memory replica
in step 1.2 (i.e. the value ofǫ) and the number of active devices
k. Intuitively, ask decreases, a device needs to send its replica
to more neighbors to ensure information incoherence and a
correct recovery. Fig. 5 shows the probability to recover a
single replica (out ofk) with at most one-bit error and suggests
that it is sufficient to designd = 2 log(n/k) for an accurate
replicas recovery.

ρ

0.1 0.2 0.3

ǫ

0.4

0.6

0.8

0

0.2

0.4

0.6

0.8

Fig. 5: The probability to recover a memory replica with one-bit error
for n = 2000, ρ = k/n, andr ≥

√
d/n/π (i.e. r ≥ 27 meters).

B. REPLISOM Improvement Through Utilizing Memory Spar-
sity

It is possible to further reduce the communication overhead
of REPLISOM by utilizing the sparsity of memory pages deltas.
Consider two consecutive memory pages of an IoT device,pt

andpt+1. Typically, the memory page deltapdelta = pt+1−pt

represents anl vector of memory blocks where there are only
s blocks that are non-zero. We refer to this as thesparsity at
the memory replica level.

The straight forward approach to exploit such sparse struc-
ture of memory page deltas is to scan throughpdelta and



represent it using anO(s log(l)) space-efficient sparse vector
which contains only the non-zero blocks associated with their
relative memory addresses. The memory replica of a devicei is
then constructed asxi = float(device : i, time : t, memory :
pdelta). As the device initially sendsp0 in full to the edge
cloud, the cloud simply constructs subsequent pages from
pdelta (e.g.p1 = pdelta +p0). This approach is not efficient for
a large enoughl as one must associates every non-zero block
with its relative memory page address (i.e. requireslog(l) bits)
for sparse representation ofpdelta.

We propose to use compressed sampling to exploit the
sparsity of memory page deltas. Compressed sampling requires
w = O(s log(l/s)) bits to represent thes-sparse memory
deltas. This approach does not require scanning throughpdelta

and works as follows:
1. the cloud generates a random Gaussian anddensew× l

matrix, Υi, for each devicei and sendsΥi initially to
the i-th device (a random matrixΥi is sufficient for
exact recovery, see [12]),

2. a devicei initially includes itsp0 in its replicaxi,
3. as the device updates its memory, it constructsxi as

xi = float(device : i, time : t, memory : pc), where
pc = Υipdelta,

4. upon recoveringxi, as discussed in the memory repli-
cation protocol, the cloud recoverspdelta by solving the
l1-minimization problem:

minimize
pdelta

‖ pdelta ‖1 subject to Υipdelta = pc,

5. finally, the cloud determines the full memory replica of
the devicept+1 = pdelta + pt.

V. BENCHMARKS AND NUMERICAL EVALUATION

Before defining and evaluating the performance metrics for
REPLISOM protocol compared to theidle to activeand the
dormant to activescenarios (Fig. 2 and Fig. 3), we first review
the LTE radio frame structure, timing, control channels, and
data channels.

A. The LTE Frame and Channels

The LTE time division duplex frame has an overall duration
of 10 ms and consists of two half frames (downlink and
uplink) each of 5 ms duration and a half frame consists of
five subframes each of 1 ms duration. Each subframe carries
physical control and data channels that carries logical channels
information (see Section 4.5 from [37] for detailed mapping
of logical channels to transport and physical channels). The
capacity and timing of these channels specifies the latency
and energy consumption in replica transfers to the mobile edge
cloud. Fig. 6 illustrates the LTE frame along with the typical
timing of these control and data information.

The Physical Uplink Shared Channel (PUSCH) is the traffic
channel used for an uplink data transmission. The PUSCH
containsg radio blocks in each subframe for data transmis-
sions from at mostg simultaneous devices. According to its
measured radio condition at timet, thei-th device can transmit
at mostBi

t bits defined as the transport block size. The device

determinesBi
t according to its radio condition (translated into

a modulation coding scheme) and the total number of allocated
radio blocks (refer to the Table 7.1.7.1-1 and Table 7.1.7.2.1-1
from [36] for details). It is sufficient for our scope to assume
that the transport block size is the same for all devices and is
time independent. We refer to the transport block size asB.

