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Abstract—We develop an efficient virtual network embedding5
(VNE) algorithm, termed BIRD-VNE, for mobile wireless net-6
works. BIRD-VNE is an approximation algorithm that ensures7
a close to optimal virtual embedding profit and acceptance rate8
while minimizing the number of virtual network migrations result-9
ing from the mobility of wireless nodes. BIRD-VNE employs a10
constraint satisfaction framework by which we analyze the con-11
straint propagation properties of the VNE problem and design12
constraint processing algorithms that efficiently narrow the solu-13
tion space and avoid backtracking as much as possible without14
compromising the solution quality. Our evaluation results show15
that the likelihood that BIRD-VNE results in backtracking is small,16
thus demonstrating its effectiveness in reducing the search space.17
We analytically and empirically verify that BIRD-VNE outper-18
forms existing VNE algorithms with respect to computational19
efficiency, closeness to optimality, and its ability to avoid potential20
migrations in mobile wireless networks.21

Index Terms—Mobile wireless networks, virtual network22
embedding, remote sensor networks.23

I. INTRODUCTION24

V IRTUAL network embedding in wireless networks can25

have a pivotal role in several areas including: sensor26

network virtualization [1], vehicular cloud [2], mobile edge27

computing [3], [4], [5], network based and geographically dis-28

tributed cloud environment [6], [7], and cyber foraging [8].29

By means of virtualization, it is possible to embed, with low30

cost, large-scale virtual sensor networks onto sensor-equipped31

physical devices (e.g. smart-phones, autonomous vehicles) so32

as to perform specific sensing tasks and autonomous, agile, and33

timely decisions in a distributed manner. Such virtual networks34

can support several applications such as: urban sensing, intel-35

ligent transportation, terrain exploration, disaster recovery, and36

surveillance. In addition, VNE can be used to enable virtual37

content delivery in wireless networks near the network edge.38

VNE algorithms can then deploy surrogates of services (e.g.39
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networked virtual servers) in proximity to users to improve their 40

perceived latency, where geographical locations and mobility 41

patterns of users are crucial parameters to maintain a target con- 42

tent delivery quality. In a more general context, virtual network 43

embedding in wireless networks can enable effective distributed 44

processing of real-time content and allow agile decision making 45

from data at its “actual sources”. 46

The focus of this paper is on the design of virtual network 47

embedding (VNE) techniques that enable on-demand mapping 48

of virtual networks onto substrate mobile wireless networks. 49

More specifically, the VNE problem consists of mapping the 50

virtual nodes to substrate nodes and the virtual links to sub- 51

strate paths in such a way that all resource (CPU, storage, and 52

bandwidth) requirements of the virtual network are met. Here, 53

a virtual network consists of a set of virtual nodes, each requir- 54

ing CPU processing capability and storage capacity to process 55

data in a predefined geographical area, and a set of virtual links 56

connecting these virtual nodes, each requiring some bandwidth 57

capacity. The substrate network, on the other hand, consists of 58

a large set of mobile wireless nodes, each having sensing and 59

Internet-access capabilities. 60

Unlike wired networks, mobile wireless networks’ dynam- 61

ics (e.g. node mobility, link instability) create new challenges 62

that require new architectural and algorithmic considerations 63

when it comes to enabling VNE. Mobility of substrate nodes, 64

in particular, may invalidate the operations of virtual networks 65

as nodes move away from desired locations of some virtual 66

nodes. Such a mobility can also change the connectivity of the 67

substrate nodes–and so can the substrate paths–that are already 68

used by virtual links, making them insufficient or invalid. In 69

such cases, VNE solutions shall remap (migrate) invalid virtual 70

networks to other substrate nodes and paths [9]. As migrations 71

incur a significant overhead [10], we shall design architec- 72

tural and algorithmic solutions that can effectively capture node 73

mobility and topology changes, and minimize virtual network 74

migrations due to nodes mobility while not compromising the 75

effectiveness of VNE techniques. 76

The effectiveness of the VNE techniques can essentially be 77

captured through three metrics: computation time (the time it 78

takes to solve a VNE instance), embedding cost (the amount 79

of overhead incurred and resources needed to solve a VNE 80

instance), and acceptance rate (the ratio of successfully solved 81

VNE instances to the total number of instances). Therefore, 82

in addition to meeting the resource requirements, the aim of 83

VNE techniques is to reduce the computation time, minimize 84

the embedding cost, and increase the acceptance rate. The chal- 85

lenge, however, is that these three performance goals are often 86
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conflicting with one another. For instance, backtracking algo-87

rithms can, in general, find optimal solutions, but they do so in88

exponential time [11]. Other heuristic approaches, on the other89

hand, can find solutions in polynomial time, but these solutions90

are sub-optimal, thus leading to low acceptance rates [12].91

In this paper, we develop VNE techniques that strike a92

good balance between these three performance goals by find-93

ing near optimal solutions in polynomial times (short execution94

times) while yielding high embedding profits (minimal embed-95

ding costs) and high acceptance rate. The proposed approach96

takes also into account potential virtual networks migrations97

due to substrate nodes mobility in its objective definition to98

minimize the anticipated overhead associated with migrating99

invalid virtual networks. Our proposed approach consists of100

designing algorithms that are based on backtracking techniques101

so as to ensure good solution optimality, while reducing the102

computational complexity and the embedding cost by exploit-103

ing the constraint propagation properties of the VNE problem.104

Essentially, they reduce the embedding complexity and cost by105

narrowing down the search space and avoiding backtracking as106

much as possible without compromising the solution quality107

so as to maintain high acceptance rates and minimize poten-108

tial virtual network migrations. To recap, our contributions in109

this paper are twofold.110110

• Developing pruning techniques that reduce the embed-111

ding time and cost significantly by reducing the search112

space. These techniques eliminate the need for back-113

tracking during the embedding solution search, thereby114

enhancing the embedding time without compromising the115

optimality of the obtained VNE solutions.116

• Developing techniques that account for the VNE embed-117

ding cost, expressed in terms of the amount of resources118

needed and the migration overhead incurred to success-119

fully embed a virtual network, to devise VNE algorithms120

with minimal embedding costs and minimal potential121

virtual network migrations.122

The rest of the paper is organized as follows. The next section123

surveys the existing techniques that are related to our pro-124

posed VNE approach. In Section III, we state and formulate125

the VNE problem. We begin by modeling the virtual and sub-126

strate networks and the substrate node mobility, and by defining127

the node and link mapping steps to be performed during the128

VNE process. We then describe the overall design goals of the129

VNE technique. In Section IV, we present our pruning tech-130

niques proposed to reduce the embedding search space. We131

then, in Section V, use these pruning techniques to develop132

a polynomial-time VNE algorithm, which leverages the bene-133

fits of our proposed pruning techniques to avoid backtracking134

while still maintaining the optimality of the obtained VNE135

solutions. In the same section, we also derive analytic bounds136

on the approximation ratio of the incurred objective value of137

the proposed algorithm. Finally, we present our experimental138

results and findings in Section VI, and conclude the paper in139

Section VIII.140

II. RELATED WORK141

Virtual Network Embedding Algorithms: There have142

recently been research efforts aiming to develop VNE143

algorithms, and the recent survey by Fischer et al. [12] presents 144

a detailed classification of such algorithms. Broadly speaking, 145

these algorithms can be classified into three categories: back- 146

tracking based algorithms (e.g. branch and bound), stochastic 147

algorithms, and heuristics. 148

Backtracking based algorithms generally consist of formu- 149

lating and solving the VNE problem using branch and bound 150

or exact backtracking based techniques [13], [14], [15], [16], 151

[17]. For example, Lischka et. al. [13] show that the VNE prob- 152

lem can be formulated as a graph isomorphism (which is known 153

to be NP-hard) and then using a backtracking based algorithm 154

to solve it. Backtracking can, in general, find optimal slutions. 155

However, they do so in exponential time [18]. 156

Stochastic algorithms like simulated annealing, particle 157

swarm optimization, tabu search, or genetic algorithms, are 158

other common approaches that can be used to search for VNE 159

solutions. For example, [19] uses particle swarm optimization 160

to find near optimal solutions in relatively short execution times 161

(as shown empirically). The major drawback of stochastic algo- 162

rithms, besides their relatively long execution times, is their 163

high likelihood of getting stuck in local minima. 164

Heuristic algorithms attracts the most attention of researchers 165

given their less complexity when compared to exact backtrack- 166

ing algorithms. Heuristics on the other hand can only find 167

inexact solutions and hardly provide tight approximation gaps 168

[20], [21], [22], [23], [24], [25]. For example, Zhu and Ammar 169

in [20] adopt one very basic greedy algorithm that greedily 170

search for feasible nodes to serve a virtual network and then 171

compute the shortest paths between these nodes. If the evalu- 172

ated shortest paths can satisfy the demands of the virtual links, 173

the virtual network is considered successfully embedded. This 174

is the most simple but sub-optimal algorithm which brings no 175

guarantee to solve the VNE problem. We refer to this algo- 176

rithm throughout as baseline. The authors in [21] formulate the 177

VNE problem as two stage, coordinated node and link map- 178

ping problems, that are both formulated as Mixed ILP (MIP), 179

and then use a rounding relaxation to find near optimal solu- 180

tions by an off-the-shelf solver. This algorithm can, however, 181

be very slow especially when the size of the virtual network 182

(number of nodes and links) is large, and is shown to have a 183

worst case complexity of O(n14 b2 ln b ln ln b) where n is the 184

number of substrate nodes, and b is the number of input bits 185

to the linear program [21], [22]. Several other works adopted 186

a similar approach to [21], formulating the VNE problem as 187

MIP [26], [27]. Formulating the VNE problem as MIP allows a 188

mechanical problem formulation that can address a wide range 189

of objectives such as energy-awareness and fault-tolerance [28], 190

[29], [6], [7]. Heuristic algorithms, though have better exe- 191

cution times than backtracking algorithms, do result in low 192

acceptance rates, due to their sub-optimal embedding nature. 193

Our algorithm, Bird-VNE, follows a constraint processing 194

design methodology and involves a simplified form of back- 195

tracking to bound the resulting approximation-ratio. Our algo- 196

rithm is different from other backtracking based solutions in 197

that it relies on the analysis of the constraint properties of 198

the VNE problem. This analysis allows us to develop con- 199

straint processing algorithms specific to the VNE problem that 200

effectively prune the search space. Unlike other heuristics, 201

Bird-VNE allocates substrate paths directly to the requested 202
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virtual links, rather than separating node and link mapping203

or at most coordinating their allocations. This approach leads204

to a proved approximation-ratio that tightens the Bird-VNE205

performance which was first proposed in our work in [30].206

Virtual Network Embedding and Migration in Wireless207

Networks: Designing VNE algorithms that account for net-208

work dynamics (e.g. wireless link quality instability, links209

failure, node mobility, etc.) attracted little attention [31], [32],210

[33]. The authors in [33] discuss virtualization measures that211

can ensure network embedding feasibility in wireless networks212

under dynamic behaviors. Also in [32], the authors propose to213

use VNE over static wireless multihop networks. Unlike these214

papers, we design our VNE embedding considering wireless215

network dynamics due to substrate nodes that can invalidate216

already embedded virtual networks, hence mandating migrating217

these virtual networks to ensure service continuity.218

Virtual network migration has also attracted the attention219

of some researchers to fix invalid virtual networks [9], [34],220

[35]. The work by Houidi et. al [9] is one example in which221

the authors propose to continuously monitor already embed-222

ded virtual networks and to detect possible events that may223

trigger migration, hence adaptively reembed these virtual net-224

works. Unfortunately virtual network migration is accompanied225

with several challenges and overheads. A recent study demon-226

strates the potential migration challenges including: unavoid-227

able packet loss, slow adaptability of switches to changes, and228

critical deadline time to switch packets to new paths. [10].229

In this paper, we extend our work in [30] to take into account230

the potential virtual network migration overheads by mini-231

mizing the likelihood of migrating already embedded virtual232

networks which arises due to substrate node mobility. Our233

work also matches the recent recommendations in [10] where234

an awareness of the potential migrations during the Virtual235

network embedding phase is needed to avoid the migration236

drawbacks. Unlike existing virtual network migration algo-237

rithms, if we integrate Bird-VNE with a migration solution (e.g.238

as in [9]), that solution shall become activated less frequently.239

III. SYSTEM MODEL AND DESIGN OBJECTIVE240

We abstract and model the substrate (physical) network, con-241

sisting of a set S of n nodes, as an undirected graph � = (S, L)242

where L is the set of substrate links with each link l ∈ L cor-243

responding to a connected pair of nodes s, s′ ∈ S. We assume244

that each node s ∈ S offers a processing capacity C (s), and245

each link l ∈ L offers a bandwidth capacity C (l).246

In what follows, let R be the set of all possible paths between247

all substrate node pairs, where a path P(s, s′) between two248

substrate nodes s and s′ is a sequence of connected links (or249

pairs of nodes) in L . Throughout the paper, P(s, s′) (or some-250

times P) will also refer to the set of all the links constituting251

the path. The path length, |P|, and the bandwidth capacity,252

C (P) = minl∈P C (l), characterize P .253

We also consider that the substrate nodes are mobile, and254

adopt the modified Random Way Point (RWP) mobility model255

proposed in [36] to model the substrate node mobility. This256

model describes the mobility of any substrate node s by an infi-257

nite sequence of quadruples {(Xi−1, Xi , Ci , Wi )s}i∈N, where i258

denotes the i-th movement sample of node s. For every move- 259

ment sample i , s moves from the starting waypoint Xi−1 to the 260

target waypoint Xi with velocity Ci . Upon arrival to the target 261

waypoint Xi , s waits Wi time units. 262

Given the waypoint Xi−1, the node chooses the target way- 263

point Xi randomly such that the included angle θi between the 264

vector Xi − Xi−1 and the abscissa is uniformly distributed in 265

[0, 2π ] and the transition length Zi = ‖Xi − Xi−1‖ is Rayleigh 266

distributed. The angles {θ1, θ2, . . .} are i.i.d., and the transi- 267

tion lengths {Z1, Z2, . . .} of a substrate node s are also i.i.d. 268

with parameter λs and a CDF P(Zi < z) = 1− exp(−λsπ z2), 269

z > 0. 270

Velocities Ci are generally i.i.d. random variables with arbi- 271

trary distributions. Even with randomly distributed velocities, it 272

is sufficient for the purpose of this paper that Ci ≡ Cs , where 273

Cs is a positive constant, equaling the average speed of sub- 274

strate node s. Waiting times {W1, W2, . . .} of a substrate node s 275

are also assumed to be i.i.d. exponential with parameter μs and 276

a CDF P(Wi < w) = 1− exp(−μsw),w > 0 277

The following are important stochastic properties of the 278

modified RWP [36]: 279279

1) Transition time Tr , defined as the time a sub- 280

strate node spends between two successive way- 281

points. For a substrate node s moving with con- 282

stant velocity Cs , the Probability Distribution Function 283

(PDF) of Tr is fTr (t) = 2πλsC2
s t exp(−λsπC2

s t2) and 284

the (Cumulative Density Function) CDF is P(Tr < t) = 285

1− exp(−πλs t2C2), λs > 0. 286

2) Target waypoint distribution. Given Xi−1, the PDF of the 287

target waypoint Xi in polar coordinates is given by 288

fXi (r, θ) = λs exp(−λsπr2). (1)

We also assume that there exists a central node that is respon- 289

sible for managing the substrate network and embedding the 290

virtual network requests. That is, the central node will be 291

receiving multiple different VNE requests in real time, and 292

embedding them one at time. Each VNE request i is to be 293

embedded for τi time units (i.e. τi is VNE i’s service time). 294

A. Virtual Network Embedding 295

A VNE request can be represented as an undirected graph 296

ϒ = (V, E) where V is the set of the virtual nodes and E is the 297

set of the virtual links (i.e. connected pairs of virtual nodes). 298

In what follows, let nv = |V | and mv = |E |. Each node v ∈ V 299

has a geographical location and a requested node stress T (v) 300

(e.g. processing capacity). Similarly, each virtual link e ∈ E 301

has a requested link stress T (e) (e.g. link bandwidth). Table I 302

summarizes the key notations. 303

Suppose that, at a given point in time, the central node has 304

already received and successfully embedded a total of k − 1 305

virtual network requests, ϒ(1), ϒ(2), . . . , ϒ(k−1), and the kth 306

request, ϒ(k), has just arrived. The problem of embedding of 307

the kth virtual network ϒ(k) = (V (k), E (k)) into the substrate 308

network � consists of the following two mappings. 309

Node mapping: maps each virtual node v ∈ V (k) to a dis- 310

tinct substrate node s ∈ S subject to two constraints. One, s 311
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TABLE I
SUMMARY OF NOTATIONS

must be within � distance from v, where � is a parame-312

ter associated with the VNE request. Two, the sum of the313

requested processing capacities of all virtual nodes mapped to314

s (including those mapped from previous VNE requests) must315

not exceed the offered processing capacity of s. Formally, let-316

ting Dist (u, v) denote the Euclidean distance between u and317

v, node mapping consists of finding a node mapping func-318

tion, M
(
V (k)

