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Abstract—Cognitive radio networks emerge as a promising so-
lution for overcoming shortage and inefficient use of bandwidth
resources by allowing secondary users (SUs) to access the primary
users (PUs) channel so long as they do not interfere with them. The
dynamical spectrum availability makes SU’s packet average delay
one of the most important performance measures of a cognitive
network. It is important to understand the nature of delay, as well
as its dependence on PU behaviors. In this paper, we analytically
model and analyze the dynamics of the spectrum availability and
their impact on the SU’s packet delay. The cognitive network is
modeled as a discrete-time queueing system. PU channel occupancy
is modeled as a two-state Markov chain. Our contribution in this
paper is defining and characterizing the properties of the random
process that describes the availability of the opportunistic resources.
In addition, we apply the mean residual service time concept to
achieve an analytical solution for the queueing delay. Moreover,
inspired by the slotted-Aloha system, we model the packets service
mechanism, and determine the manner in which it depends on
the resources availability. The delay becomes unbounded if the
spectrum availability dynamics are not carefully considered in
network design.

I. INTRODUCTION

The increasing demand and usage of wireless technologies and
applications are causing a spectrum shortage [1]. This shortage
in spectrum supply is, however, shown to be due not to the
scarcity of the spectrum resource, but rather to the current static
allocation methods [2]. The dynamic spectrum access provided
through cognitive radios is considered as a promising solution for
overcoming this spectrum shortage problem [3]–[5]. In addition
to primary users (PUs), which have the priority to access a
number of communication channels, secondary users (SUs),
which implement cognitive radios, may access the channels
opportunistically [6]. That in turn improves spectrum utilization
and gives opportunities to SUs to access licensed bands in an
economical way. However, the lack of access priority could cause
a drastic performance degradation to the cognitive users.

A. Motivation

The random availability of PUs channel leads to intermittent
SU transmissions, which in turn affects delay performance [7]. It
is important to analyze SU’s average packet delay and determine
the manner in which it depends on the randomly available
resources.

The delay analysis has its consequences on cognitive network
design. For a given PUs activity level, SUs might not be able to
meet a certain performance criteria. The required transparency of
the SUs activity could result in excessive packet drops or queue

instability in buffered networks [8]. Hence, modifications need
to be introduced to network settings to make sure it achieves the
desired quality of service (QoS). The parameters that could be
affected may include SUs’ data rates, their numbers, their num-
ber of interfaces, their packet lengths, the number of channels
they can access to, etc.

In this paper we are analyzing the performance of clustered
cognitive network, where number of nodes along with a cluster
head, which equips the cognitive radio, form a cluster. The
cluster heads from different clusters contend to access the
opportunistic resources. This model can very well apply to a
cognitive radio sensor network, where the sensor nodes send their
data to a sink, the cluster head in our model, that accesses to
channels opportunistically. Sensor applications usually generate
data in small rates and hence there is no need for acquiring a
licensed band, and having opportunistic spectrum access can be
enough to achieve a desired QoS.

B. Summary of Contributions

The complexity of analyzing cognitive networks delay perfor-
mance and the broad aspects of such analysis seem to be the rea-
son behind the area being not well investigated. The SUs need to
adapt their operating conditions to the PUs which poss different
transmission characteristics. Different delay components come to
the picture as a result of that. A SU experiences a delay while
identifying and exploiting spectrum access opportunities. To the
best of our knowledge, there are no comprehensive delay models
for cognitive networks in the literature. Hence, more thorough
investigations need to be done in this area.

The availability of the opportunistic resources varies over time
depending on PUs behavior. It turns out that different important
cognitive network characteristics, e.g., the switching process
parameters, are modeled analytically by establishing the model
of the process that describes this availability. To the best of our
knowledge, this research has never been addressed. In addition,
most of the related work do not provide closed-form solutions for
the average delay. Also, there is no much work about modeling
SU’s packets service mechanism, in spite of its importance in
delay performance analysis.

In this paper, we analyze the performance of clustered cogni-
tive radio network modeled as a discrete-time queueing system
where the data queues up at the cluster head. The channel
occupancy is modeled as a Markov chain. The contributions of
this paper are summarized as follows.