Separate dedicated and common control channels are re-
sponsible for the transport of the radio interface control
messages. The uplink half frame contains the Physical Uplink
Control Channel (PUCCH) which carries the uplink scheduling
requests, which a device uses to request for the PUSCH
resources. Generally, each subframe can contain up tob
simultaneous scheduling requests from differentb devices.
Moreover, the uplink half frame contains occasions of the
Physical Random Access Channel (PRACH) which carries the
random access request information for the initiation of the
random access procedure (see Section 5.7 in [40] for random
access timing).

The downlink half frame carries two main control infor-
mation that are necessary for uplink transmission. First, the
random access response in the Downlink Shared Control
Channel (DL-SCH) which is addressed to a specific device
that previously sent a random access request. The time be-
tween sending the random access request and receiving the
random access response is the average random access delay,
Tr (Average PRACH delay in Fig. 6). The collisions during
random access, the contention resolution procedure, and the
propagation delay determine the actual value ofTr. Assuming
a collision free random access, recent studies suggests that
Tr is between 47 ms and 55 ms [5], [9]. The second control
information is the uplink grants which is sent on the Dedicated
Downlink Control Channel (PDCCH) that is designated to a
specific device which previously sent an uplink scheduling
request. Upon receiving a scheduling request it takesTs ≈ 10
ms (Time to schedule in Fig. 6) to process the request at the
eNB and send the uplink grant to the requesting device. The
eNB schedules an uplink transmission for any device after
Tt ≥ 4 ms (Time to transmit in Fig. 6) from receiving its
uplink grant.

B. Memory Replication Performance

Three performance metrics determine the efficiency of the
memory replication fromk simultaneous active devices in mo-
bile edge computing. First,the total allocated control channels,
which defines the total number of control channels,C, that the
eNB allocates for devices to access the network and initiatean
uplink data transmission. Second,the total replication delay,
which measures the total timeT =

∑k
i=1 T acc

i + T data
i that is

required to update thek replicas; where for a devicei, T acc
i

denote the access latency andT data
i denote its replica transfer

time. Third,the total consumed energy, which measures the to-
tal energyE =

∑k
i=1 Prx×T rx

i +Ptx×T tx
i +Pinact×T inact

i to
update thek replicas; wherePrx andT rx

i denote the consumed
power during a reception and the receive time of devicei; Ptx

andT tx
i denote the consumed power during a transmission and

the transmit time; andPinact andT inact
i denote the consumed

power during an inactivity and the inactive time at whichi only
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Fig. 6: LTE time division duplex frame timing and main channels.

Symbol Definition Default Value / Range
n total devices persmall cell 1000 / Up to 50000

a coverage area of eNB 60 meter2 / 1 Km2, n = 50000
k active devices per cell 300 / 30 to 300
m REPLISOM pulled devices m = 2k log(n/k)
d D2D neighbors d = 2 log(n/k)
b scheduling requests per subframe 18 / 1 to 18
g radio blocks per subframe 32 / {4, 8, 16, 32}
B transport block size per radio block 408 bits / 16 to 584 (see 3GPP)
l memory replica size 512 bytes /16 to 2048 bytes
s memory replica sparsity 0.1l / 0.1l to 0.3l
w compressed replica size w = 2s log(l/s)

Prx consumed power during receive 100 mW
Ptx consumed power during transmit 200 mW

Pinact consumed power during inactivity 10 mW
Pd2d consumed power during D2D 0.1 mW
Tr average PRACH delay (collision free) 50 ms / 47 to 55
Ts time to schedule 10 ms
Tt time to transmit 4 ms

TABLE I: Parameters summary and values for numerical evaluations.

monitors the control channels in an optimized Discontinuous
Reception (DRX) mode. Table I summarizes all the used
parameters, and the notation definitions with their numerical
values that are used in our following evaluation. Table II
summarizes the three benchmarks, based on the timing and
the channels definitions in Fig. 6, for our proposed memory
replication protocol, REPLISOM , with and without applying
compressed sampling on the memory deltas and compared to
the idle to activeanddormant to activescenarios (Fig. 2 and
Fig. 3).

