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Abstract—We propose an integrated, energy-efficient, resource
allocation framework for overcommitted clouds. The framework
makes great energy savings by 1) minimizing Physical Machine
(PM) overload occurrences via VM resource usage monitoring
and prediction, and 2) reducing the number of active PMs via
efficient VM migration and placement. Using real Google data
consisting of a 29-day traces collected from a cluster containing
more than 12K PMs, we show that our proposed framework
outperforms existing overload avoidance techniques and prior
VM migration strategies by reducing the number of unpredicted
overloads, minimizing migration overhead, increasing resource
utilization, and reducing cloud energy consumption.

Index Terms—Energy efficiency, VM migration, workload
prediction, cloud computing.

I. INTRODUCTION

Reducing the energy consumption of datacenters has re-
ceived a great attention from the academia and the industry
recently [1, 2]. Recent studies indicate that datacenter servers
operate, most of the time, at between 10% and 50% of their
maximal utilizations. These same studies, on the other hand,
also show that servers that are kept ON but are idle or lightly
utilized consume significant amounts of energy, due to the
fact that an idle ON server consumes more than 50% of its
peak power [3, 4]. It can therefore be concluded that in order
to minimize energy consumption of datacenters, one needs to
consolidate cloud workloads into as few servers as possible.

Upon receiving a client request, the cloud scheduler creates
a virtual machine (VM), allocates to it the exact amounts
of CPU and memory resources requested by the client, and
assigns it to one of the cluster’s physical machines (PMs).
In current cloud resource allocation methods, these allocated
resources are reserved for the entire lifetime of the VM and
are released only when the VM completes. A key question,
constituting the basis for our work motivation, that arises now
is to see whether the VMs do utilize their requested/reserved
resources fully, and if not, what percentage of the reserved
resources is actually being utilized by the VMs. To answer
this question, we conduct some measurements on real Google
traces1 [5] and show in Fig. 1 a one-day snapshot of this
percentage. Observe that only about 35% of the VMs’ re-
quested CPU resources and only about 55% of the VMs’

This work was supported in part by NSF CAREER award CNS-0846044.
1It is important to mention that Google, as reported in the traces, allocates

containers instead of full VMs when handling task requests. However, our
framework remains applicable regardless of whether tasks are handled by
containers or by full virtualization. Throughout this work, we refer to the
task requests submitted to the Google cluster by VM requests.
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Fig. 1. One-day snapshot of Google cluster traces: percentage of utilized
resources among all reserved resources.

requested memory resources are actually utilized by the VMs.
Our study clearly indicates that cloud resources tend to be
overly reserved, leading to substantial CPU and memory
resource wastage. Two main reasons are behind this over-
reservation tendency: First, cloud clients usually do not know
the exact amounts of resources their applications would need,
so they tend to overestimate them in order to guarantee a safe
execution. Second, due to and depending on the nature of the
applications hosted on the PMs, the level of utilization of the
requested resources may change over time and may even rarely
reach its peak, making it impossible for the VM to use the full
amount of its requested resources.

Resource overcommitment [6, 7] is a technique that has been
recognized as a potential solution for addressing the above-
mentioned wastage issues. It essentially consists of allocating
VM resources to PMs in excess of their actual capacities,
expecting that these actual capacities will not be exceeded
since VMs are not likely to utilize their reserved resources
fully. Therefore, it has a great potential for saving energy in
cloud centers, as VMs can now be hosted on fewer ON PMs.

Resource overcommitment creates, however, a new problem,
PM overloading, which occurs when the aggregate resources
demands of the VMs scheduled on some PM does indeed
exceed the PM’s capacity. When this occurs, some or all
of the VMs running on the overloaded PM will experience
performance degradation (some VMs may even crash), possi-
bly leading to violations of service-level agreements (SLAs)
between the cloud and its clients. Although VM migration [8]
can be used to handle PM overloads, where some of the VMs
hosted by the overloaded PM are moved to other under-utilized
or idle PMs, it raises two key challenges/questions:

i) When should VMs be migrated?
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ii) Which VMs should be migrated and which PMs these
VMs should be migrated to?