• We characterize the properties of the random process that
describes the opportunistically available resources. The
properties of this process lead to the analytical characteriza-
tion of the switching performed and the outage experienced
by cognitive users.

• We apply the mean residual service time concept to derive
the SUs’ packet queueing delay for single as well as batch
arrivals.

• Inspired by the slotted-Aloha system, we statistically char-
acterize the packets service time distribution and hence
the average service delay for single as well as multi-
cluster networks. This delay results from the lack of access
priority. The derived closed-form expression captures the
dependence of this delay on the PUs behavior.

• By providing some numerical results, we show the impor-
tance of our analytical analysis in achieving a desired QoS
and maintaining network stability.

II. RELATED WORK

Due to its great potentials in addressing the spectrum shortage
problem, the cognitive radio network paradigm has attracted sig-
nificant research focus over the past decade, addressing various
different aspects, such as protocol design [9]–[13], spectrum
sensing [14]–[17], resource allocation and management [18]–
[22], performance modeling and analysis [7], [23]–[28], and
spectrum trading and auction [29]–[31], just to name a few.
Delay performance analysis has also received some attention, but
not as much [32]–[38]. In [32], the authors presented queuing
analysis to study delay in cognitive networks. The authors in [32]
obtain the solution of the queues average length for SUs that
content to access PUs channel. The authors in [33] analyzed the
stationary queue distribution for a constant SUs arrival process.
They provided a closed-form expression for the distribution for
the case of two channels, and upper and lower bounds for an
arbitrary number of channels. In [34], the authors analyzed the
delay for a clustered cognitive network. They considered the ser-
vice time to be random and not following a standard distribution.
They ended up analyzing the delay through approximating the
average length of SUs queue size. The authors in [35] considered
a cooperation between secondary and primary users to enhance
the delay performance. In [36], the authors analyzed a cognitive
network transmission delay by considering the distribution of
time through which some opportunistic resources are available.
In our paper, however, we characterize the properties of the
process that describe the evolution of the resource availability
over time. We use this process not only to understand the nature
of delay, but also to obtain the analytical characterization of the
switching mechanism and outage. In [37] the authors proposed
centralized and distributed spectrum access schemes for SUs
with different priority classes. The authors analyzed the blocking
probability and average switching delay. The authors in [38]
developed an admission control technique that guarantee a QoS
requirements in terms of SUs’ packets queueing delay. The
authors assumed the availability of channels holds over a slot
duration. In [39], the authors suggested a pricing strategy for
reusing cellular networks spectrum. The cellular primary usage in
[39] is modeled as a Poisson process. In our paper, we model the
primary users behavior similarly. In [40], the authors used fluid
flow models and effective bandwidth approximation to analyze
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Fig. 1. A single cluster cognitive network

the queueing system in a cognitive network. [41] presented
the residual service time concept and applied it for continuous
systems queueing analysis. The authors in [42] characterized the
service time mechanism of a slotted-Aloha system with either
finite or infinite user population where each user has finite or
infinite buffer capacity.

In our paper, we capture the nature of the volatile spectrum in
cognitive radio networks and its impact on the quality of service
measured in terms of delay.

III. NETWORK MODEL

The cognitive radio network (CRN) has access to N channels
licensed to some PUs. The occupancy of each channel is modeled
as a two-state Markov chain. We are considering a clustered
network, where number of nodes along with a cluster head,
which equips cognitive radio, form a cluster. There are L clusters,
each contend with probability Pc to access the spectrum. Each
cluster is modeled as a discrete-time queueing system where the
data queues up at the cluster head buffer. Fig. 1 illustrates a
single cluster network.

The cognitive radio system works as follows:
• The system is time slotted.
• The traffic arrives to the cluster head follows a Bernoulli

process. The arrivals are independent of each other. Packets
arrive in a batch within each slot. The average number of
arrived packets per slot is λ, which can be viewed of as the
arrival rate per slot.

• Over any available channel, the cluster head sends the data
on a first-in first-serve basis. It switches from a spectrum
to another whenever the last assigned becomes unavailable.

• The service times are assumed to be independent and iden-
tically distributed with an unspecified general distribution.
The service process is assumed to be independent from the
arrival process.