1) The total allocated control channels:Since, REPLISOM
requires only m device to be pulled, while each device
consumes one uplink grant message, the eNB allocates a
less number of control channels (m) compared to using
conventional LTE procedures for the uplink data transfer
(see Fig. 7).Unlike the conventional LTE procedures which
require a number of control channels that scales linearly inn,
the number of channels in REPLISOM scales logarithmically
in n. In the dormant to activescenario, the eNB allocates
scheduling occasions to alln devices whether these devices
will use them or not in addition tok uplink grants to the

active devices. Although this behavior, minimizes the delay
and power consumption, it significantly wastes the network
resources as it requires the allocation ofn+k control channels.
In the idle to activescenario, the eNB allocates four control
channels per device (a random access request, random access
response, scheduling request, and uplink grant) requiringa
total 4k control channels. Although, this scales linearly with
k, as k increases this scenario requires a greater number of
channels than those required by REPLISOM . Moreover, if the
random access occasions,L, are not sufficient compared to
the random access intensityγ, the number of control channels
used in theidle to activescenario increases significantly due
to collisions.
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Fig. 7: Allocated control channels for the proposed protocol compar-
ing conventional LTE scenarios.

2) The total replication delay:Given the LTE current pro-
cedures, thedormant to activescenario achieves the lowest
possible uplink replication delay that one can hope for (on
the expense of wasted control channels). Similarly, theidle to
active(under the collision free assumption) scenario resembles
our assumed LTE worst case performance. In both cases the
total replica transfer time is given byT data = k×l

g×B for all the



Memory replication C T [ms] E [µJ]

REPLISOM m 2 d×l
B

+
m×(Tt+1)

b
+ m×l

(g×B)
Pd2d

k×l
B

+ m
(
Pinact × Tt + Ptx

l
B

+ Prx

)

REPLISOM (with compressed replicas) m 2 d×w

B
+

m×(Tt+1)
b

+ m×w

(g×B)
Pd2d

k×w

B
+ m

(
Pinact × Tt + Ptx

w
B

+ Prx

)

Idle to Active (collision free random access) 4k
k×(Tr+Ts+Tt+2)

b
+ k×l

g×B
k
(
Pinact (Tr + Ts + Tt − 1) + Ptx

(
l
B

+ 2
)

+ 2Prx

)

Dormant to Active (ideal with no random access)n + k n
k×b

+
k×(Ts+Tt+2)

b
+ k×l

g×B
k
(
Pinact

(
n

k×b
+ Ts + Tt

)
+ Ptx

(
1 + l

B

)
+ Prx

)

TABLE II: Benchmarks of proposed memory replication protocols comparing current LTE generic uplink transmission procedures.

k active devices since the number of radio blocks needed to
transmit anl-bits replica isl/B, and the network can transmit
at mostg blocks simultaneously. The total access delay in the
idle to activescenario is given byT acc = k×(Tr+Ts+Tt+2)

b ,
which is dominated by the average random access delay,Tr,
per device. While in thedormant to activescenario the access
delay is significantly reduced as it only takes: two subframes
for sending a scheduling request and receiving an uplink grant,
Ts subframes to schedule the uplink grant,Tt subframes to start
the uplink transmission, andnk subframes between successive
scheduling occasions for up tob devices to access the network
simultaneously (i.e.T acc = n

k×b + k×(Ts+Tt+2)
b ).