) : v ∈ V (k) �→M (v) ∈ S, such that M (vi ) =319

M
(
v j

)
iff vi = v j , Dist (M (v) , v) ≤ � for all v ∈ V (k), and320 ∑

v∈∪k
i=1V (i):M(v)=s T (v) ≤ C (s) for all s ∈ S.321

Link mapping: maps each virtual link e ∈ E (k) to a sub-322

strate path P ∈ R subject to two constraints. One, the end323

virtual nodes of e must correspond to the end substrate nodes324

of P . Two, for every l ∈ L , the sum of the requested band-325

width capacities of all virtual links (including those belong-326

ing to previous VNE requests) whose mapped paths go327

through the substrate link l must not exceed the offered band-328

width capacity of l. Formally, link mapping consists of find-329

ing a link mapping function, M
(
E (k)

) : e = (v, v′) ∈ E (k) �→330

M (e) = P(s, s′) ∈ R, such that M (v) = s, M
(
v′

) = s′, and331 ∑
e∈∪k

i=1V (i):l∈M(e) T (e) ≤ C (l) for all l ∈ L .332

Definition 3.1: The embedding of ϒ(k) is said to be feasible333

when both the node mapping and link mapping tasks defined334

above are successful.335

Upon successfully embedding the kth VNE request, the cen-336

tral node updates the locations of the substrate nodes, as well337

as the amounts of the available/remaining substrate resources.338

These are the remaining processing capacity of substrate node339

s, denoted by R(k)(s) = C (s)−∑
v∈∪k

i=1V (i):M(v)=s T (v), the340

remaining bandwidth capacity of substrate link l, denoted341

by R(k)(l) = C (l)−∑
e∈∪k

i=1V (i):l∈M(e) T (e), and the remain-342

ing path capacity of substrate path P , denoted by R(k)(P) =343

minl∈P R(k)(l). Also, upon receiving a new VNE request, the344

central node constructs the mapping domains of the virtual345

nodes and links, which are defined as follows.346

Definition 3.2: The mapping domain Dv of a virtual node347

v ∈ V (k) is defined to be the set of all substrate nodes whose348

Euclidean distances to v are each less than � and whose remain-349

ing processing capacities are each greater than T (v); i.e., Dv =350

{s ∈ S : Dist (s, v) ≤ �, R(k)(s) ≥ T (v)}.351

Definition 3.3: The mapping domain De of a virtual link352

e = (v, v′) ∈ E (k) is defined to be the set of all substrate paths353

whose end nodes (s, s′) are in Dv × Dv′ and whose remain-354

ing capacities are each greater than T (e); i.e., De = {P(s, s′) ∈355

R : (s, s′) ∈ Dv × Dv′ , R(k)(P(s, s′)) ≥ T (e)}.356

Fig. 1. Virtual Network Embedding: node mapping domains are shown in
dashed circles (radius = �) and link mapping domains are shown in dashed
lines parallel to substrate paths.

Fig. 2. Procedure 1 illustration. (a):A Maximum cardinality matching (thick
edges), v is connected to s if s ∈ Dv, (b):Alternating graph with two strongly
connected components. Edges crossing the strongly connected components
cannot be in a maximum matching therefore Procedure 1 prunes them.

Figure 1 shows a VNE example, where the graph on the 357

left side is the virtual network and that on the right side is the 358

substrate network. In this example, the node mapping domains 359

are Da = {A, C}, Db = {G, H}, and Dc = {B, E, F}, 360

the link mapping domains are shown in dashed lines 361

(e.g. D(a,c) = {{(A, B)}, {(A, E)}, {(A, E), (E, B)}, 362

{(A, C), (C, D), (D, E)}, {(A, C), (C, D), (D, E), (E, B)}, 363

{(A, B), (B, E)}}). The VNE solution is given by 364

(i) the node mappings, M (a) = C , M (b) = H , and 365

M (c) = B, and (i i) the link mappings, M ((a, b)) = 366

{(C, D), (D, H)}, M ((a, c)) = {(C, A), (A, B)}, and 367

M ((b, c)) = {(H, E), (E, B)}. 368
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B. Probability of VNE Migration due to Node Mobility369

If a virtual node v is mapped to a substrate node s, a migration370

is triggered when the distance d = Dist (v, s) becomes greater371

than �. More specifically, a migration will not be triggered due372

to s’s mobility if s stays within the circle A(v,�) of diameter373

� centered at v for a period longer than τ , the service time374

of the virtual network request incorporating node v. From (1),375

the probability that the target waypoint of the substrate node is376

within A(v,�) is, for 0 ≤ d ≤ �,377

P(A(v,�)) =
�+d∫

�−d

2π∫

0

fXi (r, θ) rdrdθ,

= exp(−πλs(d −�)2)− exp(−πλs(d +�)2).

Let H(s) be the probability that a migration is triggered due378

to the mobility of substrate node s. H(s) can be approximated379

as the probability that neither the target waypoint is within380

A(v,�) and the total time spent in A(v,�) is ≥ τ nor the tar-381

get waypoint is outside A(v,�) and the transition time to the382

boarder of A(v,�) is≥ τ . Computing the PDF of the total time383

spent in A(v,�) (W + Tr ) requires convolution of the PDFs of384

W and Tr , and strong assumptions on relative values of λs , Cs ,385

and τ , which are outside the control of the embedding algo-386

rithm. To simplify the analysis and the VNE objective design,387

we assume that: i) the time spent within A(v,�) is dominated388

by the waiting time at the target waypoint Xi , ii) if the target389

waypoint is outside A(v,�), the whole transition time is spent390

within A(v,�), and iii) the waiting time of the starting way-391

point has elapsed at the time of the virtual network embedding.392

Since we are mainly interested in evaluating the migration prob-393

ability of a substrate node relative to other substrate nodes, the394

impact of these assumptions is minimal. With this, H(s) can be395

expressed as396

H(s) =1− P(W ≥ τ)P(A(v,�))

− P(Tr ≥ τ)(1− P(A(v,�))) (2)

To minimize the migration overhead, the VNE algorithm397

shall map virtual nodes to substrate nodes with the least398

migration probability, H(s). Unlike traditional virtual network399

embedding and migration algorithms, this requires the esti-400

mation of the transition length and waiting time distribution401

parameters and the use of the estimated parameters to evalu-402

ate the migration probability associated with mapping a virtual403

node v to a substrate node s. The maximum likelihood estima-404

tion of the transition length parameter is λ̂s = 1
4 (Z2)−2, where405

the Z2 denotes the second sample moment of Z , and that of406

the waiting time parameter is μ̂s = 1
W

, where W denotes the407

sample moment of W .408

C. VNE Design Objective409

Our objective is to develop an algorithm that finds feasible410

VNEs while maximizing the embedding profit and minimiz-411

ing the migration overhead. We say that a feasible embedding412

is optimal when its profit is maximum.1 Given a virtual net- 413

work ϒ , the profit is defined as the difference between the 414

revenue generated from embedding ϒ and its embedding cost, 415

i.e. Profit(ϒ) = Revenue (ϒ)− Cost (ϒ). 416

To achieve the VNE design objective, we model the embed- 417

ding cost to capture the cost of node mapping, the cost of link 418

mapping, and the potential cost of migration that may arise as a 419

result of mobility. It is defined as 420

Cost (ϒ) =
∑
v∈V

αT (v)+
∑
e∈E

βT (e)× |M (e)|

+
∑
v∈V

γ (v)H(M (v)), (3)

where α and β denote the cost of processing and bandwidth 421

resource units, respectively. The third term captures the cost of 422

migration due to substrate nodes mobility, where γ (v) is the 423

cost of migrating the virtual node v. Intuitively, γ (v) depends 424

on the amount of resources allocated to v, as well as on v’s 425

connectivity to other virtual nodes. 426

We also define the revenue to be generated from successfully 427

embedding ϒ as 428

Revenue (ϒ) =
∑
v∈V

α′T (v)+
∑
e∈E

β ′T (e) , (4)

where α′ and β ′ denote the price to be charged for each 429

processing and bandwidth unit, respectively. 430

Observe that the embedding revenue in (4) depends only on 431

the virtual network’s requested resources and not on the VNE 432

solution. Also recall that the function H(M (v)) given in (3) 433

represents the probability that a migration of v is triggered due 434

to the mobility of the substrate node, M (v). It follows that max- 435

imizing the profit implies minimizing the embedding cost in (3), 436

which implicitly minimizes the virtual network migration over- 437

head due to mobility. Note that even though, in this paper, the 438

function H(M (v)) captures the likelihood of migration that is 439

due to mobility, it can be used to represent/capture the migration 440

due to any other network dynamics, like link failure. 441

IV. ENFORCING DOMAIN CONSISTENCY 442

The node and link mapping domains, defined in 443

Definitions 3.2 and 3.3, involve coupled constraints. A 444

mapping of a virtual node v to a substrate node s ∈ Dv impacts 445

other nodes and links mapping domains in several ways. First, 446

no other virtual nodes can be mapped to s. Second, we can only 447

map virtual links that have v as an end node to substrate paths 448

that have s as an end node. Moreover, a mapping of a virtual 449

link e to a substrate path P ∈ De restricts other virtual links 450

from being mapped to the substrate paths that share one or 451

more substrate links with P . The shared links become capacity 452

bottlenecks as their bandwidth capacity must be greater than 453

the required bandwidth of not only e but also other virtual links 454

mapped to paths sharing these links. A backtracking algorithm 455

resolves such constraint couplings by mapping virtual nodes 456

1Modeling the objective as a maximization problem allows us to analytically
bound the objective value, as shown later in Section V.
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and virtual links one at a time, and backtracking to previous457

steps when the algorithm encounters an unfeasible mapping.458

A VNE algorithm can avoid backtracking (backtrack-free459

search) if the mapping domains of all virtual nodes and links460

are consistent. Enforcing domain consistency involves prun-461

ing the node and link mapping domains to avoid mappings462

that lead to an unfeasible embedding. Unfortunately, the use463

of the standard consistency propagation algorithms are expo-464

nential in time. This is because the constraint network of the465

VNE problem has a maximum degree that is a function of n,466

while the running time of the standard consistency propaga-467

tion algorithm, to ensure backtrack-free search, is exponential468

in the maximum degree of the constraint network (see [18] for469

details).470

Fortunately, constraint propagation algorithms can take471

advantage of certain properties specific to VNE to prune472

the mapping domains in polynomial time through mapping473

domains consistency enforcement. In this section, we develop474

techniques that exploit these properties to avoid backtracking475

during the VNE search process, and use these techniques to476

design a polynomial time, almost backtrack-free VNE algo-477

rithm. There are two types of mapping domains consistency,478

virtual network topological consistency and substrate paths479

capacity consistency, which are presented next.480

A. Virtual Network Topological Consistency481

We first enforce domain consistency to ensure that the topol-482

ogy of the resulting solution (node and link mappings) matches483

exactly the topology of the virtual network, i.e. topological484

consistent. This requires enforcing the following: (i) substrate485

nodes mapped to the virtual nodes must be all different, (i i) end486

nodes of the substrate paths in link mapping domains must have487

corresponding substrate nodes in the node mapping domains488

and vice versa, and (i i i) substrate nodes in the node mapping489

domains must maintain similar virtual node degrees.490

Alldifferent virtual node mapping constraint: The con-491

straint to map virtual nodes to distinct substrate nodes is known492

as the alldifferent constraint in the constraint programming493

context, and we next state a useful corollary following from494

Reégin’s theorem [37] on the alldifferent constraint.495

Corollary 4.1: A virtual node mapping v ∈ V �→ s ∈ Dv496

leads to an unfeasible embedding if the edge (v, s) does not497

belong to a maximum matching that covers all the virtual nodes498

in the bipartite graph B = (V ∪ S, {(v, s) :M (v) = s}).499

The above corollary can then be exploited to prune away500

nodes and links from the node and link mapping domains,501

and for completeness, we provide in Procedure 1 a brief502

description of such a pruning technique, which we term503

ALLDIFFERENT [37].504

In Procedure 1, a residual graph, B ′, is defined as B ′ =505

(V ∪ S ∪ {t}, M ∪ E2 ∪ E3 ∪ E4) where M is the set of edges506

in the matching directed from virtual nodes to substrate nodes,507

E2 is the set of edges that are not in the matching M and are508

directed from substrate nodes to virtual nodes, E3 is the set of509

all directed edges from substrate nodes in the matching M to a510

dummy node t , and E4 is the set of all directed edges from t to511

substrate nodes that are not in the matching M .512

Procedure 1. AllDifferent

Input: V, Dv∈V

Ensure: Distinct virtual node to substrate node mappings in
O

(
n1.5

v n
)

[37].
1: Construct bipartite graph B = (V ∪ S, {(v, s) :M (v) = s})
2: Find a maximum matching M in B using Hopcroft-Karp

algorithm [38]
3: if |M | < nv then
4: Return no feasible embedding for the given mapping

domains
5: end if
6: Construct the residual graph B ′
7: Compute the strongly connected components in B ′
8: Prune the node mapping domains by deleting any edges

connecting two different strongly connected components
in B ′.

9: return Narrowed virtual node mapping domains

Step 8 in Procedure 1 prunes substrate nodes from the node 513

mapping domains that can never lead to distinct node mappings. 514

Any edge connecting two different strongly connected compo- 515

nents in B ′ corresponds to a mapping from a virtual node v 516

to a substrate node s and does not belong to any maximum 517

cardinality matching, hence it is not possible to find a feasi- 518

ble embedding with distinct node mapping if v was mapped 519

to s. Thus, s must be removed from Dv. The time complex- 520

ity of Procedure 1 is bounded by the time required to find the 521

maximum matching using the Hopcroft-carp algorithm in step 522

2. Since a virtual node can have at most n substrate nodes in 523

its node mapping domain, the number of edges in the bipar- 524

tite graph B cannot exceed nv × n edges. In the worst case, the 525

Hopcroft-carp algotihm requires O(
√

nvnvn) steps, hence the 526

ALLDIFFERENT time complexity is O
(
n1.5

v n
)
. 527

Relational consistency of node and link mapping 528

domains: In the example of Fig. 1, although mapping the vir- 529

tual node c to F is feasible, doing so prevents us from finding 530

a mapping to the virtual link (a, c), as there is no substrate 531

path between F and any substrate node in the node mapping 532

domain Da . 533

From the definition of mapping domains, we can easily 534

observe that if two virtual nodes v, v′ are connected by a virtual 535

link e, then the end points of the substrate paths in the virtual 536

link mapping domain De is a subset of the cross product of 537

the virtual node mapping domains Dv × Dv′ . We can now rely 538

on this simple observation and the definition of the virtual link 539

mapping domains to conclude the following: 540

Lemma 4.2: The node mapping v ∈ V �→ s ∈ Dv leads to 541

an unfeasible embedding if there exists a link e = (v, v′) ∈ E 542

whose link mapping domain De does not contain a path ending 543

at s. Similarly, a virtual link mapping e = (v, v′) �→ P(s, s′) 544

leads to an unfeasible embedding if s �∈ Dv or s′ �∈ Dv′ . 545

Proof: Assume v �→ s and a subsequent mapping of e = 546

(v, v′) such that there is no path P ∈ De ending at s. A mapping 547

of e to any substrate path in De results in mapping multiple 548

virtual nodes to the same substrate node. Also, e = (v, v′) �→ 549
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Procedure 2. Node-Consistency

Input: E, De∈E , Dv∈V

Ensure: Virtual node mapping domains are consistent with
virtual link mapping domains in O(mv n)

1: for all virtual link e = (v, v′) ∈ E do
2: Dv ← Dv ∩ u (De)

3: Dv′ ← Dv′ ∩ v (De)

4: end for
5: return Narrowed virtual node mapping domains

Procedure 3. Link-Consistency

Input: E, De∈E , Dv∈V

Ensure: Virtual link mapping domains are consistent with
virtual node mapping domains in O(mv n2)

1: for all virtual link e = (v, v′) ∈ E do
2: for all substrate path P ∈ De do
3: if u (P) /∈ Dv ∨ v (P) /∈ Dv′ then
4: De ← De \ {P}
5: end if
6: end for
7: end for
8: return Narrowed virtual link mapping domains

P(s, s′) violates the link mapping Definition 3.3 if either s �∈550

Dv or s′ �∈ Dv′ .551 �551

Using Lemma 4.2, we propose two procedures to narrow552

down the node and link mapping domains: Procedures 2 and 3.553

The functions u (De) and v (De) return the sets respectively of554

the first and the second end nodes of all the paths in De. When555

applied to a path P , u (P) and v (P) return the path’s first and556

second end nodes. In each iteration, Procedure 2 prunes the sub-557

strate nodes from the node mapping domains of the end nodes558

of the virtual links, if there is not any substrate path in their559

link mapping domains that also ends at those substrate nodes.560

Since for each virtual link the intersection operator (step 2 and561

3) requires at most O(n) steps as |Dv| ≤ n, then Procedure 2562

has a worst case time complexity of O(mvn).563

Procedure 3 complements Procedure 2 by pruning a substrate564

path from the link domain of a virtual link if the substrate nodes565

ending that path cannot be found in the node mapping domains566

of the virtual nodes ending the virtual link. Since there are at567

most O(n2) paths in the substrate network, the inner loop (step568

2 to 6) of Procedure 3 requires at most O(n2) steps. Hence, the569

worst case time complexity of Procedure 3 is O(mvn2).570

Consistency of virtual and substrate node connectivity:571

The relational consistency of node and link mapping domains572

does not ensure connectivity of the virtual network, nor does it573

imply that the mapping domains can satisfy the virtual network574

connectivity requirements, especially when the node mapping575

domains overlap. To illustrate this, consider a new induced net-576

work of substrate nodes that represents the connectivity of the577

virtual link domains. In this induced network, substrate nodes578

are connected by an edge if there exists a path belonging to any579

link mapping domain that connects them. Induced network is580

defined formally next.581

Fig. 3. Induced network I from substrate network � in Fig. 1. I has one con-
nected components CCI and three supernodes (dashed circles). ζ(CCI ) = 3,
δ(F) = 1 and equals 2 for all other nodes.