The slotted system assumption is a reasonable widely-used
assumption, e.g. [32], [34], and [38], and many others consider
a similar assumption. In addition to dedicating a part of the slot
for packets transmission, another part is usually assumed to be
dedicated to spectrum sensing and opportunities detection.

The Bernoulli arrival process assumption is more realistic
than the Poisson process in our setting. Unless some sort of
reservations is assumed, which might not be possible to achieve,
assuming a Poisson arrivals for multi-packet messages is not
reasonable.



In addition, our PU models applies to the users in cellular
networks. It is popular to model the calls arrival as a Poisson
process (i.e., exponentially distributed interarrival times), and
the call durations probability distributions as exponential [39].
Successive interarrival times and call durations are independent
of each other in this model.

The SUs’ packet arrival process is independent from the ser-
vice process. As we will explain in Section V, the service process
depends mainly on the size of packets, contention methodology
and the dynamics of the spectrum availability.

As the cluster head plays the role of identifying spectrum
opportunities, we are not concerned with the delay that might
result from sensing errors, as it remains low. This error is usually
ignored when there is a central point involved in detecting
spectrum opportunities (that is the case in [38] and [40] for
example). Our work can serve as the basis for achieving other
analytical delay models that include this delay.

Our model applies to cognitive radio sensor networks, where
sensor nodes send their data to a sink, the cluster head in our
model. The sensors send their data over unlicensed channel in a
triggered based. In other words, once an event is sensed, sensors
report to the cluster head. Sensor applications usually require
large number of sensors to be implemented, each generates data
in small rate. Hence, a scheduled access scheme might not be
suitable and it suffices for nodes to randomly access the channel
shared among them. Within each slot λ packets arrive the cluster
head on average. Through reusing cellular bands, L number
of clusters within the network transmit data, received from the
nodes associated with them, to backbone network.

IV. RESOURCE AVAILABILITY PROCESS

The availability of the opportunistic resources vary over time
depending on the primary users activity and their spectrum
usage pattern. In this section, we model and derive a number of
statistics that describe the random availability of the resources.
We model a number of random processes that are used to define
the resource availability process and characterize its properties.

Single-Channel Availability Model: The evolution of the
availability of a channel i over time is a random process CHi.
This process is a family of random variables {CHi(t) : t ≥ 0},
where each random variable takes a value zero if the channel is
idle and one otherwise. By assumption, this process is modeled
as a continuous-time Markov Chain with two states, labeled 0
and 1. The states 0 and 1 represent the idle and busy events,
respectively. The transition time of the CHi states, denoted by
TCHi , is exponentially distributed with parameters u for the zero
state and v otherwise. The state-transition diagram a channel
occupancy appears in Fig 2(a). All the channels are assumed to
be independent of each other and identical.. The analysis can be
developed similarly if the channels are unidentical. Through out
our analysis we are assuming the transition rates u and v are
known. In practice, if they are not known, they can be estimated
by observing the PUs behavior.

Multi-Channels Availability Model: Studying the pro-
cess corresponding to the joint channels availability is impor-
tant for our subsequent analysis. The joint availability pro-
cess CHjoint is a family of vectors of random variables
{(CH1(t), . . . , CHN (t)) : t ≥ 0}. Since at any time instant,
the realization of CHi, ∀i ∈ {1, .., N}, is either zero or one, the

Fig. 2. (a) Single channel Markov chain. (b) Extended model of the two-channel
availability. (c)Simultaneously occupied channels model.

state space of CHjoint has a size of 2N states. The transition
time between the states is denoted by TCHjoint

.

Lemma 1. The joint availability process is Markov.

Proof. The state transition time for a given state {(CH1 =
ch1, .., CHN = chN )}, where chi ∈ {0, 1} ∀i ∈ {1, .., N},
is given by TCHjoint

= min{TCH1
, . . . , TCHN

}. Since TCHi
,

for ∀i ∈ {1, .., N}, is exponentially distributed with parameter
u1−chivchi , TCHjoint

has also exponential distribution with
parameter equals

∑N
i=1 u

1−chivchi .