This paper addresses these two challenges. It proposes
an integrated resource allocation framework that improves
resource utilization, reduces energy consumption, and avoids,
as much as possible, SLA violations in cloud datacenters.
More specifically, our proposed framework:
• predicts future resource utilizations of scheduled VMs,

and uses these predictions to make efficient cloud re-
source overcommitment decisions to increase utilization.

• predicts PM overload incidents and triggers VM migra-
tions before overloads occur to avoid SLA violations.

• performs energy-efficient VM migration by determining
which VMs to migrate and which PMs need to host the
migrated VMs such that the migration energy overheads
and the number of active PMs are minimized.

The effectiveness of our techniques is evaluated and compared
against existing ones by means of real Google traces [5]
collected from a heterogeneous cluster made up of more than
12K PMs.

The remainder of the paper is organized as follows. Section
II discusses prior work. Section III provides an overview of
the proposed framework. Section IV presents our proposed
prediction methods. Section V presents our formulation of the
VM migration problem, and Section VI presents a heuristic
for solving it. Section VII evaluates the effectiveness of the
proposed framework. Finally, Section VIII concludes the paper
and provides directions for future work.

II. RELATED WORK

Smart cluster and host selection [9, 10], energy routing
enhancement [11, 12] and packet-forwarding optimization [13,
14] are some of the techniques that were proposed to minimize
the energy consumption of cloud centers. Our framework
complements these general techniques and uses overbook-
ing/overcommitment to minimize the number of ON PMs. In
our previous work [15], we proposed a technique that reduces
energy consumption of datacenters by limiting/controlling the
number of active PMs while still supporting the demanded
VM workload. It does so by exploiting predicted future
resource demands to reduce the number of active/ON PMs,
and scheduling newly submitted VMs on the selected PMs to
increase resource utilization and reduce energy consumption.
In this paper, our focus is on PM overcommitment techniques
that increase resource utilization (and thus also reduce energy
consumption) by essentially assigning VMs to a PM in excess
of its real capacity, anticipating that each assigned VM will
only utilize a part of its requested resources. Our proposed
framework basically consists of first determining the amount
of PM resources that can be overcommitted by monitoring
and predicting the future resource demands of admitted VMs,
and then handling PM overloading problems, which occur
when the aggregated amount of resources utilized by the
VMs exceeds a PM’s capacity. Our framework handles PM
overloads by predicting them before occurring and migrating

VMs from overloaded PMs to other under-utilized or idle PMs
whenever an overload occurs or is predicted to occur. We
review next how our framework differs from prior overload
avoidance and VM migration techniques in overcommitted
clouds.

A. Overload Avoidance Techniques

One approach proposed in [16–18] to handle PM overloads
consists essentially of triggering VM migrations upon detect-
ing overloads. This stops VMs from contending over the lim-
ited resources, but can clearly result in some SLA violations.
To address this limitation, the techniques presented in [19–25],
which are referred to as threshold-based techniques, propose
to trigger migrations as soon as the PM’s utilization exceeds a
certain threshold, but before an overload actually takes place.
The assumption here is that there is a high chance that an
overload occurs when the PM’s utilization exceeds the set
threshold. The threshold could be set statically as in VMware
[19] and as in [20–22], where the threshold is typically set to
90% utilization; or dynamically as in [23–25], where it is tuned
for each PM based on how fluctuating the PM’s workload
is. The higher the PM’s utilization fluctuations, the lower the
PM’s selected threshold and vice versa. Although threshold-
based techniques reduce overloads, they put a limitation on the
utilization gains that can be achieved as they leave a certain
unutilized slack for each PM. Furthermore, these techniques
can trigger many unnecessary migrations as exceeding the set
threshold does not necessary mean that an overload is going
to happen.

To tackle these limitations, we propose a prediction-based
overload-avoidance technique that predicts future resource
demands for each scheduled VM so that overloads can be
foreseen and migrations can be triggered ahead of time.
These predictions also help us decide where to place the
newly submitted VMs so that the utilization gains due to
overcommitment are increased while avoiding overloads as
much as possible.