Definition 4.1: Given a virtual network ϒ , we define 582

the induced network I of ϒ as the undirected graph 583

I = (SI ⊂ S, L I ) where SI = ∪v∈V Dv and L I = {(s, s′) ∈ 584

S2
I : ∃ P(s, s′) ∈ De for some e ∈ E}. 585

Definition 4.2: For every connected component CCI of I , 586

the set Nv(CCI ) = CCI ∩ Dv corresponding to the virtual 587

node v is called the supernode of v. Let ζ(CCI ) be the num- 588

ber of distinct supernodes in CCI . For every s ∈ SI , we define 589

δ(s) as the number of supernodes connected to s. 590

Fig. 3 illustrates the induced network of the example given 591

in Fig. 1. This induced network is constructed by connecting a 592

pair of substrate nodes in Fig. 3 when there is at least one path 593

connecting them in any link mapping domain. In general, if the 594

mapping v �→ s is feasible, the function δ(s) reflects the degree 595

of the virtual node v, and if a connected component CCϒ of 596

ϒ is mapped to a subset of substrate nodes in �, the function 597

ζ(CCI ) reflects the number of virtual nodes in the connected 598

component CCϒ (size of CCϒ ). 599

Lemma 4.3: Let Degϒ (v) denote the degree of virtual node 600

v. A virtual node mapping v �→ s leads to an unfeasible embed- 601

ding if Degϒ (v) > δ(s) or the size of the connected component 602

of ϒ (CCϒ ) that contains v is greater than the number of 603

supernodes in CCI that contains s. 604

Proof: Assume v �→ s and Degϒ (v) > δ(s), then there 605

exist at least one virtual link e such that there is no substrate 606

path P in De with one of its end substrate nodes equals s. Then, 607

v �→ s does not lead to a feasible embedding from Lemma 4.2. 608

If Degϒ (v) ≤ δ(s) but |CCϒ | > ζ(CCI ), then there must exist 609

an unmapped virtual node v′ ∈ CCϒ , while all substrate nodes 610

s ∈ CCI are already mapped to other virtual nodes in CCϒ 611

including v. Since v′ must be mapped to one substrate node in 612

CCI to maintain connectivity, then mapping v �→ s does not 613

lead to a feasible embedding. 614� 614

The DEGREE-CONSISTENCY procedure (Procedure 4), a 615

direct application of Lemma 4.3, is a pruning technique that 616

narrows down mapping domains through degree consistency 617

enforcement. Its complexity is bounded by computing δ(s) for 618

all the substrate nodes in the virtual node mapping domains, 619

which is O(n2). 620

Running the ALLDIFFERENT, NODE-CONSISTENCY, 621

LINK-CONSISTENCY, and DEGREE-CONSISTENCY proce- 622

dures for one iteration removes some inconsistent mappings 623

from the node and link mapping domains. To remove all 624
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Procedure 4. Degree-Consistency

Input: E, Dv∈V

Ensure: Degree Consistency in O(n2)

1: for all virtual nodes v′ ∈ V do
2: for all substrate nodes s′ ∈ Dv′ do
3: if Degϒ

(
v′

)
> δ(s′) then

4: Dv′ ← Dv′ \ {s′}
5: end if
6: end for
7: end for
8: for all connected component CCϒ ∈ ϒ do
9: for all connected component CCI ∈ I do

10: if |CCϒ | > ζ(CCI ) then
11: Dv′ ← Dv′ \ CCI , ∀v′ ∈ CCϒ

12: end if
13: end for
14: end for
15: return Narrowed virtual nodes domains

Algorithm 1. Topology-Consistency

Input: E, De∈E , Dv∈V

Ensure: Topology Consistency in O(mv n3)

1: repeat
2: NODE-CONSISTENCY(E, De∈E , Dv∈V )

3: ALL DIFFERENT(V, Dv∈V )

4: LINK-CONSISTENCY(E, De∈E , Dv∈V )

5: DEGREE-CONSISTENCY(E, Dv∈V )

6: if ∃ Dv′ = ∅, ∀v′ ∈ V ∨ De = ∅, ∀e ∈ E then
7: return false {T}here exist a virtual node or a virtual

link with an empty mapping domain.
8: end if
9: until No node or link domain is changed

10: return true

the inconsistencies, these procedures must repeatedly be625

run sequentially until no further removal is possible from626

either the node or the link mapping domains. The process627

merging all these four procedures is captured in Algorithm 1,628

which essentially removes inconsistency, and hence avoids629

backtracking, by ensuring topological consistency of the node630

and link mapping domains. This algorithm is referred to as631

TOPOLOGY-CONSISTENCY.632

The complexity of TOPOLOGY-CONSISTENCY is bounded633

by the number of times we run the procedure LINK-634

CONSISTENCY in step 4. This implies a complexity of635

O(mv n2) in each iteration. In the worst-case scenario,636

TOPOLOGY-CONSISTENCY removes one substrate node from637

one node mapping domain and this corresponds to at least one638

removal of one substrate path from link mapping domains.639

Hence, it requires at most n iterations to remove all the sub-640

strate nodes from one node mapping domain, thus returning641

false.2 Thus, the complexity of TOPOLOGY-CONSISTENCY is642

2A more efficient implementation checks the condition in step 6 every time
any procedure removes a substrate node/link from a mapping domain.

O(mv n3). But since the maximum number of virtual nodes is 643

the number of substrate nodes; i.e., nv ≤ n, then the complexity 644

of TOPOLOGY-CONSISTENCY is O(n5). 645

B. Capacity Disjoint Paths Consistency 646

We now study the second mapping domain consistency 647

type, substrate paths capacity consistency. Let us refer again 648

to the example given in Fig. 1 and consider the link 649

mapping sequence (a, b) �→ P(C, H) = {(C, D), (D, H)} and 650

(a, c) �→ P(C, E) = {(C, D), (D, E)}. The remaining band- 651

width of the substrate link (C, D), R ((C, D)) = 15, is less than 652

the sum of the links’ requested bandwidth capacities, which 653

is T ((a, b))+ T ((a, c)) = 24. Hence, this mapping sequence 654

is unfeasible. Clearly, a VNE algorithm will not backtrack if 655

all substrate paths in the link mapping domains are disjoint 656

(if topological consistency is enforced). However, construct- 657

ing the link mapping domains from disjoint paths results in a 658

degradation of the VNE acceptance rate (such a rate reflects the 659

number of virtual networks that can be embedded into the sub- 660

strate network), as well as in an increase in the embedding cost. 661

Our proposed embedding algorithm does not force paths to be 662

disjoint so as to increase the acceptance rate and decrease the 663

embedding cost. Instead, our technique relies on the concept of 664

capacity disjoint which we formally define next. 665

Definition 4.3: For every substrate link l, let D̄e(l) = {P ∈ 666

De : P � l} and Ē(l) = {e ∈ E : D̄e(l) �= ∅}. We say that 667

the paths in R′ =⋃
e∈Ē(l) D̄e(l) are capacity disjoint iff the 668

remaining bandwidth capacity of l is greater than the sum of 669

the requested bandwidth capacities of all the virtual links in 670

Ē(l). Formally, the paths in R′ are said to be capacity disjoint 671

iff R(k)(l) ≥∑
e∈Ē(l) T (e). 672

Lemma 4.4: A virtual link mapping e �→ P leads to an 673

unfeasible embedding if all the substrate paths in every 674

unmapped virtual link’s mapping domain are not capacity 675

disjoint with P . 676

Proof: If a virtual link ei �→ Pi and in a next mapping step 677

of virtual link e j , all paths in De j are not capacity disjoint with 678

Pi , then any mapping e j �→ Pj ∈ De j will result in at least one 679

substrate link with negative remaining bandwidth. 680� 680

Theorem 4.5: The proposed TOPOLOGY-CONSISTENCY 681

algorithm ensures a backtrack-free search if all substrate paths 682

in all link mapping domains are capacity disjoint. 683

Proof: It follows from Lemmas 4.2, 4.3, and 4.4 and from 684

Corollary 4.1. 685� 685

An algorithm that aims to ensure a backtrack-free search may 686

remove substrate paths that are not capacity disjoint from the 687

virtual links mapping domains. Although such an algorithm 688

will have a complexity advantage because it is backtrack-free, it 689

degrades the acceptance rate and the cost as it will remove sub- 690

strate paths that can actually lead to feasible or minimum cost 691

embedding. Apparently, capacity disjoint paths condition is 692

required only for substrate paths that are actually in an incurred 693

embedding. In order to overcome the complexity problem 694

while still minimizing the cost and maximizing the accep- 695

tance rate, we propose Algorithm 2 (CAPACITY-DISJOINT), 696



IE
EE

Pr
oo

f

ABDELWAHAB et al.: EFFICIENT VIRTUAL NETWORK EMBEDDING WITH BACKTRACK AVOIDANCE 9

Algorithm 2. Capacity-Disjoint

Input: E, L , De∈E , Dv∈V

Ensure: Substrate paths are capacity disjoint if they are likely
to coexist in an incurred embedding in O(m mv n3).

1: for all l ∈ L : ∃ ps ∈ De∈E , l ∈ P do
2: repeat
3: NODE-CONSISTENCY(Ē(l), D̄e ∈ Ē(l), D̄v ∈ V̄ (l))
4: ALL DIFFERENT(V̄ (l), D̄v ∈ V̄ (l))
5: LINK-CONSISTENCY(Ē(l), D̄e ∈ Ē(l), D̄v ∈ V̄ (l))
6: until No node or link sub-domain is changed
7: R′ (l)← R (l)
8: for all e ∈ Ē(l) ordered ascendingly by |De| do
9: if D̄e(l) �= ∅ then

10: R′ (l)← R′ (l)− T (e)
11: if R′ (l) < 0 then
12: De ← De \ D̄e(l)
13: end if
14: end if
15: end for
16: end for
17: if ∃ De = ∅, ∀e ∈ E then
18: return false
19: end if
20: return true

which ensures that substrate paths in link mapping domains697

are capacity disjoint if they are likely to coexist in an incurred698

embedding.699

The key idea of the CAPACITY-DISJOINT algorithm is to700

determine the worst case scenario in which the intersecting sub-701

strate paths in R′ can become simultaneous mappings of virtual702

links in Ē(l). These paths are found by applying topological703

consistency procedures, discussed earlier, on the subsets of link704

and node mapping domains D̄e ∈ Ē(l), D̄v ∈ V̄ (l) (Steps 1705

to 6), where V̄ (l) ⊂ V is the set of end virtual nodes of vir-706

tual edges in Ē(l) and D̄v(l) ⊂ Dv is the set of substrate node707

mappings deduced from R′.708

The CAPACITY-DISJOINT algorithm checks if all paths that709

are common to every substrate link l are capacity disjoint. If710

not, the algorithm removes first the substrate paths D̄e ∈ Ē(l)711

from the domain of the virtual link(s) e that has the largest link712

mapping domain size |De| (Step 7 to 16). This is to minimize713

the chances of ending up with an empty link mapping domain,714

thus maximizing the acceptance rate. Although it is clear that715

CAPACITY-DISJOINT algorithm does not eliminate backtrack-716

ing entirely, it substantially reduces its likelihood of occurrence.717

We evaluate the likelihood of backtracking empirically in718

Section VI.719

The CAPACITY-DISJOINT algorithm uses similar steps to720

determine possible simultaneous intersecting paths (Steps 2 to721

6) for each substrate link l that intersects with some paths.722

Although these steps are performed on a subset of the map-723

ping domains and it is unlikely to encounter the situation that724

every substrate link is a common link for all paths (as the sub-725

strate network will almost look like a path), the complexity of726

CAPACITY-DISJOINT is bounded by O(m mv n3). This can be 727

expressed as O(n7) if both the substrate and virtual networks 728

are complete graphs and have the same number of nodes n. 729

V. APPROXIMATE PROFIT MAXIMIZATION 730

TOPOLOGY-CONSISTENCY and CAPACITY-DISJOINT algo- 731

rithms, discussed in the previous section, reduce the search 732

space and improve the running time of backtracking search. 733

However, even in the case of backtrack-free search, an opti- 734

mal optimization algorithm, like branch and bound, may still 735

traverse the whole search space through brute-force [18]. If 736

we assume that the VNE problem is backtrack-free, it can be 737

viewed as the maximum weight matching problem in a bipar- 738

tite graph. The bipartite graph in this case is the set of virtual 739

links on one side of the bipartite graph connected by weighted 740

edges to the set of substrate paths on the other side and the edge 741

weight is the profit attained by mapping a virtual edge to a sub- 742

strate path. From (3) and (4), the profit of mapping a virtual 743

edge e = (v, v′) to a substrate path P = (s, s′) is given by 744

Profit(e, P) =(α′ − α)(T (v)+ T
(
v′

)
)

+ (β ′ − β × |P|)T (e)

− γ (v)H(s)− γ (v′)H(s′).

However, a direct application of conventional maximum weight 745

matching algorithms (e.g. Hungarian methods or Edmond’s 746

methods) is non-trivial. Fortunately, greedy approximations to 747

the maximum weight matching are applicable, but with some 748

needed modifications to enforce domain consistency and to ver- 749

ify solution feasibility in every step. We use this observation to 750

propose Algorithm 3, which finds a VNE such that the incurred 751

embedding profit is at most as half as the optimal profit in an 752

attainable special case and at least 1
nv

in general. 753

Our proposed VNE algorithm, termed BIRD-VNE, starts by 754

enforcing the mapping domains consistency using TOPOLOGY- 755

CONSISTENCY and CAPACITY-DISJOINT. It then searches for 756

an embedding by mapping the virtual links with the small- 757

est link mapping domain sizes and greatest demands (Line 758

9) first to the substrate paths in their domains with the high- 759

est profit (Line 10). After mapping each virtual link (mapping 760

step), the algorithm ensures feasible embedding according to 761

Definition 3.1 (Line 20). If any mapping step results in unfea- 762

sible embedding, the algorithm starts over the mapping process 763

from the first virtual link by assigning it to an unattempted map- 764

ping in its domain until a feasible embedding is found or all 765

mappings of the first link are tried. 766

This algorithm still involves a simplified form of backtrack- 767

ing. The algorithm always backtracks to the first virtual link 768

mapping step. In this case, the total number of backtracks is 769

bounded in the worst case by the size of the smallest link map- 770

ping domain. Typically, the consistency enforcing algorithms 771

reduce the number of backtracks significantly as we will show 772

empirically in Section VI. The following theorem bounds the 773

worst case performance of BIRD-VNE. 774

Theorem 5.1: In the worst case, BIRD-VNE is an 775

O( 1
nv

)-approximation to the optimal embedding profit, and 776
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Algorithm 3. BIRD-VNE

Input: ϒ = (V, E), � = (S, L) Input:
Require: D∀e∈E , D∀v∈V

Ensure: Embedding ϒ �→ � in O(m mv n3)

1: SolutionExist← TOPOLOGY-CONSISTENCY

2: SolutionExist← SolutionExist and CAPACITY-DISJOINT

3: SolutionExist← SolutionExist and TOPOLOGY-
CONSISTENCY

4: if not SolutionExist then
5: return ”Reject virtual network.”
6: end if
7: repeat
8: M (e)← ∅, ∀e ∈ E
9: for all e = (v, v′) ∈ E ordered ascendingly by |De|, and

by T (e) do
10: for all P = (s, s′) ∈ De ordered descendingly by

Profit(e, P) do
11: if e is the first virtual link in the order of E then
12: De ← De \ P
13: end if
14: if e �→ P result in a feasible embedding then
15: M (e)← P , M (v)← u (P), M

(
v′

)← v (P)