A. Resource Availability Process Model

The resource availability process is basically a process that de-
scribes if there are any resources can be accessed by the cognitive
network at any given time. Modeling this process is required for
achieving the analytical analysis for some performance measures.

Definition 1. The resource availability process for N-channel
system (N ≥ 2) is a process CH = {CH(t) : t ≥ 0} such that:
CH(t) = CH1(t)CH2(t) . . . CHN (t).

At any instant of time, the value of CH ∈ {0, 1}. When
CH equals zero, it means that there are some resources can be
used by cognitive users. In other words, there is at least one PU
channel idle. However, when CH equals one, that indicates all
the channels are simultaneously busy and the cognitive network
is going through an outage.

The process CH is not Markovian. The state zero in the state
space corresponds to all states in the CHjoint state space except
the state representing the event of all busy channels, i.e., the state
with CHi = 1,∀i ∈ {1, .., N}. Hence, the transition time of the
state zero, denoted by T0, is a random sum of the transition times
of the corresponding CHjoint states. As proven in Lemma 1, the
probability distribution of the transition time of each CHjoint

state is exponential, hence T0 can not be exponential.

B. Resource Availability Process Statistics

The previously described models are used to derive some of
the process statistics, which are important in making decisions
concerning the applications that are admissible by the cognitive



network. The cognitive users rate of switching, the cognitive
network probability of outage, and the rate of outage, are
important performance measures. It is of interest to obtain the
analytical relationship between those statistics and the dynamics
of the spectrum availability.

Switching Model: To find the rate of switching, denoted
by rsw, we extend the CHjoint chain such that each state is
represented by (CH1, CH2, . . . , CHN , n) where n ∈ {1, .., N}
indicates the last channel the cluster head was assigned to. For
a two-channel system, we show in Fig. 2(b) the state-transition
diagram for this extended Markov chain. The dashed arrows in
the figure represent transitions that involve channel switching.
By analyzing the chain for N-channel, we get

rsw =
u

(u/v + 1)2
+

(N − 1)v

(v/u+ 1)N
(1)

Where u is a channel idle-to-busy transition rate and v is a
channel busy-to-idle transition rate.

Outage Model: The cognitive radio network outage rate,
the outage probability, and the average outage time formulas
can be derived by modeling the number of channels that are
simultaneously busy. The evolution of the number of occupied
channels over time is a random process {i(t) : t ≥ 0} where i ∈
{0, 1, . . . , N}. This process is modeled as a Markov chain with
N+1 states labeled 0 to N . The state label indicates the number
of simultaneously occupied channels. The ith state transition
time distribution is exponential with parameter iv + (N − i)u
(the proof follows from the proof of Lemma 1). Fig. 2(c) shows
the state-transition diagram for this chain.

The outage rate, denoted by routage, is defined as the rate
at which all channels become simultaneously busy. It can be
obtained by determining the rate at which the state N is visited.
By analyzing the chain we obtain

routage = Nv/(1 + v/u)N (2)

The outage probability, denoted by Poutage, is defined as the
percentage of time during which no resources are available. That
is the probability that the system is in the state N . It can be
expressed as follows

Poutage = 1/(1 + v/u)N (3)

The average outage time, denoted by T outage, is the average
time spent in the state N . It is given by

T outage = 1/(Nv) (4)

V. DELAY MODELING AND CHARACTERIZATION

In this section we are interested in analytically characterizing
the average time required to deliver a packet within the cogni-
tive radio network. We are considering two delay components,
waiting and service delay.

The waiting delay is the time a packet spends at the queue
until it starts being served. If a packet arrives to the system while
there is a packet under service, the remaining of this service time
is included in its waiting time. In addition, if a packet arrives
while the queue is not empty, then the waiting time also includes
the service time of all the packets ahead of it in the queue. In
this section, we achieve the analytical solution for the expected

waiting delay and show the way it is related to the service delay
and hence to the opportunistically available resources.

The service delay is defined as the time between the instant the
packet reaches the head of the queue to the instant it successfully
departs the queue. If the cognitive network has access priority,
it takes only one slot to serve a packet. The service time of
any packet starts and ends at the slot boundaries. However,
since the cluster head has only an opportunistic access to the
channel, it takes integral (random) multiple of the slot duration
to successfully transmit a packet. In this section, we determine
the service time distribution and obtain analytically the manner
in which the expected service time depends on the dynamics of
the spectrum availability.