There have been previous attempts to predict the resource
demands of cloud applications [26–28]. Fourier transformation
[26] and SVM predictors [27] were used to extract periodic
patterns from the traces of certain cloud applications. The
extracted patterns were used later to predict the resource
demands for those applications. MapReduce jobs were profiled
in [28] with the aim of predicting the resource demands
for newly submitted instances of those jobs. Our prediction
module differs from the previously proposed offline predictive-
based techniques [26–28] in that it uses a customized adaptive
Wiener filter [29, 30] that learns and predicts the resource
demands of the clients’ scheduled VMs online without requir-
ing any prior knowledge about the hosted VMs. The closest
work to our proposed predictive technique is the work in [31],
where the authors developed an online scheme called Fast Up
Slow Down (FUSD) that predicts the future demands of the
scheduled VMs and that triggers migrations to avoid overloads.
The FUSD scheme [31] and the threshold-based overload
avoidance techniques [20–22] are used as benchmarks where
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we show in our evaluations that our proposed prediction tech-
nique not only reduces the number of unpredicted overloads,
but also achieves greater energy savings when compared to
those benchmark techniques.

B. VM Migration Techniques

Live migration is now available in VMware [19] and Xen
[32] where the downtime that the clients experience due to
the migration process is extremely low and ranges between
tens of milliseconds to a second [33]. Despite the maturity
of the VM migration technology, it is still challenging to find
efficient resource management strategies that decide what VMs
to migrate and what PMs should be the destination for each
migration when an overload is encountered.

Largest First heuristics [34–37] addresses this challenge
by moving VMs with the largest resource demands to the
PMs with the largest resource slacks while trying to minimize
the number of needed migrations. Several enhancements were
added to this heuristic in [38, 39] with the aim of placing
VMs that often communicate with each other close to one
another. The main limitation of all the previous heuristics is
that they completely ignore the energy overhead associated
with migrations.

The authors in [40, 41] proposed migration policies that
take migration cost into account. One of the drawbacks of
the approach presented in [40] lies in its limitation to VMs
with single resource (CPU). Sandpiper [41] is a multi-resource
heuristic that aims at moving the largest amount of resources
from the overloaded PM with the least cost. However, both
works of [40, 41] share a common limitation as they com-
pletely ignore the power state of the PMs in the cluster.
Although these approaches may move VMs that have low
migration cost, there may be no already-ON PMs that have
enough slack to host the migrated VMs. This forces turning
PMs from sleep to ON to host the moved VMs, which comes
with a high energy cost [15, 42] and increases the number of
ON machines in the cloud cluster, leading to larger energy
consumption.

Unlike previous works, our proposed framework has an
energy-aware migration module that makes migration deci-
sions that minimize the total migration energy overhead, which
is made up of the energy spent to move VMs and that to switch
PMs ON to host the migrated VMs. Our experimental studies
presented in Section VII show that our proposed migration
method achieves higher energy savings and consolidates the
workload in fewer PMs when compared to both the Largest
First and Sandpiper heuristics, discussed above.

III. PROPOSED FRAMEWORK

Our proposed framework is suitable for heterogeneous cloud
clusters whose PMs may or may not have the same resource
capacities. Although our framework is extendable to any
number of resources, in this paper, we consider two resources:
CPU and memory. Thus, a PM j can be represented by
[Cjcpu, C

j
mem], where Cjcpu and Cjmem are the PM’s CPU and

memory capacities. Throughout, let P be the set of all PMs in
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Fig. 2. Flow chart of the proposed framework

the cloud cluster. Recall that a client may, at any time, submit
a new VM request, say VM i, represented by [Ricpu, R

i
mem]

where Ricpu and Rimem are the requested amounts of CPU and
memory. Whenever the client no longer needs the requested
resources, it submits a VM release request. Throughout, let V
be the set of all VMs hosted by the cluster.