16: break
17: end if
18: end for
19: end for
20: until Feasible embedding is found or all first virtual link

mapping domain are attempted.
21: if No feasible embedding is found then
22: return ”Reject virtual network.”
23: end if
24: return M (e) , ∀e ∈ E and M (v) , ∀v ∈ V

only a 1
2 -approximation if there are, on average, nv paths of777

the same length between any two substrate nodes.778

Proof: Let x be the profit of mapping the first virtual link779

e to the highest profitable path P in its link mapping domain780

in a single iteration (step 7). The following potential mappings781

become invalid and will never be attempted by the algorithm782

until a backtracking to step 7 is decided: (i) mapping e to other783

substrate paths in its link mapping domain except P , (i i) map-784

ping any other virtual link to P , (i i i) mapping another virtual785

link e′ that shares one of its end virtual nodes with e with any786

other substrate paths except those that also share the same end787

substrate node with P . Let d be the maximum degree of the788

virtual network, the worst case will occur if we have exactly789

d paths of shortest length (highest profit) and the algorithm790

invalidates at most d mappings of the optimal mappings (at791

most in the first mapping). In this case, the sum of profits of792

the invalidated mapping cannot exceed dx . Since the profit is793

non-negative, the approximation ratio is O( 1
d ) or more conser-794

vatively O( 1
nv

). However, if there are nv redundant substrate795

paths of the same length between any two substrate nodes,796

BIRD-VNE invalidates at most two mappings that may be opti-797

mal. This can be repeated for at most 1
2 mv of the steps (9 to 19)798

and the sum of the profits of the invalidated mappings cannot 799

exceed 2x . In this later case, the approximation ratio is 1
2 , which 800

proves the theorem. 801� 801

1) Scalability and Implementation Consideration: The 802

complexity of BIRD-VNE is analyzed as follows. The main 803

loop (Step 10 to 25) has mv iterations. In the worst-case sce- 804

nario, for every virtual link, it checks the feasible mappings of 805

n2 paths. Then, the complexity of BIRD-VNE is bounded by 806

the CAPACITY-DISJOINT complexity O(m mv n3) and can be 807

written as O(n7). Although BIRD-VNE is polynomial in time 808

and scales much better than the state-of-the art algorithms, its 809

O(n7) complexity may prevent applying it to very large scale 810

networks. Fortunately, this complexity bound can be improved 811

through simple but effective implementation improvements. 812

The two procedures, NODE-CONSISTENCY and LINK- 813

CONSISTENCY, can be easily implemented in parallel by 814

implementing these algorithms on exactly mv processing 815

agents. In this case, the NODE-CONSISTENCY complex- 816

ity is reduced to O(n) while the LINK-CONSISTENCY 817

complexity is reduced to O(n2). It then follows that the 818

complexity of TOPOLOGY-CONSISTENCY is bounded by 819

running ALLDIFFERENT at most n times, hence it is 820

O
(
n2.5

v n
)
. Similarly, the CAPACITY-DISJOINT complexity is 821

also bounded by running ALLDIFFERENT at most m times, 822

hence it is O
(
n2.5

v m
)
. The complexity of CAPACITY-DISJOINT 823

bounds the overall complexity of BIRD-VNE to O
(
n2.5

v m
)
. 824

We can also improve the actual approximation ratio in prac- 825

tice by repeating step 7 to 19 until all virtual link mappings 826

of the first virtual link are attempted (i.e. remove steps 14 to 827

17) while maintaining all the feasible solutions. We then pick 828

the solution with the maximum total profit as our solution and 829

the other solutions as backup solutions in case a migration is 830

needed. This trick reduces the gap between the evaluated total 831

profit and the optimal solution when compared to the worst case 832

scenario, and preserves the same worst case complexity at the 833

expense of the actual execution time. 834

2) Virtual Network Migration Consideration: The pro- 835

posed algorithm, BIRD-VNE, can still be used, with simple 836

modification, if virtual network migration is needed. If the pre- 837

viously discussed implementation in Section V-1 is adopted, we 838

end up with multiple solutions to the same virtual network that 839

can be quickly evaluated for feasibility, so as to choose one of 840

these VNE solutions for migrating the virtual network instead 841

of evaluating BIRD-VNE again from the beginning. Moreover, 842

the following simple procedures can be carried out to perform 843

migrations to individual nodes and links instead of migrating 844

the whole virtual network. 845

Consider the case that a substrate path P is not capable of 846

meeting the required demand of a virtual link e. This situation 847

can happen, for example, in case of a link failure or congestion 848

along the path, or failure of one or both end substrate nodes of 849

P . In this case, we can immediately find another backup path 850

(and substrate nodes if necessary), P ′, in De {P} that has the 851

largest profit and is also feasible with the current embedding 852

M
(
e′

)
, ∀e′ ∈ E {e}. This algorithm is as simple as running 853

the steps from 9 to 19 in BIRD-VNE, while replacing De with 854

De {P} for only the virtual links that are impacted by the failure 855
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of P . If this fails, the whole embedding needs to be performed856

again by running BIRD-VNE.857

VI. NUMERICAL RESULTS858

The effectiveness of the proposed algorithm, BIRD-VNE, is859

assessed in terms of the metrics suggested in [39]:860860

1) Acceptance rate, defined as the ratio of the total accepted861

virtual networks to the total requested virtual networks.862

2) Revenue to Cost ratio (R/C), defined as R/C =863 ∑
ϒ Revenue (ϒ)/

∑
ϒ Cost (ϒ).864

3) Average node and link utilization, defined as
∑
s∈S

R(s)−C(s)
nC(s)865

and
∑
l∈L

R(l)−C(l)
mC(l) , respectively.866

In addition, we use the following metrics to assess the effec-867

tiveness of BIRD-VNE vis-a-vis of its ability to avoid back-868

tracking, limit network migration, and achieve optimal VNE by869

comparing it to the optimal Brand and Bound technique.870870

1) Average/Maximum Approximation ratio, defined as the871

average/maximum ratio of the cost achieved by BIRD-872

VNE to that achieved by Branch and Bound.873

2) Backtrack-free ratio, defined as the ratio of the total874

number of times in which BIRD-VNE finds a feasible875

embedding at the first attempt of the first virtual link876

mapping to the total number of accepted requests.877

3) Migration ratio, defined as the ratio of the total number of878

virtual network migrations to the total number of accepted879

requests.880

A. Simulation Setup881

We compare the performance of BIRD-VNE with two exist-882

ing algorithms, Randomized Virtual Network Embedding with883

shortest path link mapping (RVINE-SP) and with multicom-884

modity flow link mapping (RVINE-MCF) [21], which are885

integrated to an event-driven simulator that we developed .3 We886

also compare the performance achievable under BIRD-VNE to887

that achievable under the basic Greedy algorithm, referred to as888

BASELINE and proposed in [20].889

The simulator generates � and ϒ according to Erdös−Rènyi890

model. Similar to [21], � has 0.5 probability of connect-891

ing any two substrate nodes, n = 50, C (s) ∼ U (0, 50),∀s ∈ S892

and C (l) ∼ U (0, 50),∀l ∈ L . Substrate nodes are placed ran-893

domly on a (25× 25) grid. The mean inter-arrival time of894

virtual networks ranges from 5 to 25 networks per time unit,895

and the average service time is set to τ = 1000 time units.896

Each pair of virtual nodes in ϒ is connected with 0.5 prob-897

ability, nv ∼ U (1, 10), � = 15, T (v) ∼ U (0, 20),∀v ∈ V and898

T (e) ∼ U (1, 50),∀e ∈ E . The routing of the substrate network899

R is computed once in the prepossessing initialization step900

using the all shortest path algorithm. All the cost parameters901

α, β, γ are set to unity in the simulations.902

We simulate the mobility of substrate nodes by setting903

τ = 50, and the average waiting time at each waypoint to904

μ−1
s = 100 time units for all the substrate nodes. All substrate905

3Implementations of RVICE-SP and RVINE-MCF are online available at
http://www.mosharaf.com/ViNE-Yard.tar.gz

Fig. 4. Backtrack-free ratio of BIRD-VNE shows the effectiveness of search
space pruning.

Fig. 5. Experimental computation time CDF of BIRD-VNE shows its compu-
tation effectiveness.

nodes travel with the same constant speed Ci = 5 speed units, 906

and the average transition length of all the nodes is 5 length 907

units (i.e. λ2
s

2 = 5). We consider a wireless network infrastruc- 908

ture in which the connectivity between the substrate nodes 909

are not impacted by their mobility since fixed clones of the 910

mobile nodes actually execute the virtual network requests in 911

a geographically distributed cloud infrastructure as discussed 912

in Section VII and as illustrated in Fig. 11. 913

B. Performance Evaluation 914

1) BIRD-VNE Improves the Acceptance Rate: Fig. 8 915

shows that BIRD-VNE has a 15% better acceptance rate when 916

compared to the other algorithms. The improvement in the 917

acceptance rate is a direct result of Theorem 4.5 and is consis- 918

tent for different loads. BIRD-VNE is likely to find a feasible 919

embedding once it passes the consistency enforcement steps 920

1 to 6. 921

On the other hand, RVINE-SP and RVINE-MCF first rely 922

on LP relaxations to solve the non-convex MIP problem, and 923

then round the solution of the relaxation to the nearest inte- 924

ger. This way, RVINE-SP and RVINE-MCF may unnecessarily 925

reject a VNE request by falsely concluding that it cannot be 926

embedded. Moreover, when there is no solution, RVINE-SP and 927

RVINE-MCF tend to spend a significant amount of time search- 928

ing for solutions before eventually rejecting unfeasible requests 929

as shown in Fig. 4-b. 930

2) BIRD-VNE Avoids Backtracking: Fig. 4-a shows the 931

backtrack-free ratio of BIRD-VNE. BIRD-VNE is unlikely to 932

encounter a backtracking, and finds a feasible solution from the 933

first attempt. In this simulation setup, the backtrack-free ratio 934



IE
EE

Pr
oo

f

12 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS

Fig. 6. BIRD-VNE Maximum and average approximation Ratio (optimal is
branch and bound).

Fig. 7. Revenue to Cost ratio for α = β = γ = α′ = β ′ = 1.

is greater than 80% regardless of the arrival rate. This demon-935

strates the effectiveness of TOPOLOGY-CONSISTENCY and936

CAPACITY-DISJOINT in pruning the search space by remov-937

ing the virtual links and nodes that can cause backtracking.938

Moreover, in large-scale networks where link bandwidth is not939

a bottleneck, it is possible to ensure a 100% backtrack-free940

search by ensuring that all link mapping domains are capacity941

consistent according to Theorem 4.5.942

3) BIRD-VNE Minimizes and Bounds the Average Cost:943

The approximation ratio is assessed by comparing the cost944

achieved by BIRD-VNE to the optimal cost achieved by branch945

and bound for a substrate network with 30 nodes. As shown946

in Fig. 4-c, the cost achieved by BIRD-VNE is, on average,947

only about 5% higher than the optimal cost (i.e., average ratio =948

about 1.05). But the maximum cost can reach up to 70% higher949

than the optimal cost (maximum ratio = about 1.7).950

4) BIRD-VNE Results in the Best Revenue to Cost Ratio:951

The revenue to cost ratio reflects the average profit of BIRD-952

VNE, and is 20% better than RVINE-MCF as shown in \figure-953

name Fig. 7. This is expected for two reasons. First, BIRD-VNE954

is a 1
2 -approximation of the optimal cost, which contributes955

to the R/C ratio by minimizing the cost. Second, we have956

shown numerically that BIRD-VNE has the highest acceptance957

rate, which directly reflects on the total generated revenue by958

accepting as many virtual network requests as possible.959

5) BIRD-VNE Link Utilization is Better: The average link960

utilization achievable under BIRD-VNE is comparable to that961

achievable under RVINE-MCF when considering various inter-962

arrival rates, as shown in Fig. 10. However, for higher loads,963

the average link utilization of BIRD-VNE is less that that of964

RVINE-MCF, which confirms our earlier argument stating that965

Fig. 8. Acceptance rates of BIRD-VNE under different arrival rates.

Fig. 9. Mobility-aware Bird-VNE improves the migration ratio.

Fig. 10. Average substrate node and link utilization.

BIRD-VNE tends to allocate shorter substrate paths to the vir- 966

tual links with higher demands. On the other hand, the average 967

node utilization achieved by BIRD-VNE is generally greater 968

than that achieved by RVINE-MCF due to the better acceptance 969

rates. 970

6) BIRD-VNE Reduces the Migration Ratio: Fig. 9 shows 971

the effectiveness of BIRD-VNE in minimizing the migration 972

ratio. In this figure, Mobility-Aware Bird-VNE corresponds 973

to γ (v) = 1 and Bird-VNE corresponds to γ (v) = 0. Even 974

when the migration cost is low (i.e., γ (v) = 1), BIRD-VNE 975

can reduce the migration ratio by at least 10%. This gain can 976

be increased by increasing the migration cost (γ ), which is a 977

design trade-off. Observe that because of mobility, about 50% 978

of the accepted virtual networks face migrations. 979

VII. DISCUSSION AND PRACTICAL CONSIDERATIONS 980

Several architectural and practical considerations pertain to 981

the discussed virtual network network embedding solution. We 982

discuss some possible approaches to address these challenges. 983
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Fig. 11. Architecture: Mobile nodes are connected through wireless infrastruc-
ture with integrated compute resources that host clones of mobile nodes and
actually implement the requested virtual networks.

Topology changes: Substrate nodes are generally resources984

limited (e.g. smart-phones) and mobile which results in net-985

work topology changes that require updating all the substrate986

paths computations following any topology change. Updating987

all paths, R, can be addressed architecturally or algorihmically.988

Fig. 11 shows a possible architecture utilizing the emerging989

mobile edge computing to address this challenge by augment-990

ing a wireless network infrastructure with distributed cloud991

resources. Each mobile node replicates its data and states (e.g992

sensors measurements, locations) to a corresponding clone that993

is proximate to the node (i.e. at the access point or cellu-994

lar site). Clones are the actual entities that shall execute the995

virtual network requests. Cloning the mobile nodes provides996

several advantages over executing the virtual networks directly997

on the mobile nodes including: (i) providing manageable and998

salable processing and link capacity according to virtual net-999

works demands, (i i) facilitating energy conservation of the1000

actual mobile nodes which may be power limited (e.g. sen-1001

sor nodes), (i i i) preventing excessive latency compared to1002

replicating nodes’ data in distant data-centers, and (iv) pre-1003

venting substrate network topology changes due to mobility.1004

Unfortunately, the architecture shown in Fig. 11 is not sufficient1005

to prevent updating R in some cases such as back-hauling links1006

or node failures or changes in clones deployment. Fortunately1007

updating the set of all paths R is not as expensive as comput-1008

ing it from scratch and has remarkable long research history.1009

The authors in [40], for example, study the combinatorial prop-1010

erties of graphs that can be used to update all shortest paths1011

in dynamic networks in O(n2 log3 n) which is not a dominant1012

factor in the complexity analysis of our proposed techniques as1013

discussed in Section IV and Section V.1014

Mobility Model: the general RWP model cannot cap-1015

ture exact mobility patterns especially in walking scenarios.1016

However, the recent modifications of the RWP model in [36]1017

captures the mobility patterns almost exactly at the accuracy of1018

cell level in 3GPP cellular networks which is suitable for sev-1019

eral applications such as virtual sensor networks, and virtual1020

content delivery networks. If a finer grain location resolution1021

(e.g. locations of pedestrians at few meters error) were needed1022

by some applications, the RWP model may fail to capture the1023

exact mobility trajectory. In such cases, one can employ other1024

mobility models that characterize smooth movements of mobile1025

nodes (see for e.g. the Semi-Markov Smooth model [41]), or 1026

employ model independant trajectory tracking methods (e.g. 1027

Kalman filtering) to track nodes locations. Such methods are 1028

outside the scope of this paper. 1029

Multipath adoption: If multipath were allowed for mapping 1030

virtual links, we conjecture improvements particularly in the 1031

acceptance rate [11]. First, multipaths shall allow online path 1032

optimization, and traffic splitting for highly demanding virtual 1033

links. Second, multipaths shall increase link utilization mak- 1034

ing the most benefits of the network. Third, multipaths shall 1035

facilitate a better sharing of mobile wireless nodes. Finally, 1036

multipaths shall allow balancing the substrate network traffic 1037

used by the virtual networks and already existing services. 1038

VIII. CONCLUSION 1039

The coupled constraints in the virtual network embedding 1040

problem make it intractable. Instead of over-provisioning the 1041

physical network and splitting virtual links across multiple 1042

paths, we propose VNE techniques that effectively prune the 1043

search space, thereby reducing the execution times by avoid- 1044

ing backtracking, while not compromising the quality of the 1045

obtained VNE solutions, expressed in terms of acceptance 1046

rates. Our simulations show that the likelihood of perform- 1047

ing a backtrack-free search is greater than 80%, confirming 1048

the effectiveness of the proposed pruning techniques. These 1049

techniques are then exploited to design a polynomial-time, 1050
1
2 -approximation VNE algorithm. We show analytically and 1051

empirically that the proposed algorithm outperforms MIP- 1052

based algorithms in terms of the revenue to cost ratio and the 1053

acceptance rate while minimizing the migration cost arising due 1054

to the mobility of physical nodes. 1055
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Abstract—We develop an efficient virtual network embedding5
(VNE) algorithm, termed BIRD-VNE, for mobile wireless net-6
works. BIRD-VNE is an approximation algorithm that ensures7
a close to optimal virtual embedding profit and acceptance rate8
while minimizing the number of virtual network migrations result-9
ing from the mobility of wireless nodes. BIRD-VNE employs a10
constraint satisfaction framework by which we analyze the con-11
straint propagation properties of the VNE problem and design12
constraint processing algorithms that efficiently narrow the solu-13
tion space and avoid backtracking as much as possible without14
compromising the solution quality. Our evaluation results show15
that the likelihood that BIRD-VNE results in backtracking is small,16
thus demonstrating its effectiveness in reducing the search space.17
We analytically and empirically verify that BIRD-VNE outper-18
forms existing VNE algorithms with respect to computational19
efficiency, closeness to optimality, and its ability to avoid potential20
migrations in mobile wireless networks.21