REPLISOM reduces the total delay required to start replica
transmissions in two ways. First, as active devices send replicas
to their neighbors in parallel it takes no more than2 d×l

B sub-
frames for the devices to construct replica samples regardless
the number of active devicesk (step 2.2). Second, as it only
takes one uplink grant message to pull the replica samples from
the devices, it requiresTt +1 subframes beforeb devices start
to transmit their replica samples (step 4). On the other hand, the
total time that is required to transmit all replicas is governed
by the values ofm and l asT data = m×l

g×B . As the replica size
increases, the total delay of the proposed protocol becomes
strongly dependent on the uplink data transmission phase and
is observably greater than the total delay in thedormant to
active scenario (see Fig. 8). Fortunately, the sparse structure
of memory page deltas improves this undesired behavior where
the total size of data transmission improves by aw/l factor. In
general, the smaller the replica-size, the improved total delay
we observe compared to the conventional LTE scenarios. This
restricts the applicability of REPLISOM to replication of tiny
sized memory pages (see Fig. 9). Fig. 8 shows that for the
same replica sizel, the proposed protocol (with compressed
replicas) exhibits a total replication delay as theideal dormant
to active scenario and is slightly better ask approaches0.3n.

3) The total consumed energy:The total consumed energy
of REPLISOM is generally worse than the conventional LTE
scenarios because it requiresm devices to become active
compared tok devices in the conventional LTE scenarios (see
Fig. 10) although the energy consumed per device during a
single replica transmission is significantly less. To see this,
consider the inactive, transmit, and receive duration of a single
device in the total consumed energy of Table II. In REPLISOM
, a device first transmits its replica to its neighbors with a
low power for a duration ofl/B subframes. Then, the device
consumesPinact power for a duration ofTt compared to
Tr + Ts + Tt − 1 subframes in theidle to active scenario
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Fig. 9: Replica size impact on delay.

and to n
k×b + Ts + Tt subframes in thedormant to active

scenario. For a replica transmission, a device consumesPtx

power for a duration ofl/B subframes, that is reduced to
w/B if the sparsity at the memory level is utilized, compared
to l/B +2 andl/b+1 in the idle to activeand thedormant to
active scenarios respectively. A pulled device, in REPLISOM
, consumes less energy at each pulling occasion, but since a
device becomes active more often than in the conventional LTE
scenarios it consumes more energy on a longer term.

Fortunately, the energy consumption disadvantage of REPLI-
SOM does not hold true for small enough memory replicas



(tiny replicas). This is illustrated in Fig. 11 where energy
consumption improves by reducing the replica size, which we
also attain by utilizing the sparsity at the memory level. Asthe
memory replicas become smaller, the less energy consumption
per a single device activity becomes the dominant energy
factor.

Generally, REPLISOM has delay and energy advantages
over the conventional LTE scenarios if: the replica size is
sufficiently small, or an LTE operator is limited in the number
of resource blocks for control channels. Both conditions are
of significant practical importance. Although there can be a
large number of IoT devices, an individual device generally
replicates a small sized data objects (see example applications
in [5]). Additionally, the number of radio blocks that are
allocated for control channels is limited by the maximum
LTE bandwidth (20 MHz) and it is generally in an operator
interest to allocate most of the radio blocks as data blocks for
conventional network users that have tough quality of service
requirements.
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Fig. 10: Total consumed energy.
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Fig. 11: Replica size impact on power.

4) Impact of Different Parameters:The earlier discussion
influenced the impact of the transport block size,B on the
delay and energy consumption. It is obvious that as the radio
conditions improve andB increases the total delay shall
decrease and the device shall consume less energy (as it
transmits for a shorter duration); but how the radio condition,
hence the transport block size, does influence the delay of
REPLISOM compared to the conventional LTE procedures?
The poor radio conditions significantly reduce the transport
block size,B, and render the proposed protocol to exhibit
greater delay than theidle to activescenario. However, for
moderate and good radio conditions and for the same memory
replica size,l, the delay improves rapidly, so as the energy
consumption, to approach thedormant to activeperformance
as shown in Fig. 12.
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The total number of radio blocks,g, that are available per
subframe also improves the total delay of REPLISOM , but has
no impact on the energy consumption. As the radio resources
available to the eNB increase (e.g. increase bandwidth), the
delay decreases rapidly. However, if the radio resources are
limited as in the scenarios where human communication con-
sumes most of the available radio resources, the total delayof
REPLISOM becomes worse than theidle to activescenario.