In this section, we provide a brief overview of the different
components of the proposed framework so as to have a global
picture of the entire framework before delving into the details.
As shown in Fig. 2, our framework has the following modules:

A. Resource Predictor

A separate Resource Predictor module is dedicated to each
VM scheduled on the cluster. The Resource Predictor module
for VM i consists of two predictors (one for CPU and one for
memory) that monitor and collect the VM’s CPU and memory
usage traces, and use them, along with other VM parameter
sets (to be learned online from the VM’s resource demands
behaviors), to predict the VM’s future CPU and memory
demands, P icpu and P imem. These predictions are calculated
for the coming τ period and are done periodically at the end
of each period. Detailed description of how predictors work
and how these parameters are updated are given in Section IV.

B. Overload Predictor

Each PM in the cluster is dedicated an Overload Predictor
module. The Overload Predictor module assigned for PM
j fetches the predicted CPU and memory demands for all
the VMs that are hosted on that PM and calculates PM j’s
predicted aggregate CPU and memory demands, U jcpu and
U jmem respectively, as follows:

U jcpu =
∑

i∈V :θ(i)=j

P icpu and U jmem =
∑

i∈V :θ(i)=j

P imem

where θ : V → P is the VM-PM mapping function, with
θ(i) = j meaning that VM i is hosted on PM j. The
module then compares the calculated aggregate CPU and
memory demands, U jcpu and U jmem, with PM j’s supported
CPU and memory capacity, Cjcpu and Cjmem. If U jcpu > Cjcpu
or U jmem > Cjmem, then the Overload Predictor notifies the
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Cluster Manager that PM j is expected to have an overload
in the coming period. The Overload Predictor also forwards
to the Cluster Manager the predicted CPU and memory
demands, P icpu and P imem, for each VM i hosted on PM j.
These predictions will be used by the Energy-Aware Migration
module to decide what VM(s) to keep, what VM(s) to migrate
and to where the migrated VM(s) should be moved such that
the predicted overload is avoided in future. If no overload
is predicted on PM j, then the Overload Predictor module
forwards to the Cluster Manager the predicted CPU slack
and memory slack for PM j, referred to by Sjcpu and Sjmem
respectively, which are calculated as follows:

Sjcpu = Cjcpu − U jcpu and Sjmem = Cjmem − U jmem (1)

The CPU and memory slacks on PM j need to be known
to the Cluster Manager as it may decide to place a VM (a
newly submitted VM or a migrated VM) on PM j and thus
the Cluster Manager needs to make sure that enough slacks
are available on the PM to support the resource requirements
of the newly placed VM.

As expected with any prediction framework, it is also
possible that our predictors fail to predict an overload. We
refer to such incidents as unpredicted overloads, which will be
eventually detected when they occur as the Overload Predictor
also tracks how much resources all the VMs scheduled on
the PM are actually using over time. For any predicted PM
overload, VM migration will be performed before the overload
actually occurs, thus avoiding it. But for each unpredicted PM
overload, VM migration will be performed upon its detection.
All VM migrations are handled by the Energy-Aware VM
Migration sub module in the Cluster Manager.

C. Cluster Manager

This module is connected to the Overload Predictor modules
of each PM in the cluster and is made up of two sub modules:

1) Energy-Aware VM Migration: Let Opm be the set of all
PMs that are predicted to have an overload. This sub module
determines which VM(s) among those hosted on the PMs in
Opm need to be migrated so as to keep the predicted aggregate
CPU and memory demands below the PM’s capacity. To make
efficient decisions, the module needs to know the energy costs
for moving each VM among those hosted on the PMs in Opm.
We use the notation mi to refer to the cost (in Joules) for
moving the ith VM. This module also determines which PM
each migrating VM needs to migrate to. Such a PM must
have enough CPU and memory slack to accommodate the
migrated VM(s), and thus the module needs to know the
available resource slacks on all the PMs in the cluster that are
not predicted to have an overload. These are provided to the
module as input (through the Overload Prediction module) in
addition to the ON-sleep states of the PMs, γ, where the state
function γ(j) returns PM j’s power state (ON or sleep) prior to
migration. After performing the required migrations, the VM-
PM mapping θ and the ON-sleep PM state γ get updated.
Details on how the the migration problem is formulated and

how it is solved by our module are provided in Sections V
and VI.