A. Residual Service Time

We derive the average waiting delay for our system using the
service residual time concept. The concept of the mean residual
service time has been considered for evaluating the performance
of some continuous-time queueing systems [41]. However, to the
best of our knowledge, it has not been considered for evaluating
the performance of discrete-time systems. The analysis made for
continuous-time systems can not be readily applied to discrete-
time systems. In this section, we determine the mean residual
service time for the discrete systems and use it to analyze the
delay performance.

1) Residual Service Time Concept: An arrival to the system
may experience some delay resulting from the residual service
time of one of the packets arrived ahead of it. Let Ri denotes
the residual service time seen by the ith arrival. If the jth packet
is being served when the ith packet arrives, then Ri corresponds
to the remaining time until packet j completes its service. When
packet i arrives while the system is empty, then Ri equals zero.

Fig. 3 illustrates by example the concept of residual time.
In this figure we draw the number of arrivals and departures
over time and show the residual service time corresponding to
each arrival. Xi denotes the service time of the ith arrival.
ti represents the time at which the ith arrival arrives, and t

′

i

represents the time at which the ith arrival leaves the system.
The residual time can take a non zero value only at the instants
at which an arrival occurs.

2) Residual Service Time in Discrete Systems: The evolution
of the residual time over time is random, we showed a sample
path for a simple example in Fig. 3. In continuous systems, the
residual time can take a non zero value at any instants since
an arrival can occur at any time. However, in discrete systems,
the residual time can take a non zero value only at the slot
boundaries. Also, since a service time is integral multiples of
slot duration and it starts and ends at the slot boundaries, the
remaining of a service time as seen by an arrival can only equal
integral multiples of the slot duration.

Let the service time of the ith arrival starts at the beginning
of the kth slot. Assume this service lasts for Xi slots. Let’s
refer to the residual time at the end of a slot k by rk, where
rk is measured in slots. The residual times corresponding to the
arrivals arrive during the service of the ith arrival are denoted by
rk, rk+1, . . . , rk+Xi−1. Their values are Xi− 1, Xi− 2, . . . , 1, 0
slots, respectively. At the end of the first slot of the service time,
the residual time is Xi− 1 slots, and its value decreases by one
slot at the end of the next slot, and keeps doing so until the
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Fig. 3. The concept of residual service time

Fig. 4. A sample path of a server status and the corresponding residual service
time.

service time completes. It equals zero at the end of the last slot
of the service time. See Fig. 4 for illustration.

For an outside observer, any service corresponds to an arrival
arrives right prior to the start of the service. The service that starts
at the kth slot corresponds to an arrival arrives at the begining
of that slot. Since one packet at most can arrive at any given
time slot, no other arrivals can arrive at this particular arrival
instant. The residual times at the beginning of any slot at which
a service starts is zero. See Fig. 4 for illustration.

3) Mean Residual Service Time: According to [41] , the
mean residual time as seen by an arrival is equal to the mean
residual time seen by an outside observer at a random time. This
is valid for any arrivals satisfying the Poisson Arrivals See Time
Averages (PASTA) property, which is the case for the queueing
systems with Poisson arrival process. The question arises here
is what about the Bernoulli arrivals system. Since the Bernoulli
Arrivals See Time Averages (BASTA) property for those systems
is analogous to the PASTA property in continuous-time systems,
we can also define the mean residual time as seen by an arrival
(denoted by R) to be the mean residual time seen by an outside
observer at a random time. We use a graphical argument to obtain
R. The analysis we make applies for single and batch arrivals.
The residual time of an arrival depends on the arrival instant and

not on the number of arrivals arrive at that instant.
The cluster head status over time is random. During any time

slot, it could be either busy serving a packet or idle. When a
packet i starts to be served, the cluster head stays busy for Xi

slots. In Fig. 4, we plot a sample path of the cluster head status.
We also plot the corresponding residual service time sample path,
which we use to obtain the time average of the residual service
time. Consider the time interval [0,τ ], where τ is the time instant
corresponding to the end of the mth slot. We are assuming that
up to the mth slot, Nm packets have already been served. The
time average of the residual time (measured in slots) in this
interval is given by Em = 1

m

∑m
k=1 rk.