VI. CONCLUSION

We propose REPLISOM , a cloud resources augmented
eNB architecture with an LTE-optimized memory replication
protocol for the Internet of Things applications. REPLISOM
works with the in-place LTE technologies and the emerging
D2D technologies to efficiently replicate tiny-sized memory
pages from a massive number of devices as fast as possible
with the minimal control channel requirements via the sparse
reconstruction in compressed sampling theory. REPLISOM also
utilizes the sparsity at the memory level to further improve
the delay and energy consumption. With extensive numerical
evaluations of the delay and energy consumption benchmarks,
we demonstrate the benefits of REPLISOM to overcome the
LTE bottlenecks that arise from simultaneous access of devices
for memory replication.
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APPENDIX A
PROOF OFTHEOREM 4.1

In this appendix we prove thatΦ satisifies theRIP(1)
property, hence recovers all memory replicasx accurately
(Theorem4.1). If one shows thatΦ relates to the adjacency
matrix of an expander graph, then it satisfies theRIP(1)
property. LetG = (U, V, E) be a left-d-regular bipartite graph,
whereU is its set of left vertices,V is its set of right vertices,
andE ⊆ U × V is its set of edges, such that every left vertex
in U has exactlyd neighbors inV .

Definition A.1: A left-d-regular bipartite graphG =
(U, V, E) is an(k, d, ǫ)-expander if any setS ⊆ U of at most
k vertices has at least(1 − ǫ)d|S| neighbors.

ASSUME:
1. G = (U, V, E) is the left-d-regular bipartite graph such

that:U represents all then IoT devices andV represents
all them selected devices by the edge cloud, a left node
i is connected to a right nodej if the later received the
replicaxi (in step 1.2 or 2.1), andA is the adjacency
matrix such thatAij = 1 iff (i, j) ∈ E

2. Ψ is a random i.i.dm × n matrix such thatΨij ∝
1/d and Φ = A ◦ Ψ (◦ denote matrix element-wise
multiplication)

PROVE: G is an (k, d, ǫ)-unbalanced expander
Proof:

1. The probability that a left vertexi has at leastd
neighbors for a network densityη = n

a is given by

Pr (|Neigh(i)| ≥ d) =

(

1 −

d∑

i=0

(ηπr2)i

i!
e−ρπr2

)n

(see Theorem 2 in [41] for details)
2. for a dense network (e.g.n = 50000, a = 1, r = 0.2),

i has at leastd neighbors almost surely
3. for S ⊂ U such that|S| ≤ k and M ⊆ V such

that |M | ≤ m, the neighborhood ofS is completely
contained inM with probability

Pr(Neigh(S) ⊆ M) ≤

(
|M |

m

)d|S|

4. G is not an expander if|M | ≤ (1 − ǫ)d|S|
5. LetPr ′ denote the probability thatG is not an expander

and is bounded by

Pr ′ ≤
k∑

i=1

(
n

i

)(
m

(1 − ǫ)di

)(
1 − ǫ)di

m

)di

≤

k∑

i=1







(ne

i

)( me

(1 − ǫ)di

)(1−ǫ)d (
(1 − ǫ)di

m

)d

︸ ︷︷ ︸
z







i

≤
∞∑

i=1

zi =
z

1 − z

6. asi ≤ ρn and d = O(log(n/k)/ǫ), then z ≤ 1
10 and

Pr ′ ≤ 1
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