2) Scheduler: This sub module decides where to place
newly submitted VMs and also handles VM release events.

The new VM placements are handled with two objectives
in mind: saving energy and minimizing the PM overload
occurrence probability. When the client requests a VM, the
Scheduler places the VM request on a sleeping PM only if
no ON PM is predicted to have enough CPU slack (Scpu)
and enough memory slack (Smem) to provide the requested
CPU and memory resources of the submitted VM request. The
sleeping PM with the largest capacity (Ccpu ×Cmem) in that
case is switched ON and is selected to host the submitted VM
request. On the other hand, if multiple ON PMs have enough
predicted CPU and memory slacks to host the submitted VM
request, then the predicted slack metric (defined for a PM j
as Sjcpu×mem = Sjcpu × Sjmem) is calculated for each one of
those PMs. The ON PM with the largest predicted slack metric
among those that can fit the VM request is selected to host
the submitted VM.

The intuition behind our placement policy is as follows: It
is better to host a newly submitted VM request on an ON
PM, so as to avoid wakening up asleep machines. This saves
energy. If there is no option but to place the VM request on
a sleeping PM, then the request is placed on the sleeping PM
that has the largest capacity as this PM can fit a larger number
of VM requests that might be received next, which reduces the
chances of waking up another sleeping PM in future. On the
other hand, if multiple ON PMs can fit the submitted VM
request, then the one with the largest predicted slack is picked
to host the submitted VM request so as to decrease the chances
of having an overload after that placement. The product of the
CPU and memory resources is used to combine the server’s
multiple resources into a single sorting metric. This metric is
used to decide which sleeping PM has the largest capacity or
which ON PM has the largest predicted slack when comparing
two PMs.2

A Resource Predictor module is constructed for the new
VM after assigning it to a PM. The Resource Predictor module
consists of two predictors (one for CPU and one for memory)
and will be used to monitor the resource demands of the VM
and to make future demand predictions, as described earlier.

Upon receiving a VM release from the client, the Scheduler
releases the VM’s allocated CPU and memory resources, frees
all system parameters associated with the VM (e.g., predic-
tors), and updates the aggregate CPU and memory predictions
of the hosting PM accordingly. The PM is switched to sleep
to save energy if it becomes vacant after releasing the VM.

2It is worth mentioning that there exists metrics other than the product that
can be used to combine the multiple resources. The summation of the CPU
and memory resources can be used for example as a combining metric. In
our framework, we selected the product metric over the summation metric as
experiments in our prior work [15] showed that for the Google traces, the
product metric makes slightly more compact VM placements when compared
to the summation metric. The other metrics mentioned in [43] such as the Dot
Product and the Norm-Based Greedy were not considered in our framework
due to their high computational overhead.
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IV. VM RESOURCE PREDICTOR

We explain in this section how a predictor for a scheduled
VM predicts its future resource demands in the coming τ
minutes, where the term resource will be used to refer to either
CPU or memory. In our framework, we choose to use the
Wiener filter prediction approach [29, 30] for several reasons.
First, it is simple and intuitive, as the predicted utilization is
a weighted sum of the recently observed utilization samples.
Second, prediction weights can easily be updated without
requiring heavy calculations or large storage space. Finally,
it performs well on real traces as will be seen later.

Let n be the time at which resource predictions for a
VM need to be made. The following notations will be used
throughout:
• z[n− i]: is the VM’s average resource utilization during

period [n− (i+ 1)τ, n− iτ ] minutes.
• d[n]: is the VM’s actual average resource utilization

during period [n, n+ τ ].
• d̂[n]: is the VM’s predicted average resource utilization

during period [n, n+ τ ].
Wiener filters predict resource utilizations while assuming

wide-sense stationarity of z[n]. The predicted average resource
utilization, d̂[n], is a weighted average over the L most recently
observed utilization samples; i.e., d̂[n] =

∑L−1
i=0 wiz[n − i],

where wi is the ith sample weight. The prediction error,
e[n], is then the difference between the actual and predicted
utilizations; i.e., e[n] = d[n]− d̂[n] = d[n]−

∑L−1
i=0 wiz[n− i].