Since we know the values of rk’s during the service time of
each packet (as we explained earlier), the sum of the rk over the
m slots can be determined by summing the rk’s corresponding
to the service times. The average time of the residual time can
then be rewritten as

Em =
1

2

Nm

m
(

∑Nm

i=1Xi
2

Nm
−
∑Nm

i=1Xi

Nm
)

Taking the limit as m→∞, assuming it exists, we obtain

lim
m→∞

Em =
1

2
lim

m→∞

Nm

m
lim

m→∞
(

∑Nm

i=1Xi
2

Nm
−
∑Nm

i=1Xi

Nm
)

The left-hand side limit is the time average of the residual time.
The limits on the right-hand side are the departure rate (which
equals the arrival rate), the service time second and first moments
respectively. Assuming that the time averages can be replaced
by the ensemble averages, the average residual time can then be
expressed as

R =
1

2
λ(X2 −X) (5)

where X and X2 denote the service time first and second
moment respectively.

B. Waiting Delay

We derive the average waiting delay for our system in terms
of the average service residual time.

1) Single Arrival Systems: The per-packet average waiting
time W can be expressed in terms of the average residual time
as W = R/(1− ρ), where ρ = λX is the utilization factor [41].
ρ should be less than unity for a stable system [43] and λ is the
arrival rate per slot. Replacing R with its expression presented
in Equation (5) yields

W =
1

2

λ(X2 −X)

(1− ρ)
(6)

2) Batch Arrival Systems: The average waiting time of an
arbitrary chosen packet in batch arrival systems is consisting of
two independent components. One is the average waiting time
of the batch that the packet belongs to, Wb. The other is the
average waiting time within the batch Ww. The average waiting
time Wb is the same as the average waiting time of the first
packet in the batch. Wb equals average residual time of the first
packet arrive in the bach plus the average service time of all the
packets ahead of the batch in the queue. Wb can be expressed
as

Wb =
R+ ρWw

(1− ρ)
(7)



Denote by A the batch size. The first moment and second
moment of A are denote by λ, and λ2 respectively. For a fixed
batch size a, the average waiting of a packet within a batch
is given by X (a2−a)

2a . The probability that an arbitrary chosen
packet is in a batch of size a is expressed as aPa/λ, where Pa

is the probability that a batch has a size a. Therefore, Ww for
an arbitrary packet is expressed as

Ww =
1

2
X(λ2 − λ) (8)

From Equation (7) and (8), the per-packet mean waiting time
of a batch arrival system can be written as

W =
λ2(X2 −X) +X(λ2 − λ)

2λ(1− ρ)
(9)

C. Service Delay

The service time distribution is a prerequisite for analyzing the
delay performance. The analytic solution of the expected waiting
delay given in Equations (6) and (9) involves both the first and
second moments of the service time. Delay analysis can still be
made if the service time distribution is not realized. However,
the exact analysis appears to be very difficult. Depending on
the model of the system under consideration, the service time
can turn out to be not following any standard distribution. Let’s
assume that a channel needs to be available for an S amount
of time continuously so that a packet can be transmitted. Let’s
also assume that the cluster head starts to serve packets whenever
there is a channel available. It is possible that a cluster head starts
to serve a packet and then before it completes its transmission,
the channel gets occupied by a PU. This could happen many
times in a random manner. This causes the service time to be
random and not following any standard distribution.

Inspired by the slotted-Aloha system presented in [41] and
[42], we make the following arguments. Let S denotes the slot
duration. Corresponding to our model, at any given slot the
cluster head transmits a packet ready for service if there is
idle channel. Given that the availability of spectrum is time-
variant with some probability channel remains available over the
entire slot duration and transmission succeeds. If transmission
failed, cluster head retransmits (with probability Pc in case there
are number of clusters contend for channels) the packet in the
successive slot until transmission succeeds. Denote by µ the
probability that the time spent in serving a packet is one slot only.
µ can be viewed as the service rate per slot. The service time
(measured in slots) needed by the cluster head to successfully
transmit a packet is geometric random variable with parameter
µ. We derive the expression of µ for the single and multi-cluster
systems.