Index Terms—Mobile wireless networks, virtual network22
embedding, remote sensor networks.23

I. INTRODUCTION24

V IRTUAL network embedding in wireless networks can25

have a pivotal role in several areas including: sensor26

network virtualization [1], vehicular cloud [2], mobile edge27

computing [3], [4], [5], network based and geographically dis-28

tributed cloud environment [6], [7], and cyber foraging [8].29

By means of virtualization, it is possible to embed, with low30

cost, large-scale virtual sensor networks onto sensor-equipped31

physical devices (e.g. smart-phones, autonomous vehicles) so32

as to perform specific sensing tasks and autonomous, agile, and33

timely decisions in a distributed manner. Such virtual networks34

can support several applications such as: urban sensing, intel-35

ligent transportation, terrain exploration, disaster recovery, and36

surveillance. In addition, VNE can be used to enable virtual37

content delivery in wireless networks near the network edge.38

VNE algorithms can then deploy surrogates of services (e.g.39
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networked virtual servers) in proximity to users to improve their 40

perceived latency, where geographical locations and mobility 41

patterns of users are crucial parameters to maintain a target con- 42

tent delivery quality. In a more general context, virtual network 43

embedding in wireless networks can enable effective distributed 44

processing of real-time content and allow agile decision making 45

from data at its “actual sources”. 46

The focus of this paper is on the design of virtual network 47

embedding (VNE) techniques that enable on-demand mapping 48

of virtual networks onto substrate mobile wireless networks. 49

More specifically, the VNE problem consists of mapping the 50

virtual nodes to substrate nodes and the virtual links to sub- 51

strate paths in such a way that all resource (CPU, storage, and 52

bandwidth) requirements of the virtual network are met. Here, 53

a virtual network consists of a set of virtual nodes, each requir- 54

ing CPU processing capability and storage capacity to process 55

data in a predefined geographical area, and a set of virtual links 56

connecting these virtual nodes, each requiring some bandwidth 57

capacity. The substrate network, on the other hand, consists of 58

a large set of mobile wireless nodes, each having sensing and 59

Internet-access capabilities. 60

Unlike wired networks, mobile wireless networks’ dynam- 61

ics (e.g. node mobility, link instability) create new challenges 62

that require new architectural and algorithmic considerations 63

when it comes to enabling VNE. Mobility of substrate nodes, 64

in particular, may invalidate the operations of virtual networks 65

as nodes move away from desired locations of some virtual 66

nodes. Such a mobility can also change the connectivity of the 67

substrate nodes–and so can the substrate paths–that are already 68

used by virtual links, making them insufficient or invalid. In 69

such cases, VNE solutions shall remap (migrate) invalid virtual 70

networks to other substrate nodes and paths [9]. As migrations 71

incur a significant overhead [10], we shall design architec- 72

tural and algorithmic solutions that can effectively capture node 73

mobility and topology changes, and minimize virtual network 74

migrations due to nodes mobility while not compromising the 75

effectiveness of VNE techniques. 76

The effectiveness of the VNE techniques can essentially be 77

captured through three metrics: computation time (the time it 78

takes to solve a VNE instance), embedding cost (the amount 79

of overhead incurred and resources needed to solve a VNE 80

instance), and acceptance rate (the ratio of successfully solved 81

VNE instances to the total number of instances). Therefore, 82

in addition to meeting the resource requirements, the aim of 83

VNE techniques is to reduce the computation time, minimize 84

the embedding cost, and increase the acceptance rate. The chal- 85

lenge, however, is that these three performance goals are often 86

1536-1276 © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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conflicting with one another. For instance, backtracking algo-87

rithms can, in general, find optimal solutions, but they do so in88

exponential time [11]. Other heuristic approaches, on the other89

hand, can find solutions in polynomial time, but these solutions90

are sub-optimal, thus leading to low acceptance rates [12].91

In this paper, we develop VNE techniques that strike a92

good balance between these three performance goals by find-93

ing near optimal solutions in polynomial times (short execution94

times) while yielding high embedding profits (minimal embed-95

ding costs) and high acceptance rate. The proposed approach96

takes also into account potential virtual networks migrations97

due to substrate nodes mobility in its objective definition to98

minimize the anticipated overhead associated with migrating99

invalid virtual networks. Our proposed approach consists of100

designing algorithms that are based on backtracking techniques101

so as to ensure good solution optimality, while reducing the102

computational complexity and the embedding cost by exploit-103

ing the constraint propagation properties of the VNE problem.104

Essentially, they reduce the embedding complexity and cost by105

narrowing down the search space and avoiding backtracking as106

much as possible without compromising the solution quality107

so as to maintain high acceptance rates and minimize poten-108

tial virtual network migrations. To recap, our contributions in109

this paper are twofold.110110

• Developing pruning techniques that reduce the embed-111

ding time and cost significantly by reducing the search112

space. These techniques eliminate the need for back-113

tracking during the embedding solution search, thereby114

enhancing the embedding time without compromising the115

optimality of the obtained VNE solutions.116

• Developing techniques that account for the VNE embed-117

ding cost, expressed in terms of the amount of resources118

needed and the migration overhead incurred to success-119

fully embed a virtual network, to devise VNE algorithms120

with minimal embedding costs and minimal potential121

virtual network migrations.122

The rest of the paper is organized as follows. The next section123

surveys the existing techniques that are related to our pro-124

posed VNE approach. In Section III, we state and formulate125

the VNE problem. We begin by modeling the virtual and sub-126

strate networks and the substrate node mobility, and by defining127

the node and link mapping steps to be performed during the128

VNE process. We then describe the overall design goals of the129

VNE technique. In Section IV, we present our pruning tech-130

niques proposed to reduce the embedding search space. We131

then, in Section V, use these pruning techniques to develop132

a polynomial-time VNE algorithm, which leverages the bene-133

fits of our proposed pruning techniques to avoid backtracking134

while still maintaining the optimality of the obtained VNE135

solutions. In the same section, we also derive analytic bounds136

on the approximation ratio of the incurred objective value of137

the proposed algorithm. Finally, we present our experimental138

results and findings in Section VI, and conclude the paper in139

Section VIII.140

II. RELATED WORK141

Virtual Network Embedding Algorithms: There have142

recently been research efforts aiming to develop VNE143

algorithms, and the recent survey by Fischer et al. [12] presents 144

a detailed classification of such algorithms. Broadly speaking, 145

these algorithms can be classified into three categories: back- 146

tracking based algorithms (e.g. branch and bound), stochastic 147

algorithms, and heuristics. 148

Backtracking based algorithms generally consist of formu- 149

lating and solving the VNE problem using branch and bound 150

or exact backtracking based techniques [13], [14], [15], [16], 151

[17]. For example, Lischka et. al. [13] show that the VNE prob- 152

lem can be formulated as a graph isomorphism (which is known 153

to be NP-hard) and then using a backtracking based algorithm 154

to solve it. Backtracking can, in general, find optimal slutions. 155

However, they do so in exponential time [18]. 156

Stochastic algorithms like simulated annealing, particle 157

swarm optimization, tabu search, or genetic algorithms, are 158

other common approaches that can be used to search for VNE 159

solutions. For example, [19] uses particle swarm optimization 160

to find near optimal solutions in relatively short execution times 161

(as shown empirically). The major drawback of stochastic algo- 162

rithms, besides their relatively long execution times, is their 163

high likelihood of getting stuck in local minima. 164

Heuristic algorithms attracts the most attention of researchers 165

given their less complexity when compared to exact backtrack- 166

ing algorithms. Heuristics on the other hand can only find 167

inexact solutions and hardly provide tight approximation gaps 168

[20], [21], [22], [23], [24], [25]. For example, Zhu and Ammar 169

in [20] adopt one very basic greedy algorithm that greedily 170

search for feasible nodes to serve a virtual network and then 171

compute the shortest paths between these nodes. If the evalu- 172

ated shortest paths can satisfy the demands of the virtual links, 173

the virtual network is considered successfully embedded. This 174

is the most simple but sub-optimal algorithm which brings no 175

guarantee to solve the VNE problem. We refer to this algo- 176

rithm throughout as baseline. The authors in [21] formulate the 177

VNE problem as two stage, coordinated node and link map- 178

ping problems, that are both formulated as Mixed ILP (MIP), 179

and then use a rounding relaxation to find near optimal solu- 180

tions by an off-the-shelf solver. This algorithm can, however, 181

be very slow especially when the size of the virtual network 182

(number of nodes and links) is large, and is shown to have a 183

worst case complexity of O(n14 b2 ln b ln ln b) where n is the 184

number of substrate nodes, and b is the number of input bits 185

to the linear program [21], [22]. Several other works adopted 186

a similar approach to [21], formulating the VNE problem as 187

MIP [26], [27]. Formulating the VNE problem as MIP allows a 188

mechanical problem formulation that can address a wide range 189

of objectives such as energy-awareness and fault-tolerance [28], 190

[29], [6], [7]. Heuristic algorithms, though have better exe- 191

cution times than backtracking algorithms, do result in low 192

acceptance rates, due to their sub-optimal embedding nature. 193

Our algorithm, Bird-VNE, follows a constraint processing 194

design methodology and involves a simplified form of back- 195

tracking to bound the resulting approximation-ratio. Our algo- 196

rithm is different from other backtracking based solutions in 197

that it relies on the analysis of the constraint properties of 198

the VNE problem. This analysis allows us to develop con- 199

straint processing algorithms specific to the VNE problem that 200

effectively prune the search space. Unlike other heuristics, 201

Bird-VNE allocates substrate paths directly to the requested 202
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virtual links, rather than separating node and link mapping203

or at most coordinating their allocations. This approach leads204

to a proved approximation-ratio that tightens the Bird-VNE205

performance which was first proposed in our work in [30].206

Virtual Network Embedding and Migration in Wireless207

Networks: Designing VNE algorithms that account for net-208

work dynamics (e.g. wireless link quality instability, links209

failure, node mobility, etc.) attracted little attention [31], [32],210

[33]. The authors in [33] discuss virtualization measures that211

can ensure network embedding feasibility in wireless networks212

under dynamic behaviors. Also in [32], the authors propose to213

use VNE over static wireless multihop networks. Unlike these214

papers, we design our VNE embedding considering wireless215

network dynamics due to substrate nodes that can invalidate216

already embedded virtual networks, hence mandating migrating217

these virtual networks to ensure service continuity.218

Virtual network migration has also attracted the attention219

of some researchers to fix invalid virtual networks [9], [34],220

[35]. The work by Houidi et. al [9] is one example in which221

the authors propose to continuously monitor already embed-222

ded virtual networks and to detect possible events that may223

trigger migration, hence adaptively reembed these virtual net-224

works. Unfortunately virtual network migration is accompanied225

with several challenges and overheads. A recent study demon-226

strates the potential migration challenges including: unavoid-227

able packet loss, slow adaptability of switches to changes, and228

critical deadline time to switch packets to new paths. [10].229

In this paper, we extend our work in [30] to take into account230

the potential virtual network migration overheads by mini-231

mizing the likelihood of migrating already embedded virtual232

networks which arises due to substrate node mobility. Our233

work also matches the recent recommendations in [10] where234

an awareness of the potential migrations during the Virtual235

network embedding phase is needed to avoid the migration236

drawbacks. Unlike existing virtual network migration algo-237

rithms, if we integrate Bird-VNE with a migration solution (e.g.238

as in [9]), that solution shall become activated less frequently.239

III. SYSTEM MODEL AND DESIGN OBJECTIVE240

We abstract and model the substrate (physical) network, con-241

sisting of a set S of n nodes, as an undirected graph � = (S, L)242

where L is the set of substrate links with each link l ∈ L cor-243

responding to a connected pair of nodes s, s′ ∈ S. We assume244

that each node s ∈ S offers a processing capacity C (s), and245

each link l ∈ L offers a bandwidth capacity C (l).246

In what follows, let R be the set of all possible paths between247

all substrate node pairs, where a path P(s, s′) between two248

substrate nodes s and s′ is a sequence of connected links (or249

pairs of nodes) in L . Throughout the paper, P(s, s′) (or some-250

times P) will also refer to the set of all the links constituting251

the path. The path length, |P|, and the bandwidth capacity,252

C (P) = minl∈P C (l), characterize P .253

We also consider that the substrate nodes are mobile, and254

adopt the modified Random Way Point (RWP) mobility model255

proposed in [36] to model the substrate node mobility. This256

model describes the mobility of any substrate node s by an infi-257

nite sequence of quadruples {(Xi−1, Xi , Ci , Wi )s}i∈N, where i258

denotes the i-th movement sample of node s. For every move- 259

ment sample i , s moves from the starting waypoint Xi−1 to the 260

target waypoint Xi with velocity Ci . Upon arrival to the target 261

waypoint Xi , s waits Wi time units. 262

Given the waypoint Xi−1, the node chooses the target way- 263

point Xi randomly such that the included angle θi between the 264

vector Xi − Xi−1 and the abscissa is uniformly distributed in 265

[0, 2π ] and the transition length Zi = ‖Xi − Xi−1‖ is Rayleigh 266

distributed. The angles {θ1, θ2, . . .} are i.i.d., and the transi- 267

tion lengths {Z1, Z2, . . .} of a substrate node s are also i.i.d. 268

with parameter λs and a CDF P(Zi < z) = 1− exp(−λsπ z2), 269

z > 0. 270

Velocities Ci are generally i.i.d. random variables with arbi- 271

trary distributions. Even with randomly distributed velocities, it 272

is sufficient for the purpose of this paper that Ci ≡ Cs , where 273

Cs is a positive constant, equaling the average speed of sub- 274

strate node s. Waiting times {W1, W2, . . .} of a substrate node s 275

are also assumed to be i.i.d. exponential with parameter μs and 276

a CDF P(Wi < w) = 1− exp(−μsw),w > 0 277

The following are important stochastic properties of the 278

modified RWP [36]: 279279

1) Transition time Tr , defined as the time a sub- 280

strate node spends between two successive way- 281

points. For a substrate node s moving with con- 282

stant velocity Cs , the Probability Distribution Function 283

(PDF) of Tr is fTr (t) = 2πλsC2
s t exp(−λsπC2

s t2) and 284

the (Cumulative Density Function) CDF is P(Tr < t) = 285

1− exp(−πλs t2C2), λs > 0. 286

2) Target waypoint distribution. Given Xi−1, the PDF of the 287

target waypoint Xi in polar coordinates is given by 288

fXi (r, θ) = λs exp(−λsπr2). (1)

We also assume that there exists a central node that is respon- 289

sible for managing the substrate network and embedding the 290

virtual network requests. That is, the central node will be 291

receiving multiple different VNE requests in real time, and 292

embedding them one at time. Each VNE request i is to be 293

embedded for τi time units (i.e. τi is VNE i’s service time). 294

A. Virtual Network Embedding 295

A VNE request can be represented as an undirected graph 296

ϒ = (V, E) where V is the set of the virtual nodes and E is the 297

set of the virtual links (i.e. connected pairs of virtual nodes). 298

In what follows, let nv = |V | and mv = |E |. Each node v ∈ V 299

has a geographical location and a requested node stress T (v) 300

(e.g. processing capacity). Similarly, each virtual link e ∈ E 301

has a requested link stress T (e) (e.g. link bandwidth). Table I 302

summarizes the key notations. 303

Suppose that, at a given point in time, the central node has 304

already received and successfully embedded a total of k − 1 305

virtual network requests, ϒ(1), ϒ(2), . . . , ϒ(k−1), and the kth 306

request, ϒ(k), has just arrived. The problem of embedding of 307

the kth virtual network ϒ(k) = (V (k), E (k)) into the substrate 308

network � consists of the following two mappings. 309

Node mapping: maps each virtual node v ∈ V (k) to a dis- 310

tinct substrate node s ∈ S subject to two constraints. One, s 311
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TABLE I
SUMMARY OF NOTATIONS

must be within � distance from v, where � is a parame-312

ter associated with the VNE request. Two, the sum of the313

requested processing capacities of all virtual nodes mapped to314

s (including those mapped from previous VNE requests) must315

not exceed the offered processing capacity of s. Formally, let-316

ting Dist (u, v) denote the Euclidean distance between u and317

v, node mapping consists of finding a node mapping func-318

tion, M
(
V (k)