The objective is to find the weights that minimize the Mean
Squared Error (MSE) of the training data, where MSE =
E[ e2[n] ]. Differentiating MSE with respect to wk and setting
this derivative to zero yields, after some algebraic simplifica-
tions, E

[
d[n]z[n− k]

]
−
∑L−1
i=0 wiE

[
z[n− k]z[n− i]

]
= 0. It

then follows that rdz(k) =
∑L−1
i=0 wirzz(i− k) where

rdz(k) = E
[
d[n]z[n− k]

]
(2)

rzz(i− k) = E
[
z[n− k]z[n− i]

]
(3)

Similar equations expressing the other weights can also be
obtained in the same way. These equations can be presented
in a matrix format as Rdz = RzzW , where

Rzz =


rzz(0) rzz(1) . . . rzz(L− 1)
rzz(1) rzz(0) . . . rzz(L− 2)

...
...

. . .
...

rzz(L− 1) rzz(L− 2) . . . rzz(0)


W =

[
w0 w1 . . . wL−1

]T
Rdz =

[
rdz(0) rdz(1) . . . rdz(L− 1)

]T
Given Rzz and Rdz , the weights can then be calculated as:

W = R−1zz Rdz (4)

The elements of Rzz are calculated using the unbiased
correlation estimation as:

rzz(i) =
1

N − i

N−i−1∑
j=0

z[j + i]z[j] (5)

where N is the VM’s number of observed samples with each
sample representing an average utilization over τ minutes.

The elements of Rdz can also be estimated using the
correlation coefficients. Since d[n] represents the average
resource utilization in the coming τ minutes, we can write
d[n] = z[n + 1]. Plugging the expression of d[n] in Eq. (2)
yields rdz(k) = E[z[n + 1]z[n − k]] = rzz(k + 1), and thus
Rdz =

[
rzz(1) rzz(2) . . . rzz(L)

]T
. The elements of

Rdz can be calculated using Eq. (5). An MSE estimation of
the weight vector follows then provided Rdz and Rzz .

a) Adaptive Updates: Note that N = L+1 samples need
to be observed in order to calculate the predictor’s weights.
When the number of samples available during the early period
is less than L+ 1, no prediction will be made and we assume
that VMs will utilize all of their requested resources. Once
the predictor observes N = L + 1 samples, the correlations
rzz(i) can then be calculated for all i allowing the weights to
be estimated.

When N > L + 1, the predictor adapts to new changes
by observing the new utilization samples, updates the correla-
tions, and calculates the new updated weights. This results
in increasing the accuracy of the predictor over time, as
the weights are to be calculated based on a larger training
data. From Eq. (5), the coefficient rzz(i) can be written as
Sum(i)/Counter(i), where Sum(i) =

∑N−i−1
j=0 z[j + i]z[j]

and Counter(i) = N − i are two aggregate variables.
Now recall that every τ minutes, a new resource utilization
sample z[k] is observed, and hence, the aggregate variables
can be updated as Sum(i) ← Sum(i) + z[k]z[k − i] and
Counter(i) ← Counter(i) + 1 and the correlation rzz(i) is
updated again as Sum(i)/Counter(i). The updated weights
are then calculated using Eq. (4), which will be used to predict
the VM’s future resource utilizations. Note that only two
variables need to be stored to calculate rzz instead of storing
all the previous traces, and thus the amount of storage needed
to update these weights is reduced significantly.

b) Safety Margin: Our stochastic predictor may still
make errors by over- or under-estimating resource utilizations.
When under-estimation occurs, overcommited PMs may ex-
perience overloads, potentially leading to some performance
degradation. In order to take an even more conservative
approach towards reducing such occurrences, we add a safety
margin. We consider an adaptive approach for setting safety
margins, where margin values are adjusted based on the
accuracy of the predictor. Essentially, they depend on the
deviation of the predicted demands from the actual ones;
i.e., the higher the deviation, the greater the safety margin.
In our framework, we calculate an exponentially weighted
moving average (EWMA) of the deviation, Dev, while giving
higher weights to the most recent ones. Initially, we set
Dev[0] = 0, and for later time n, we set Dev[n] = (1 −
α)Dev[n − 1] + α