1) Single Cluster Systems: A packet transmission is suc-
cessful within a time slot if there is at least one chan-
nel available during at least the slot duration. The prob-
ability of transmission success can be written as µ =
Pr{no outage}Pr{channel idle time > S}.

Using Equation (3) which gives the probability of no cognitive
network outage and considering the exponential distribution of
channel idle time, we obtain

µ = (1− 1

(1 + v/u)N
)e−uS (10)
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The packet average delay (denoted by T ) consists of the
average waiting delay and the service time average delay. From
Equation (6), T for the single arrival system can be written as

T = X +
1

2

λ(X2 −X)

(1− λX)
(11)

2) Multi-cluster Systems: Clusters contend with probability
Pc to access primary user channels in multi-cluster system. We
illustrate in Fig. 5 arrivals state transition diagram for single-
arrival multi-cluster system. At any given slot, a packet at cluster
head queue waits (i.e., it is in the state labeled WAITING in
Fig. 5) for service with probability ρ, which is the probability
that the cluster head is loaded. When the packet reaches the
head of queue (i.e., it makes transition to state ACQUIRING),
with probability Pn the cluster head acquires an idle channel.
Pn is the probability that there is no outage. The cluster
head contends over the acquired channel with probability Pc.
The cluster transmits the packet with probability PnPc (makes
transition to state TRANSMITTING). With probability Pt the
transmission succeed and the packet leaves the system. Pt is the
probability that no collision occurred over the acquired channel
and no primary user reclaims the channel usage right. The
average service time X corresponds to the average time spent in
ACQUIRING and TRANSMITTING states. X is given by 1/µ.
Denote the number of clusters by L. µ can be expressed as

µ = e−uS
( u/v

1 + u/v

)N
(1− Pc)

L
L∑

l=1

(
L− 1

l

)( Pc

1− Pc

)l
N∑
i=1

(
N

i

)
(u/v)i

( i− 1

i

)l−1
(12)

VI. PERFORMANCE EVALUATION AND ANALYSIS

In this section, we numerically analyze the impact of the PU
behaviors on the statistics of the resource availability process.
We also measure the delay performance and study its dependence
on the dynamics of the spectrum availability. For convenience,



TABLE I
DESCRIPTIONS OF FREQUENTLY USED SYMBOLS

Parameter Description
u A channel idle-to-busy transition rate
v A channel busy-to-idle transition rate
N Number of channels
routage Outage rate
T idle Average channel idle interval
T busy Average channel busy interval
λ Arrival rate per slot
S Time slot duration
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Fig. 6. Outage probability vs T idle/T busy

a reference of used network parameters and their descriptions is
given in Table I.

A. Resource Availability Process Statistics Analysis

In Fig. 6, we plot the probability of outage (Equation (3))
versus the ratio between the average channel idle time to the
busy time. Here we refer to the average channel idle and busy
interval by T idle (which equals 1/u, where u is the PU idle to
busy transition rate) and T busy (which equals 1/v, where v is
the PU busy to idle transition rate) respectively.

As the ratio T idle/T busy increases, the outage probability
decreases. When this ratio is much less than one, the outage
probability can be close to one. Also, as the number of channels
N increases, the outage probability decreases. Increasing the
number of channels gives the cognitive network more chances
to find an idle one. However, as T idle/T busy increases, the
outage occurs with less probability and the effect of having more
channels on this probability becomes less. This is an important
observation to consider when it comes to making decision about
the number of channels a cluster head needs to be able to access
to.