) : v ∈ V (k) �→M (v) ∈ S, such that M (vi ) =319

M
(
v j

)
iff vi = v j , Dist (M (v) , v) ≤ � for all v ∈ V (k), and320 ∑

v∈∪k
i=1V (i):M(v)=s T (v) ≤ C (s) for all s ∈ S.321

Link mapping: maps each virtual link e ∈ E (k) to a sub-322

strate path P ∈ R subject to two constraints. One, the end323

virtual nodes of e must correspond to the end substrate nodes324

of P . Two, for every l ∈ L , the sum of the requested band-325

width capacities of all virtual links (including those belong-326

ing to previous VNE requests) whose mapped paths go327

through the substrate link l must not exceed the offered band-328

width capacity of l. Formally, link mapping consists of find-329

ing a link mapping function, M
(
E (k)

) : e = (v, v′) ∈ E (k) �→330

M (e) = P(s, s′) ∈ R, such that M (v) = s, M
(
v′

) = s′, and331 ∑
e∈∪k

i=1V (i):l∈M(e) T (e) ≤ C (l) for all l ∈ L .332

Definition 3.1: The embedding of ϒ(k) is said to be feasible333

when both the node mapping and link mapping tasks defined334

above are successful.335

Upon successfully embedding the kth VNE request, the cen-336

tral node updates the locations of the substrate nodes, as well337

as the amounts of the available/remaining substrate resources.338

These are the remaining processing capacity of substrate node339

s, denoted by R(k)(s) = C (s)−∑
v∈∪k

i=1V (i):M(v)=s T (v), the340

remaining bandwidth capacity of substrate link l, denoted341

by R(k)(l) = C (l)−∑
e∈∪k

i=1V (i):l∈M(e) T (e), and the remain-342

ing path capacity of substrate path P , denoted by R(k)(P) =343

minl∈P R(k)(l). Also, upon receiving a new VNE request, the344

central node constructs the mapping domains of the virtual345

nodes and links, which are defined as follows.346

Definition 3.2: The mapping domain Dv of a virtual node347

v ∈ V (k) is defined to be the set of all substrate nodes whose348

Euclidean distances to v are each less than � and whose remain-349

ing processing capacities are each greater than T (v); i.e., Dv =350

{s ∈ S : Dist (s, v) ≤ �, R(k)(s) ≥ T (v)}.351

Definition 3.3: The mapping domain De of a virtual link352

e = (v, v′) ∈ E (k) is defined to be the set of all substrate paths353

whose end nodes (s, s′) are in Dv × Dv′ and whose remain-354

ing capacities are each greater than T (e); i.e., De = {P(s, s′) ∈355

R : (s, s′) ∈ Dv × Dv′ , R(k)(P(s, s′)) ≥ T (e)}.356

Fig. 1. Virtual Network Embedding: node mapping domains are shown in
dashed circles (radius = �) and link mapping domains are shown in dashed
lines parallel to substrate paths.

Fig. 2. Procedure 1 illustration. (a):A Maximum cardinality matching (thick
edges), v is connected to s if s ∈ Dv, (b):Alternating graph with two strongly
connected components. Edges crossing the strongly connected components
cannot be in a maximum matching therefore Procedure 1 prunes them.

Figure 1 shows a VNE example, where the graph on the 357

left side is the virtual network and that on the right side is the 358

substrate network. In this example, the node mapping domains 359

are Da = {A, C}, Db = {G, H}, and Dc = {B, E, F}, 360

the link mapping domains are shown in dashed lines 361

(e.g. D(a,c) = {{(A, B)}, {(A, E)}, {(A, E), (E, B)}, 362

{(A, C), (C, D), (D, E)}, {(A, C), (C, D), (D, E), (E, B)}, 363

{(A, B), (B, E)}}). The VNE solution is given by 364

(i) the node mappings, M (a) = C , M (b) = H , and 365

M (c) = B, and (i i) the link mappings, M ((a, b)) = 366

{(C, D), (D, H)}, M ((a, c)) = {(C, A), (A, B)}, and 367

M ((b, c)) = {(H, E), (E, B)}. 368
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B. Probability of VNE Migration due to Node Mobility369

If a virtual node v is mapped to a substrate node s, a migration370

is triggered when the distance d = Dist (v, s) becomes greater371

than �. More specifically, a migration will not be triggered due372

to s’s mobility if s stays within the circle A(v,�) of diameter373

� centered at v for a period longer than τ , the service time374

of the virtual network request incorporating node v. From (1),375

the probability that the target waypoint of the substrate node is376

within A(v,�) is, for 0 ≤ d ≤ �,377

P(A(v,�)) =
�+d∫

�−d

2π∫

0

fXi (r, θ) rdrdθ,

= exp(−πλs(d −�)2)− exp(−πλs(d +�)2).

Let H(s) be the probability that a migration is triggered due378

to the mobility of substrate node s. H(s) can be approximated379

as the probability that neither the target waypoint is within380

A(v,�) and the total time spent in A(v,�) is ≥ τ nor the tar-381

get waypoint is outside A(v,�) and the transition time to the382

boarder of A(v,�) is≥ τ . Computing the PDF of the total time383

spent in A(v,�) (W + Tr ) requires convolution of the PDFs of384

W and Tr , and strong assumptions on relative values of λs , Cs ,385

and τ , which are outside the control of the embedding algo-386

rithm. To simplify the analysis and the VNE objective design,387

we assume that: i) the time spent within A(v,�) is dominated388

by the waiting time at the target waypoint Xi , ii) if the target389

waypoint is outside A(v,�), the whole transition time is spent390

within A(v,�), and iii) the waiting time of the starting way-391

point has elapsed at the time of the virtual network embedding.392

Since we are mainly interested in evaluating the migration prob-393

ability of a substrate node relative to other substrate nodes, the394

impact of these assumptions is minimal. With this, H(s) can be395

expressed as396

H(s) =1− P(W ≥ τ)P(A(v,�))

− P(Tr ≥ τ)(1− P(A(v,�))) (2)

To minimize the migration overhead, the VNE algorithm397

shall map virtual nodes to substrate nodes with the least398

migration probability, H(s). Unlike traditional virtual network399

embedding and migration algorithms, this requires the esti-400

mation of the transition length and waiting time distribution401

parameters and the use of the estimated parameters to evalu-402

ate the migration probability associated with mapping a virtual403

node v to a substrate node s. The maximum likelihood estima-404

tion of the transition length parameter is λ̂s = 1
4 (Z2)−2, where405

the Z2 denotes the second sample moment of Z , and that of406

the waiting time parameter is μ̂s = 1
W

, where W denotes the407

sample moment of W .408

C. VNE Design Objective409

Our objective is to develop an algorithm that finds feasible410

VNEs while maximizing the embedding profit and minimiz-411

ing the migration overhead. We say that a feasible embedding412

is optimal when its profit is maximum.1 Given a virtual net- 413

work ϒ , the profit is defined as the difference between the 414

revenue generated from embedding ϒ and its embedding cost, 415

i.e. Profit(ϒ) = Revenue (ϒ)− Cost (ϒ). 416

To achieve the VNE design objective, we model the embed- 417

ding cost to capture the cost of node mapping, the cost of link 418

mapping, and the potential cost of migration that may arise as a 419

result of mobility. It is defined as 420

Cost (ϒ) =
∑
v∈V

αT (v)+
∑
e∈E

βT (e)× |M (e)|

+
∑
v∈V

γ (v)H(M (v)), (3)

where α and β denote the cost of processing and bandwidth 421

resource units, respectively. The third term captures the cost of 422

migration due to substrate nodes mobility, where γ (v) is the 423

cost of migrating the virtual node v. Intuitively, γ (v) depends 424

on the amount of resources allocated to v, as well as on v’s 425

connectivity to other virtual nodes. 426

We also define the revenue to be generated from successfully 427

embedding ϒ as 428

Revenue (ϒ) =
∑
v∈V

α′T (v)+
∑
e∈E

β ′T (e) , (4)

where α′ and β ′ denote the price to be charged for each 429

processing and bandwidth unit, respectively. 430

Observe that the embedding revenue in (4) depends only on 431

the virtual network’s requested resources and not on the VNE 432

solution. Also recall that the function H(M (v)) given in (3) 433

represents the probability that a migration of v is triggered due 434

to the mobility of the substrate node, M (v). It follows that max- 435

imizing the profit implies minimizing the embedding cost in (3), 436

which implicitly minimizes the virtual network migration over- 437

head due to mobility. Note that even though, in this paper, the 438

function H(M (v)) captures the likelihood of migration that is 439

due to mobility, it can be used to represent/capture the migration 440

due to any other network dynamics, like link failure. 441

IV. ENFORCING DOMAIN CONSISTENCY 442

The node and link mapping domains, defined in 443

Definitions 3.2 and 3.3, involve coupled constraints. A 444

mapping of a virtual node v to a substrate node s ∈ Dv impacts 445

other nodes and links mapping domains in several ways. First, 446

no other virtual nodes can be mapped to s. Second, we can only 447

map virtual links that have v as an end node to substrate paths 448

that have s as an end node. Moreover, a mapping of a virtual 449

link e to a substrate path P ∈ De restricts other virtual links 450

from being mapped to the substrate paths that share one or 451

more substrate links with P . The shared links become capacity 452

bottlenecks as their bandwidth capacity must be greater than 453

the required bandwidth of not only e but also other virtual links 454

mapped to paths sharing these links. A backtracking algorithm 455

resolves such constraint couplings by mapping virtual nodes 456

1Modeling the objective as a maximization problem allows us to analytically
bound the objective value, as shown later in Section V.
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and virtual links one at a time, and backtracking to previous457

steps when the algorithm encounters an unfeasible mapping.458

A VNE algorithm can avoid backtracking (backtrack-free459

search) if the mapping domains of all virtual nodes and links460

are consistent. Enforcing domain consistency involves prun-461

ing the node and link mapping domains to avoid mappings462

that lead to an unfeasible embedding. Unfortunately, the use463

of the standard consistency propagation algorithms are expo-464

nential in time. This is because the constraint network of the465

VNE problem has a maximum degree that is a function of n,466

while the running time of the standard consistency propaga-467

tion algorithm, to ensure backtrack-free search, is exponential468

in the maximum degree of the constraint network (see [18] for469

details).470

Fortunately, constraint propagation algorithms can take471

advantage of certain properties specific to VNE to prune472

the mapping domains in polynomial time through mapping473

domains consistency enforcement. In this section, we develop474

techniques that exploit these properties to avoid backtracking475

during the VNE search process, and use these techniques to476

design a polynomial time, almost backtrack-free VNE algo-477

rithm. There are two types of mapping domains consistency,478

virtual network topological consistency and substrate paths479

capacity consistency, which are presented next.480

A. Virtual Network Topological Consistency481

We first enforce domain consistency to ensure that the topol-482

ogy of the resulting solution (node and link mappings) matches483

exactly the topology of the virtual network, i.e. topological484

consistent. This requires enforcing the following: (i) substrate485

nodes mapped to the virtual nodes must be all different, (i i) end486

nodes of the substrate paths in link mapping domains must have487

corresponding substrate nodes in the node mapping domains488

and vice versa, and (i i i) substrate nodes in the node mapping489

domains must maintain similar virtual node degrees.490

Alldifferent virtual node mapping constraint: The con-491

straint to map virtual nodes to distinct substrate nodes is known492

as the alldifferent constraint in the constraint programming493

context, and we next state a useful corollary following from494

Reégin’s theorem [37] on the alldifferent constraint.495

Corollary 4.1: A virtual node mapping v ∈ V �→ s ∈ Dv496

leads to an unfeasible embedding if the edge (v, s) does not497

belong to a maximum matching that covers all the virtual nodes498

in the bipartite graph B = (V ∪ S, {(v, s) :M (v) = s}).499

The above corollary can then be exploited to prune away500

nodes and links from the node and link mapping domains,501

and for completeness, we provide in Procedure 1 a brief502

description of such a pruning technique, which we term503

ALLDIFFERENT [37].504

In Procedure 1, a residual graph, B ′, is defined as B ′ =505

(V ∪ S ∪ {t}, M ∪ E2 ∪ E3 ∪ E4) where M is the set of edges506

in the matching directed from virtual nodes to substrate nodes,507

E2 is the set of edges that are not in the matching M and are508

directed from substrate nodes to virtual nodes, E3 is the set of509

all directed edges from substrate nodes in the matching M to a510

dummy node t , and E4 is the set of all directed edges from t to511

substrate nodes that are not in the matching M .512

Procedure 1. AllDifferent

Input: V, Dv∈V

Ensure: Distinct virtual node to substrate node mappings in
O

(
n1.5

v n
)

[37].
1: Construct bipartite graph B = (V ∪ S, {(v, s) :M (v) = s})
2: Find a maximum matching M in B using Hopcroft-Karp

algorithm [38]
3: if |M | < nv then
4: Return no feasible embedding for the given mapping

domains
5: end if
6: Construct the residual graph B ′
7: Compute the strongly connected components in B ′
8: Prune the node mapping domains by deleting any edges

connecting two different strongly connected components
in B ′.

9: return Narrowed virtual node mapping domains

Step 8 in Procedure 1 prunes substrate nodes from the node 513

mapping domains that can never lead to distinct node mappings. 514

Any edge connecting two different strongly connected compo- 515

nents in B ′ corresponds to a mapping from a virtual node v 516

to a substrate node s and does not belong to any maximum 517

cardinality matching, hence it is not possible to find a feasi- 518

ble embedding with distinct node mapping if v was mapped 519

to s. Thus, s must be removed from Dv. The time complex- 520

ity of Procedure 1 is bounded by the time required to find the 521

maximum matching using the Hopcroft-carp algorithm in step 522

2. Since a virtual node can have at most n substrate nodes in 523

its node mapping domain, the number of edges in the bipar- 524

tite graph B cannot exceed nv × n edges. In the worst case, the 525

Hopcroft-carp algotihm requires O(
√

nvnvn) steps, hence the 526

ALLDIFFERENT time complexity is O
(
n1.5

v n
)
. 527

Relational consistency of node and link mapping 528

domains: In the example of Fig. 1, although mapping the vir- 529

tual node c to F is feasible, doing so prevents us from finding 530

a mapping to the virtual link (a, c), as there is no substrate 531

path between F and any substrate node in the node mapping 532

domain Da . 533

From the definition of mapping domains, we can easily 534

observe that if two virtual nodes v, v′ are connected by a virtual 535

link e, then the end points of the substrate paths in the virtual 536

link mapping domain De is a subset of the cross product of 537

the virtual node mapping domains Dv × Dv′ . We can now rely 538

on this simple observation and the definition of the virtual link 539

mapping domains to conclude the following: 540

Lemma 4.2: The node mapping v ∈ V �→ s ∈ Dv leads to 541

an unfeasible embedding if there exists a link e = (v, v′) ∈ E 542

whose link mapping domain De does not contain a path ending 543

at s. Similarly, a virtual link mapping e = (v, v′) �→ P(s, s′) 544

leads to an unfeasible embedding if s �∈ Dv or s′ �∈ Dv′ . 545

Proof: Assume v �→ s and a subsequent mapping of e = 546

(v, v′) such that there is no path P ∈ De ending at s. A mapping 547

of e to any substrate path in De results in mapping multiple 548

virtual nodes to the same substrate node. Also, e = (v, v′) �→ 549
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Procedure 2. Node-Consistency

Input: E, De∈E , Dv∈V

Ensure: Virtual node mapping domains are consistent with
virtual link mapping domains in O(mv n)

1: for all virtual link e = (v, v′) ∈ E do
2: Dv ← Dv ∩ u (De)

3: Dv′ ← Dv′ ∩ v (De)

4: end for
5: return Narrowed virtual node mapping domains

Procedure 3. Link-Consistency

Input: E, De∈E , Dv∈V

Ensure: Virtual link mapping domains are consistent with
virtual node mapping domains in O(mv n2)

1: for all virtual link e = (v, v′) ∈ E do
2: for all substrate path P ∈ De do
3: if u (P) /∈ Dv ∨ v (P) /∈ Dv′ then
4: De ← De \ {P}
5: end if
6: end for
7: end for
8: return Narrowed virtual link mapping domains

P(s, s′) violates the link mapping Definition 3.3 if either s �∈550

Dv or s′ �∈ Dv′ .551 �551

Using Lemma 4.2, we propose two procedures to narrow552

down the node and link mapping domains: Procedures 2 and 3.553

The functions u (De) and v (De) return the sets respectively of554

the first and the second end nodes of all the paths in De. When555

applied to a path P , u (P) and v (P) return the path’s first and556

second end nodes. In each iteration, Procedure 2 prunes the sub-557

strate nodes from the node mapping domains of the end nodes558

of the virtual links, if there is not any substrate path in their559

link mapping domains that also ends at those substrate nodes.560

Since for each virtual link the intersection operator (step 2 and561

3) requires at most O(n) steps as |Dv| ≤ n, then Procedure 2562

has a worst case time complexity of O(mvn).563

Procedure 3 complements Procedure 2 by pruning a substrate564

path from the link domain of a virtual link if the substrate nodes565

ending that path cannot be found in the node mapping domains566

of the virtual nodes ending the virtual link. Since there are at567

most O(n2) paths in the substrate network, the inner loop (step568

2 to 6) of Procedure 3 requires at most O(n2) steps. Hence, the569

worst case time complexity of Procedure 3 is O(mvn2).570

Consistency of virtual and substrate node connectivity:571

The relational consistency of node and link mapping domains572

does not ensure connectivity of the virtual network, nor does it573

imply that the mapping domains can satisfy the virtual network574

connectivity requirements, especially when the node mapping575

domains overlap. To illustrate this, consider a new induced net-576

work of substrate nodes that represents the connectivity of the577

virtual link domains. In this induced network, substrate nodes578

are connected by an edge if there exists a path belonging to any579

link mapping domain that connects them. Induced network is580

defined formally next.581

Fig. 3. Induced network I from substrate network � in Fig. 1. I has one con-
nected components CCI and three supernodes (dashed circles). ζ(CCI ) = 3,
δ(F) = 1 and equals 2 for all other nodes.