∣∣∣d[n− 1]− d̂[n− 1]
∣∣∣, where 0 < α < 1

is the typical EWMA weight factor used to tune/adjust the
weight given to most recent deviations. The predicted average
utilization with safety margin, d̄[n], can then be calculated
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as d̄[n] = d̂[n] + Dev[n]. Recall that each VM requests two
resources: CPU and memory. Hence, two predictions d̄vcpu[n]
and d̄vmem[n] are calculated as described above for each VM
v. Putting it all together, VM v’s predicted average CPU and
memory utilizations, P vcpu and P vmem, are calculated as

P vcpu =

{
Rvcpu N < L+ 1

min(d̄vcpu[n], Rvcpu) otherwise

P vmem =

{
Rvmem N < L+ 1

min(d̄vmem[n], Rvmem) otherwise

V. ENERGY-AWARE VM MIGRATION

VM migration must be performed when an overload is
predicted in order to avoid SLA violations. Since energy
consumption is our primal concern, we formulate the problem
of deciding which VMs to migrate and which PMs to migrate
to as an optimization problem with the objective of minimizing
the migration energy overhead as described next.
Decision Variables. Let Ovm be the set of VMs that are
currently hosted on all the PMs that are predicted to overload
in Opm. For each VM i ∈ Ovm and each PM j ∈ P , we
define a binary decision variable xij where xij = 1 if VM i
is assigned to PM j after migration, and xij = 0 otherwise.
Also, for each j ∈ P , we define yj = 1 if at least one VM is
assigned to PM j after migration, and yj = 0 otherwise.
Objective Function. Our objective is to minimize VM migra-
tion energy overhead, which can be expressed as∑

i∈Ovm j∈P
xij aij +

∑
j∈P

yj bj (6)

and is constituted of two components: VM moving energy
overhead and PM switching energy overhead. VM moving
energy overhead, captured by the left-hand summation term,
represents the energy costs (in Joule) associated with moving
VMs from overloaded PMs. The constant aij represents VM
i’s moving cost, and is equal to mi when VM i is moved to
a PM j different from its current PM, and equal to 0 when
VM i is left on the same PM where it has already been hosted.
Formally, aij = 0 if, before migration, θ(i) = j, and aij = mi

otherwise. Here mi denotes VM i’s moving energy overhead.
PM switching energy overhead, captured by the right-hand

term of the objective function (Eq. (6)), represents the energy
cost associated with switching PMs from sleep to ON to host
the migrated VMs. The constant bj = 0 if PM j has already
been ON before migration (i.e., γ(j) = ON before migration),
and bj = Es→o otherwise, where Es→o is the transition energy
consumed when switching a PM from sleep to ON.
Constraints: The optimization problem is subject to the
following constraints. One,∑

j∈P
xij = 1 ∀i ∈ Ovm

dictating that every VM must be assigned to only one PM.
Two, ∑

i∈Ovm

xij P
i
cpu ≤ Cjcpu ∀j ∈ Opm

∑
i∈Ovm

xij P
i
mem ≤ Cjmem ∀j ∈ Opm

which state that the predicted CPU and memory usage of the
scheduled VMs on any overloaded PM must not exceed the
PM’s available CPU and memory capacities. Three,∑

i∈Ovm

xij P
i
cpu ≤ Sjcpu ∀j ∈ P\Opm

∑
i∈Ovm

xij P
i
mem ≤ Sjmem ∀j ∈ P\Opm

where P\Opm is the set of PMs predicted not to be over-
loaded. Sjcpu and Sjmem are the predicted CPU and memory
slacks for PM j calculated using Eq.(1). Recall that some VMs
will be migrated to PMs that already have some scheduled
VMs, and the above constraints ensure that there will be
enough resource slack to host any of the migrated VMs. Four,∑

i∈Ovm

xij ≤ |Ovm| yj ∀j ∈ P (7)

which forces yj to be one (i.e., PM j needs to be ON) if one or
more VMs in Ovm will be assigned to PM j after migration.