Fig. 7 plots the effect of the PUs activity on the outage rate,
as expressed by Equation (2). The observation we make here is
when T idle is low (1/u < 1) and T idle is less than T busy (i.e.,
v < u), as the value of T busy decreases, so does the outage
rate routage. However, for large T idle, as the T busy increases,
the routage decreases. One thinks that the lower the value of
the T busy is, the better the performance. For example, if the
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Fig. 7. Outage rate vs T idle

PUs are a cellular network users, one thinks the smaller the
average call duration, the better the SUs performance. However,
Fig. 7 indicates for a large call interarrival time, the longer
the call duration, the less the outage rate. The trend for the
outage probability change is different though, as shown Fig.
6. In other words, as the calls durations increases, the outage
probability decreases. That should make sense since the outage
rate illustrates how often the network goes through outage, but
does not tell how long the outage is or what its probability is. The
different changing trends shows the importance of considering
all the different resource availability statistics if one desires
to determine if an application is admissible by the cognitive
network.

The switching rate is also an important parameter to consider
when it comes to designing a multi-channel cognitive network.
In practice, there is a communication overhead and energy
consumption associated with switching. The graph of switching
rate behavior, as described by Equation (1), versus T idle is shown
in Fig. 8. An important conclusion we point out from this figure
is that the impact of the number of channel on the performance
varies depending on the value of T idle. For a given v value
(i.e., T busy), when u > 1 (T idle is small) and T idle is less
than T busy (i.e., v < u), the larger the number channels N ,
the higher the switching rate. This is because when the time
in which a channel remains idle gets smaller on average, the
cluster head needs to switch across the channels more often.
As T busy increases, the switching rate decreases. It might seem
appealing to decrease the switching rate, however, as v and N
decrease, the outage probability increases. In fact, the increase
in the outage probability is the reason behind the decrease in
the switching rate as no switching occurs during the outage.
Similar to the observation we made about the outage rate, the
trend of switching rate change is different than that for the outage
probability. This confirms our conclusion about the importance
of considering all these statistics for making designing decisions
concerning the cognitive network.
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Fig. 8. Switching rate vs T idle
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Fig. 9. Average delay vs. number of PU channels

B. Delay Analysis

For a given SUs’ and PUs’ traffic parameter, we plot in Fig. 9
the delay performance for the single-arrival single-cluster system
(Equation (11)) versus number of channels. The average delay
decreases as number of channels increases, which is intuitive.
However, how fast delay decreases and what value the delay
converges to depend on the slot duration, the SUs’ packet arrival
rate, and the PUs usage of the channels reflected via the rate at
which a channel make transition from idle to busy (u) and from
busy to idle (v).

As we explained earlier, as u increases, the outage probability
increases. Also, the probability that a channel remains idle for
an entire slot duration S decreases. Hence, the average service
rate decreases. Since the cluster head uses only one channel at
any given time to send data, having more channels while u is
large does not improve the performance considerably.

Note that in this and all the subsequent figures, if the results
are not shown for a range of values within the horizontal axis,
this implies that the delay is unbounded. For a given network
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Fig. 10. Average delay vs average of channel availability time (T idle)

setting, if the cluster head can not keep up with the arrival rate, in
other words service rate is less than the arrival rate, the network
becomes unstable and the delay increases without bounds.

Fig. 10 illustrates how Equation (11) behaves when T idle

changes. As T idle increases, the performance improves. How-
ever, the significance of the improvement depends on some other
network settings. We observe from this figure that increasing the
number of channels for highly loaded network has more impact
on the delay performance than the lightly loaded. Similarly, the
impact of increasing the slot duration becomes more severe as the
value of λ increases. Increasing the slot duration decreases the
probability that a channel can remains idle over the slot duration.
Hence, the average service time increases, and so consequently
does the average waiting time, especially for large values of λ.
The range of T idle through which the system is unstable varies
depending on the primary and cognitive network settings. In
order to maintain the network stability, it is necessary to design
the cognitive network such that the traffic arrival rate does not
exceed the service rate, which is as expressed in Equation (10)
is a function of primary users’ traffic parameter.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we have analyzed the dynamics of the spectrum
availability and studied the delay performance of a clustered
cognitive network. We have introduced the concept of the
resource availability process and characterized its properties as a
way to measure the network performance. We have also obtained
the analytical characterization of the relationship between the
packets delay and the dynamics of the spectrum availability. The
opportunistically available resources need to be carefully consid-
ered in making design decisions regarding the cognitive network
to maintain its stability. Studying the gain of the multiple-
interface transmission on the performance for both discrete-time
and continuous-time systems is underway.
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