Definition 4.1: Given a virtual network ϒ , we define 582

the induced network I of ϒ as the undirected graph 583

I = (SI ⊂ S, L I ) where SI = ∪v∈V Dv and L I = {(s, s′) ∈ 584

S2
I : ∃ P(s, s′) ∈ De for some e ∈ E}. 585

Definition 4.2: For every connected component CCI of I , 586

the set Nv(CCI ) = CCI ∩ Dv corresponding to the virtual 587

node v is called the supernode of v. Let ζ(CCI ) be the num- 588

ber of distinct supernodes in CCI . For every s ∈ SI , we define 589

δ(s) as the number of supernodes connected to s. 590

Fig. 3 illustrates the induced network of the example given 591

in Fig. 1. This induced network is constructed by connecting a 592

pair of substrate nodes in Fig. 3 when there is at least one path 593

connecting them in any link mapping domain. In general, if the 594

mapping v �→ s is feasible, the function δ(s) reflects the degree 595

of the virtual node v, and if a connected component CCϒ of 596

ϒ is mapped to a subset of substrate nodes in �, the function 597

ζ(CCI ) reflects the number of virtual nodes in the connected 598

component CCϒ (size of CCϒ ). 599

Lemma 4.3: Let Degϒ (v) denote the degree of virtual node 600

v. A virtual node mapping v �→ s leads to an unfeasible embed- 601

ding if Degϒ (v) > δ(s) or the size of the connected component 602

of ϒ (CCϒ ) that contains v is greater than the number of 603

supernodes in CCI that contains s. 604

Proof: Assume v �→ s and Degϒ (v) > δ(s), then there 605

exist at least one virtual link e such that there is no substrate 606

path P in De with one of its end substrate nodes equals s. Then, 607

v �→ s does not lead to a feasible embedding from Lemma 4.2. 608

If Degϒ (v) ≤ δ(s) but |CCϒ | > ζ(CCI ), then there must exist 609

an unmapped virtual node v′ ∈ CCϒ , while all substrate nodes 610

s ∈ CCI are already mapped to other virtual nodes in CCϒ 611

including v. Since v′ must be mapped to one substrate node in 612

CCI to maintain connectivity, then mapping v �→ s does not 613

lead to a feasible embedding. 614� 614

The DEGREE-CONSISTENCY procedure (Procedure 4), a 615

direct application of Lemma 4.3, is a pruning technique that 616

narrows down mapping domains through degree consistency 617

enforcement. Its complexity is bounded by computing δ(s) for 618

all the substrate nodes in the virtual node mapping domains, 619

which is O(n2). 620

Running the ALLDIFFERENT, NODE-CONSISTENCY, 621

LINK-CONSISTENCY, and DEGREE-CONSISTENCY proce- 622

dures for one iteration removes some inconsistent mappings 623

from the node and link mapping domains. To remove all 624
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Procedure 4. Degree-Consistency

Input: E, Dv∈V

Ensure: Degree Consistency in O(n2)

1: for all virtual nodes v′ ∈ V do
2: for all substrate nodes s′ ∈ Dv′ do
3: if Degϒ

(
v′

)
> δ(s′) then

4: Dv′ ← Dv′ \ {s′}
5: end if
6: end for
7: end for
8: for all connected component CCϒ ∈ ϒ do
9: for all connected component CCI ∈ I do

10: if |CCϒ | > ζ(CCI ) then
11: Dv′ ← Dv′ \ CCI , ∀v′ ∈ CCϒ

12: end if
13: end for
14: end for
15: return Narrowed virtual nodes domains

Algorithm 1. Topology-Consistency

Input: E, De∈E , Dv∈V

Ensure: Topology Consistency in O(mv n3)

1: repeat
2: NODE-CONSISTENCY(E, De∈E , Dv∈V )

3: ALL DIFFERENT(V, Dv∈V )

4: LINK-CONSISTENCY(E, De∈E , Dv∈V )

5: DEGREE-CONSISTENCY(E, Dv∈V )

6: if ∃ Dv′ = ∅, ∀v′ ∈ V ∨ De = ∅, ∀e ∈ E then
7: return false {T}here exist a virtual node or a virtual

link with an empty mapping domain.
8: end if
9: until No node or link domain is changed

10: return true

the inconsistencies, these procedures must repeatedly be625

run sequentially until no further removal is possible from626

either the node or the link mapping domains. The process627

merging all these four procedures is captured in Algorithm 1,628

which essentially removes inconsistency, and hence avoids629

backtracking, by ensuring topological consistency of the node630

and link mapping domains. This algorithm is referred to as631

TOPOLOGY-CONSISTENCY.632

The complexity of TOPOLOGY-CONSISTENCY is bounded633

by the number of times we run the procedure LINK-634

CONSISTENCY in step 4. This implies a complexity of635

O(mv n2) in each iteration. In the worst-case scenario,636

TOPOLOGY-CONSISTENCY removes one substrate node from637

one node mapping domain and this corresponds to at least one638

removal of one substrate path from link mapping domains.639

Hence, it requires at most n iterations to remove all the sub-640

strate nodes from one node mapping domain, thus returning641

false.2 Thus, the complexity of TOPOLOGY-CONSISTENCY is642

2A more efficient implementation checks the condition in step 6 every time
any procedure removes a substrate node/link from a mapping domain.

O(mv n3). But since the maximum number of virtual nodes is 643

the number of substrate nodes; i.e., nv ≤ n, then the complexity 644

of TOPOLOGY-CONSISTENCY is O(n5). 645

B. Capacity Disjoint Paths Consistency 646

We now study the second mapping domain consistency 647

type, substrate paths capacity consistency. Let us refer again 648

to the example given in Fig. 1 and consider the link 649

mapping sequence (a, b) �→ P(C, H) = {(C, D), (D, H)} and 650

(a, c) �→ P(C, E) = {(C, D), (D, E)}. The remaining band- 651

width of the substrate link (C, D), R ((C, D)) = 15, is less than 652

the sum of the links’ requested bandwidth capacities, which 653

is T ((a, b))+ T ((a, c)) = 24. Hence, this mapping sequence 654

is unfeasible. Clearly, a VNE algorithm will not backtrack if 655

all substrate paths in the link mapping domains are disjoint 656

(if topological consistency is enforced). However, construct- 657

ing the link mapping domains from disjoint paths results in a 658

degradation of the VNE acceptance rate (such a rate reflects the 659

number of virtual networks that can be embedded into the sub- 660

strate network), as well as in an increase in the embedding cost. 661

Our proposed embedding algorithm does not force paths to be 662

disjoint so as to increase the acceptance rate and decrease the 663

embedding cost. Instead, our technique relies on the concept of 664

capacity disjoint which we formally define next. 665

Definition 4.3: For every substrate link l, let D̄e(l) = {P ∈ 666

De : P � l} and Ē(l) = {e ∈ E : D̄e(l) �= ∅}. We say that 667

the paths in R′ =⋃
e∈Ē(l) D̄e(l) are capacity disjoint iff the 668

remaining bandwidth capacity of l is greater than the sum of 669

the requested bandwidth capacities of all the virtual links in 670

Ē(l). Formally, the paths in R′ are said to be capacity disjoint 671

iff R(k)(l) ≥∑
e∈Ē(l) T (e). 672

Lemma 4.4: A virtual link mapping e �→ P leads to an 673

unfeasible embedding if all the substrate paths in every 674

unmapped virtual link’s mapping domain are not capacity 675

disjoint with P . 676

Proof: If a virtual link ei �→ Pi and in a next mapping step 677

of virtual link e j , all paths in De j are not capacity disjoint with 678

Pi , then any mapping e j �→ Pj ∈ De j will result in at least one 679

substrate link with negative remaining bandwidth. 680� 680

Theorem 4.5: The proposed TOPOLOGY-CONSISTENCY 681

algorithm ensures a backtrack-free search if all substrate paths 682

in all link mapping domains are capacity disjoint. 683

Proof: It follows from Lemmas 4.2, 4.3, and 4.4 and from 684

Corollary 4.1. 685� 685

An algorithm that aims to ensure a backtrack-free search may 686

remove substrate paths that are not capacity disjoint from the 687

virtual links mapping domains. Although such an algorithm 688

will have a complexity advantage because it is backtrack-free, it 689

degrades the acceptance rate and the cost as it will remove sub- 690

strate paths that can actually lead to feasible or minimum cost 691

embedding. Apparently, capacity disjoint paths condition is 692

required only for substrate paths that are actually in an incurred 693

embedding. In order to overcome the complexity problem 694

while still minimizing the cost and maximizing the accep- 695

tance rate, we propose Algorithm 2 (CAPACITY-DISJOINT), 696
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Algorithm 2. Capacity-Disjoint

Input: E, L , De∈E , Dv∈V

Ensure: Substrate paths are capacity disjoint if they are likely
to coexist in an incurred embedding in O(m mv n3).

1: for all l ∈ L : ∃ ps ∈ De∈E , l ∈ P do
2: repeat
3: NODE-CONSISTENCY(Ē(l), D̄e ∈ Ē(l), D̄v ∈ V̄ (l))
4: ALL DIFFERENT(V̄ (l), D̄v ∈ V̄ (l))
5: LINK-CONSISTENCY(Ē(l), D̄e ∈ Ē(l), D̄v ∈ V̄ (l))
6: until No node or link sub-domain is changed
7: R′ (l)← R (l)
8: for all e ∈ Ē(l) ordered ascendingly by |De| do
9: if D̄e(l) �= ∅ then

10: R′ (l)← R′ (l)− T (e)
11: if R′ (l) < 0 then
12: De ← De \ D̄e(l)
13: end if
14: end if
15: end for
16: end for
17: if ∃ De = ∅, ∀e ∈ E then
18: return false
19: end if
20: return true

which ensures that substrate paths in link mapping domains697

are capacity disjoint if they are likely to coexist in an incurred698

embedding.699

The key idea of the CAPACITY-DISJOINT algorithm is to700

determine the worst case scenario in which the intersecting sub-701

strate paths in R′ can become simultaneous mappings of virtual702

links in Ē(l). These paths are found by applying topological703

consistency procedures, discussed earlier, on the subsets of link704

and node mapping domains D̄e ∈ Ē(l), D̄v ∈ V̄ (l) (Steps 1705

to 6), where V̄ (l) ⊂ V is the set of end virtual nodes of vir-706

tual edges in Ē(l) and D̄v(l) ⊂ Dv is the set of substrate node707

mappings deduced from R′.708

The CAPACITY-DISJOINT algorithm checks if all paths that709

are common to every substrate link l are capacity disjoint. If710

not, the algorithm removes first the substrate paths D̄e ∈ Ē(l)711

from the domain of the virtual link(s) e that has the largest link712

mapping domain size |De| (Step 7 to 16). This is to minimize713

the chances of ending up with an empty link mapping domain,714

thus maximizing the acceptance rate. Although it is clear that715

CAPACITY-DISJOINT algorithm does not eliminate backtrack-716

ing entirely, it substantially reduces its likelihood of occurrence.717

We evaluate the likelihood of backtracking empirically in718

Section VI.719

The CAPACITY-DISJOINT algorithm uses similar steps to720

determine possible simultaneous intersecting paths (Steps 2 to721

6) for each substrate link l that intersects with some paths.722

Although these steps are performed on a subset of the map-723

ping domains and it is unlikely to encounter the situation that724

every substrate link is a common link for all paths (as the sub-725

strate network will almost look like a path), the complexity of726

CAPACITY-DISJOINT is bounded by O(m mv n3). This can be 727

expressed as O(n7) if both the substrate and virtual networks 728

are complete graphs and have the same number of nodes n. 729

V. APPROXIMATE PROFIT MAXIMIZATION 730

TOPOLOGY-CONSISTENCY and CAPACITY-DISJOINT algo- 731

rithms, discussed in the previous section, reduce the search 732

space and improve the running time of backtracking search. 733

However, even in the case of backtrack-free search, an opti- 734

mal optimization algorithm, like branch and bound, may still 735

traverse the whole search space through brute-force [18]. If 736

we assume that the VNE problem is backtrack-free, it can be 737

viewed as the maximum weight matching problem in a bipar- 738

tite graph. The bipartite graph in this case is the set of virtual 739

links on one side of the bipartite graph connected by weighted 740

edges to the set of substrate paths on the other side and the edge 741

weight is the profit attained by mapping a virtual edge to a sub- 742

strate path. From (3) and (4), the profit of mapping a virtual 743

edge e = (v, v′) to a substrate path P = (s, s′) is given by 744

Profit(e, P) =(α′ − α)(T (v)+ T
(
v′

)
)

+ (β ′ − β × |P|)T (e)

− γ (v)H(s)− γ (v′)H(s′).

However, a direct application of conventional maximum weight 745

matching algorithms (e.g. Hungarian methods or Edmond’s 746

methods) is non-trivial. Fortunately, greedy approximations to 747

the maximum weight matching are applicable, but with some 748

needed modifications to enforce domain consistency and to ver- 749

ify solution feasibility in every step. We use this observation to 750

propose Algorithm 3, which finds a VNE such that the incurred 751

embedding profit is at most as half as the optimal profit in an 752

attainable special case and at least 1
nv

in general. 753

Our proposed VNE algorithm, termed BIRD-VNE, starts by 754

enforcing the mapping domains consistency using TOPOLOGY- 755

CONSISTENCY and CAPACITY-DISJOINT. It then searches for 756

an embedding by mapping the virtual links with the small- 757

est link mapping domain sizes and greatest demands (Line 758

9) first to the substrate paths in their domains with the high- 759

est profit (Line 10). After mapping each virtual link (mapping 760

step), the algorithm ensures feasible embedding according to 761

Definition 3.1 (Line 20). If any mapping step results in unfea- 762

sible embedding, the algorithm starts over the mapping process 763

from the first virtual link by assigning it to an unattempted map- 764

ping in its domain until a feasible embedding is found or all 765

mappings of the first link are tried. 766

This algorithm still involves a simplified form of backtrack- 767

ing. The algorithm always backtracks to the first virtual link 768

mapping step. In this case, the total number of backtracks is 769

bounded in the worst case by the size of the smallest link map- 770

ping domain. Typically, the consistency enforcing algorithms 771

reduce the number of backtracks significantly as we will show 772

empirically in Section VI. The following theorem bounds the 773

worst case performance of BIRD-VNE. 774

Theorem 5.1: In the worst case, BIRD-VNE is an 775

O( 1
nv

)-approximation to the optimal embedding profit, and 776
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Algorithm 3. BIRD-VNE

Input: ϒ = (V, E), � = (S, L) Input:
Require: D∀e∈E , D∀v∈V

Ensure: Embedding ϒ �→ � in O(m mv n3)

1: SolutionExist← TOPOLOGY-CONSISTENCY

2: SolutionExist← SolutionExist and CAPACITY-DISJOINT

3: SolutionExist← SolutionExist and TOPOLOGY-
CONSISTENCY

4: if not SolutionExist then
5: return ”Reject virtual network.”
6: end if
7: repeat
8: M (e)← ∅, ∀e ∈ E
9: for all e = (v, v′) ∈ E ordered ascendingly by |De|, and

by T (e) do
10: for all P = (s, s′) ∈ De ordered descendingly by

Profit(e, P) do
11: if e is the first virtual link in the order of E then
12: De ← De \ P
13: end if
14: if e �→ P result in a feasible embedding then
15: M (e)← P , M (v)← u (P), M

(
v′

)← v (P)

16: break
17: end if
18: end for
19: end for
20: until Feasible embedding is found or all first virtual link

mapping domain are attempted.
21: if No feasible embedding is found then
22: return ”Reject virtual network.”
23: end if
24: return M (e) , ∀e ∈ E and M (v) , ∀v ∈ V

only a 1
2 -approximation if there are, on average, nv paths of777

the same length between any two substrate nodes.778

Proof: Let x be the profit of mapping the first virtual link779

e to the highest profitable path P in its link mapping domain780

in a single iteration (step 7). The following potential mappings781

become invalid and will never be attempted by the algorithm782

until a backtracking to step 7 is decided: (i) mapping e to other783

substrate paths in its link mapping domain except P , (i i) map-784

ping any other virtual link to P , (i i i) mapping another virtual785

link e′ that shares one of its end virtual nodes with e with any786

other substrate paths except those that also share the same end787

substrate node with P . Let d be the maximum degree of the788

virtual network, the worst case will occur if we have exactly789

d paths of shortest length (highest profit) and the algorithm790

invalidates at most d mappings of the optimal mappings (at791

most in the first mapping). In this case, the sum of profits of792

the invalidated mapping cannot exceed dx . Since the profit is793

non-negative, the approximation ratio is O( 1
d ) or more conser-794

vatively O( 1
nv

). However, if there are nv redundant substrate795

paths of the same length between any two substrate nodes,796

BIRD-VNE invalidates at most two mappings that may be opti-797

mal. This can be repeated for at most 1
2 mv of the steps (9 to 19)798

and the sum of the profits of the invalidated mappings cannot 799

exceed 2x . In this later case, the approximation ratio is 1
2 , which 800

proves the theorem. 801� 801

1) Scalability and Implementation Consideration: The 802

complexity of BIRD-VNE is analyzed as follows. The main 803

loop (Step 10 to 25) has mv iterations. In the worst-case sce- 804

nario, for every virtual link, it checks the feasible mappings of 805

n2 paths. Then, the complexity of BIRD-VNE is bounded by 806

the CAPACITY-DISJOINT complexity O(m mv n3) and can be 807

written as O(n7). Although BIRD-VNE is polynomial in time 808

and scales much better than the state-of-the art algorithms, its 809

O(n7) complexity may prevent applying it to very large scale 810

networks. Fortunately, this complexity bound can be improved 811

through simple but effective implementation improvements. 812

The two procedures, NODE-CONSISTENCY and LINK- 813

CONSISTENCY, can be easily implemented in parallel by 814

implementing these algorithms on exactly mv processing 815

agents. In this case, the NODE-CONSISTENCY complex- 816

ity is reduced to O(n) while the LINK-CONSISTENCY 817

complexity is reduced to O(n2). It then follows that the 818

complexity of TOPOLOGY-CONSISTENCY is bounded by 819

running ALLDIFFERENT at most n times, hence it is 820

O
(
n2.5

v n
)
. Similarly, the CAPACITY-DISJOINT complexity is 821

also bounded by running ALLDIFFERENT at most m times, 822

hence it is O
(
n2.5

v m
)
. The complexity of CAPACITY-DISJOINT 823

bounds the overall complexity of BIRD-VNE to O
(
n2.5

v m
)
. 824

We can also improve the actual approximation ratio in prac- 825

tice by repeating step 7 to 19 until all virtual link mappings 826

of the first virtual link are attempted (i.e. remove steps 14 to 827

17) while maintaining all the feasible solutions. We then pick 828

the solution with the maximum total profit as our solution and 829

the other solutions as backup solutions in case a migration is 830

needed. This trick reduces the gap between the evaluated total 831

profit and the optimal solution when compared to the worst case 832

scenario, and preserves the same worst case complexity at the 833

expense of the actual execution time. 834

2) Virtual Network Migration Consideration: The pro- 835

posed algorithm, BIRD-VNE, can still be used, with simple 836

modification, if virtual network migration is needed. If the pre- 837

viously discussed implementation in Section V-1 is adopted, we 838

end up with multiple solutions to the same virtual network that 839

can be quickly evaluated for feasibility, so as to choose one of 840

these VNE solutions for migrating the virtual network instead 841

of evaluating BIRD-VNE again from the beginning. Moreover, 842

the following simple procedures can be carried out to perform 843

migrations to individual nodes and links instead of migrating 844

the whole virtual network. 845

Consider the case that a substrate path P is not capable of 846

meeting the required demand of a virtual link e. This situation 847

can happen, for example, in case of a link failure or congestion 848

along the path, or failure of one or both end substrate nodes of 849

P . In this case, we can immediately find another backup path 850

(and substrate nodes if necessary), P ′, in De {P} that has the 851

largest profit and is also feasible with the current embedding 852

M
(
e′

)
, ∀e′ ∈ E {e}. This algorithm is as simple as running 853

the steps from 9 to 19 in BIRD-VNE, while replacing De with 854

De {P} for only the virtual links that are impacted by the failure 855
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of P . If this fails, the whole embedding needs to be performed856

again by running BIRD-VNE.857

VI. NUMERICAL RESULTS858

The effectiveness of the proposed algorithm, BIRD-VNE, is859

assessed in terms of the metrics suggested in [39]:860860

1) Acceptance rate, defined as the ratio of the total accepted861

virtual networks to the total requested virtual networks.862

2) Revenue to Cost ratio (R/C), defined as R/C =863 ∑
ϒ Revenue (ϒ)/

∑
ϒ Cost (ϒ).864

3) Average node and link utilization, defined as
∑
s∈S

R(s)−C(s)
nC(s)865

and
∑
l∈L

R(l)−C(l)
mC(l) , respectively.866

In addition, we use the following metrics to assess the effec-867

tiveness of BIRD-VNE vis-a-vis of its ability to avoid back-868

tracking, limit network migration, and achieve optimal VNE by869

comparing it to the optimal Brand and Bound technique.870870

1) Average/Maximum Approximation ratio, defined as the871

average/maximum ratio of the cost achieved by BIRD-872

VNE to that achieved by Branch and Bound.873

2) Backtrack-free ratio, defined as the ratio of the total874

number of times in which BIRD-VNE finds a feasible875

embedding at the first attempt of the first virtual link876

mapping to the total number of accepted requests.877

3) Migration ratio, defined as the ratio of the total number of878

virtual network migrations to the total number of accepted879

requests.880

A. Simulation Setup881

We compare the performance of BIRD-VNE with two exist-882

ing algorithms, Randomized Virtual Network Embedding with883

shortest path link mapping (RVINE-SP) and with multicom-884

modity flow link mapping (RVINE-MCF) [21], which are885

integrated to an event-driven simulator that we developed .3 We886

also compare the performance achievable under BIRD-VNE to887

that achievable under the basic Greedy algorithm, referred to as888

BASELINE and proposed in [20].889

The simulator generates � and ϒ according to Erdös−Rènyi890

model. Similar to [21], � has 0.5 probability of connect-891

ing any two substrate nodes, n = 50, C (s) ∼ U (0, 50),∀s ∈ S892

and C (l) ∼ U (0, 50),∀l ∈ L . Substrate nodes are placed ran-893

domly on a (25× 25) grid. The mean inter-arrival time of894

virtual networks ranges from 5 to 25 networks per time unit,895

and the average service time is set to τ = 1000 time units.896

Each pair of virtual nodes in ϒ is connected with 0.5 prob-897

ability, nv ∼ U (1, 10), � = 15, T (v) ∼ U (0, 20),∀v ∈ V and898

T (e) ∼ U (1, 50),∀e ∈ E . The routing of the substrate network899

R is computed once in the prepossessing initialization step900

using the all shortest path algorithm. All the cost parameters901

α, β, γ are set to unity in the simulations.902

We simulate the mobility of substrate nodes by setting903

τ = 50, and the average waiting time at each waypoint to904

μ−1
s = 100 time units for all the substrate nodes. All substrate905

3Implementations of RVICE-SP and RVINE-MCF are online available at
http://www.mosharaf.com/ViNE-Yard.tar.gz

Fig. 4. Backtrack-free ratio of BIRD-VNE shows the effectiveness of search
space pruning.

Fig. 5. Experimental computation time CDF of BIRD-VNE shows its compu-
tation effectiveness.

nodes travel with the same constant speed Ci = 5 speed units, 906

and the average transition length of all the nodes is 5 length 907

units (i.e. λ2
s

2 = 5). We consider a wireless network infrastruc- 908

ture in which the connectivity between the substrate nodes 909

are not impacted by their mobility since fixed clones of the 910

mobile nodes actually execute the virtual network requests in 911

a geographically distributed cloud infrastructure as discussed 912

in Section VII and as illustrated in Fig. 11. 913

B. Performance Evaluation 914

1) BIRD-VNE Improves the Acceptance Rate: Fig. 8 915

shows that BIRD-VNE has a 15% better acceptance rate when 916

compared to the other algorithms. The improvement in the 917

acceptance rate is a direct result of Theorem 4.5 and is consis- 918

tent for different loads. BIRD-VNE is likely to find a feasible 919

embedding once it passes the consistency enforcement steps 920

1 to 6. 921

On the other hand, RVINE-SP and RVINE-MCF first rely 922

on LP relaxations to solve the non-convex MIP problem, and 923

then round the solution of the relaxation to the nearest inte- 924

ger. This way, RVINE-SP and RVINE-MCF may unnecessarily 925

reject a VNE request by falsely concluding that it cannot be 926

embedded. Moreover, when there is no solution, RVINE-SP and 927

RVINE-MCF tend to spend a significant amount of time search- 928

ing for solutions before eventually rejecting unfeasible requests 929

as shown in Fig. 4-b. 930

2) BIRD-VNE Avoids Backtracking: Fig. 4-a shows the 931

backtrack-free ratio of BIRD-VNE. BIRD-VNE is unlikely to 932

encounter a backtracking, and finds a feasible solution from the 933

first attempt. In this simulation setup, the backtrack-free ratio 934
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Fig. 6. BIRD-VNE Maximum and average approximation Ratio (optimal is
branch and bound).

Fig. 7. Revenue to Cost ratio for α = β = γ = α′ = β ′ = 1.

is greater than 80% regardless of the arrival rate. This demon-935

strates the effectiveness of TOPOLOGY-CONSISTENCY and936

CAPACITY-DISJOINT in pruning the search space by remov-937

ing the virtual links and nodes that can cause backtracking.938

Moreover, in large-scale networks where link bandwidth is not939

a bottleneck, it is possible to ensure a 100% backtrack-free940

search by ensuring that all link mapping domains are capacity941

consistent according to Theorem 4.5.942

3) BIRD-VNE Minimizes and Bounds the Average Cost:943

The approximation ratio is assessed by comparing the cost944

achieved by BIRD-VNE to the optimal cost achieved by branch945

and bound for a substrate network with 30 nodes. As shown946

in Fig. 4-c, the cost achieved by BIRD-VNE is, on average,947

only about 5% higher than the optimal cost (i.e., average ratio =948

about 1.05). But the maximum cost can reach up to 70% higher949

than the optimal cost (maximum ratio = about 1.7).950

4) BIRD-VNE Results in the Best Revenue to Cost Ratio:951

The revenue to cost ratio reflects the average profit of BIRD-952

VNE, and is 20% better than RVINE-MCF as shown in \figure-953

name Fig. 7. This is expected for two reasons. First, BIRD-VNE954

is a 1
2 -approximation of the optimal cost, which contributes955

to the R/C ratio by minimizing the cost. Second, we have956

shown numerically that BIRD-VNE has the highest acceptance957

rate, which directly reflects on the total generated revenue by958

accepting as many virtual network requests as possible.959

5) BIRD-VNE Link Utilization is Better: The average link960

utilization achievable under BIRD-VNE is comparable to that961

achievable under RVINE-MCF when considering various inter-962

arrival rates, as shown in Fig. 10. However, for higher loads,963

the average link utilization of BIRD-VNE is less that that of964

RVINE-MCF, which confirms our earlier argument stating that965

Fig. 8. Acceptance rates of BIRD-VNE under different arrival rates.

Fig. 9. Mobility-aware Bird-VNE improves the migration ratio.

Fig. 10. Average substrate node and link utilization.

BIRD-VNE tends to allocate shorter substrate paths to the vir- 966

tual links with higher demands. On the other hand, the average 967

node utilization achieved by BIRD-VNE is generally greater 968

than that achieved by RVINE-MCF due to the better acceptance 969

rates. 970

6) BIRD-VNE Reduces the Migration Ratio: Fig. 9 shows 971

the effectiveness of BIRD-VNE in minimizing the migration 972

ratio. In this figure, Mobility-Aware Bird-VNE corresponds 973

to γ (v) = 1 and Bird-VNE corresponds to γ (v) = 0. Even 974

when the migration cost is low (i.e., γ (v) = 1), BIRD-VNE 975

can reduce the migration ratio by at least 10%. This gain can 976

be increased by increasing the migration cost (γ ), which is a 977

design trade-off. Observe that because of mobility, about 50% 978

of the accepted virtual networks face migrations. 979

VII. DISCUSSION AND PRACTICAL CONSIDERATIONS 980

Several architectural and practical considerations pertain to 981

the discussed virtual network network embedding solution. We 982

discuss some possible approaches to address these challenges. 983
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Fig. 11. Architecture: Mobile nodes are connected through wireless infrastruc-
ture with integrated compute resources that host clones of mobile nodes and
actually implement the requested virtual networks.

Topology changes: Substrate nodes are generally resources984

limited (e.g. smart-phones) and mobile which results in net-985

work topology changes that require updating all the substrate986

paths computations following any topology change. Updating987

all paths, R, can be addressed architecturally or algorihmically.988

Fig. 11 shows a possible architecture utilizing the emerging989

mobile edge computing to address this challenge by augment-990

ing a wireless network infrastructure with distributed cloud991

resources. Each mobile node replicates its data and states (e.g992

sensors measurements, locations) to a corresponding clone that993

is proximate to the node (i.e. at the access point or cellu-994

lar site). Clones are the actual entities that shall execute the995

virtual network requests. Cloning the mobile nodes provides996

several advantages over executing the virtual networks directly997

on the mobile nodes including: (i) providing manageable and998

salable processing and link capacity according to virtual net-999

works demands, (i i) facilitating energy conservation of the1000

actual mobile nodes which may be power limited (e.g. sen-1001

sor nodes), (i i i) preventing excessive latency compared to1002

replicating nodes’ data in distant data-centers, and (iv) pre-1003

venting substrate network topology changes due to mobility.1004

Unfortunately, the architecture shown in Fig. 11 is not sufficient1005

to prevent updating R in some cases such as back-hauling links1006

or node failures or changes in clones deployment. Fortunately1007

updating the set of all paths R is not as expensive as comput-1008

ing it from scratch and has remarkable long research history.1009

The authors in [40], for example, study the combinatorial prop-1010

erties of graphs that can be used to update all shortest paths1011

in dynamic networks in O(n2 log3 n) which is not a dominant1012

factor in the complexity analysis of our proposed techniques as1013

discussed in Section IV and Section V.1014

Mobility Model: the general RWP model cannot cap-1015

ture exact mobility patterns especially in walking scenarios.1016

However, the recent modifications of the RWP model in [36]1017

captures the mobility patterns almost exactly at the accuracy of1018

cell level in 3GPP cellular networks which is suitable for sev-1019

eral applications such as virtual sensor networks, and virtual1020

content delivery networks. If a finer grain location resolution1021

(e.g. locations of pedestrians at few meters error) were needed1022

by some applications, the RWP model may fail to capture the1023

exact mobility trajectory. In such cases, one can employ other1024

mobility models that characterize smooth movements of mobile1025

nodes (see for e.g. the Semi-Markov Smooth model [41]), or 1026

employ model independant trajectory tracking methods (e.g. 1027

Kalman filtering) to track nodes locations. Such methods are 1028

outside the scope of this paper. 1029

Multipath adoption: If multipath were allowed for mapping 1030

virtual links, we conjecture improvements particularly in the 1031

acceptance rate [11]. First, multipaths shall allow online path 1032

optimization, and traffic splitting for highly demanding virtual 1033

links. Second, multipaths shall increase link utilization mak- 1034

ing the most benefits of the network. Third, multipaths shall 1035

facilitate a better sharing of mobile wireless nodes. Finally, 1036

multipaths shall allow balancing the substrate network traffic 1037

used by the virtual networks and already existing services. 1038

VIII. CONCLUSION 1039

The coupled constraints in the virtual network embedding 1040

problem make it intractable. Instead of over-provisioning the 1041

physical network and splitting virtual links across multiple 1042

paths, we propose VNE techniques that effectively prune the 1043

search space, thereby reducing the execution times by avoid- 1044

ing backtracking, while not compromising the quality of the 1045

obtained VNE solutions, expressed in terms of acceptance 1046

rates. Our simulations show that the likelihood of perform- 1047

ing a backtrack-free search is greater than 80%, confirming 1048

the effectiveness of the proposed pruning techniques. These 1049

techniques are then exploited to design a polynomial-time, 1050
1
2 -approximation VNE algorithm. We show analytically and 1051

empirically that the proposed algorithm outperforms MIP- 1052

based algorithms in terms of the revenue to cost ratio and the 1053

acceptance rate while minimizing the migration cost arising due 1054

to the mobility of physical nodes. 1055
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