Note that if none of the VMs in Ovm is assigned to PM j,
then the constraint (7) can still hold even when yj takes on
the value one. In order to force yj to be zero when no VM is
assigned to PM j (i.e. PM j maintains the same power state
that it had prior to migration as no VM will be migrated to
it), we add the following constraint. Five,

1 +
∑
i∈Ovm

xij > yj ∀j ∈ P (8)

Note that if one or more VMs is assigned to PM j, constraint
(8) does not force yj = 1 either, but constraint (7) does. Thus,
constraints (7) and (8), together, imply that yj = 1 if and only
if one or more VMs are assigned to PM j after migration.

After solving the above problem, the optimal yjs indicate
whether new PMs need to be turned ON (also reflected via the
γ function), and the optimal xijs indicate whether new VM-
PM mappings are needed (also reflected via the θ function).

VI. PROPOSED HEURISTIC

In the previous section, we formulated the VM migration
problem as an integer linear program (ILP). The limitation of
this formulation lies in its complexity, arising from the integer
variables, as well as the large numbers of PMs and VMs. To
overcome this complexity, we instead propose to solve this
problem using the following proposed fast heuristic.

Instead of deciding where to place the VMs that are
currently hosted on all the overloaded PMs, our proposed
heuristic (shown in Algorithm 1) takes only one overloaded
PM Po at a time (line 1), and solves a smaller optimization
problem to decide where to place the VMs that are currently
hosted on the picked PM Po. We refer to these VMs that are
hosted on Po prior to migration by Os (line 2). Another feature
adopted by our heuristic that reduces the complexity further
is to consider only a set of Non ON PMs and Nsleep asleep
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PMs as destination candidates for VM migrations. The set of
selected ON PMs, denoted by Pon, is formed by the function
PickOnPMs in line 4. The returned PMs by this function
are the ON PMs that have the largest predicted slack metric
(Scpu × Smem). The intuition here is that the PM with the
largest predicted slack has higher chances for having enough
space to host the VMs that need to be migrated. Furthermore,
moving VMs to these PMs has the lowest probability to trigger
an overload on these PMs. The set of selected PMs that are
asleep is denoted by Psleep and formed using the function
PickSleepPMs. The returned PMs are the ones that are
asleep and that have the largest capacity (Ccpu × Cmem).
Again the intuition here is that PMs with larger capacity have
larger space to host the migrated VMs and hence, the lowest
probability of causing an overload.

The heuristic then forms the set Ps (line 5) which is made up
of the picked overloaded PM, Po, the selected ON PMs, Pon,
and the selected sleep PMs, Psleep. An optimization problem
similar to the one explained in the previous section is solved
with the only exception that P = Ps and Ovm = Os. Solving
the optimization problem determines which VMs in Os need
to be migrated so as to avoid PM overloads. The VMs that
are assigned to one of the ON PMs are then migrated to the
assigned ON PMs. As for the VMs that are assigned to one
of the PMs that are in sleep, we try first to place them in any
already ON PMs. To do so, all the ON PMs apart from those in
Pon are ordered in a decreasing order of their slacks. The VMs
that are assigned to the PMs in sleep are also ordered from
largest to smallest. We iterate over these VMs while trying to
fit them in one of the ordered ON PMs. This is done in order
to make sure that no ON PMs (other than the selected PMs
in Non) have enough space to host the migrated VMs. If an
already ON PM has enough space to host one of these VMs,
then the VM is migrated to the ON PM rather than to the PM
in sleep so as to avoid incurring switching energy overhead.
Otherwise, the VMs are migrated to the assigned PMs that are
asleep, as indicated in line 6.

As for Non and Nsleep, these parameters affect the size
of the optimization problem. The larger the values of these
parameters, the higher the number of PM destination candi-
dates, and the longer the time needed to solve the problem
but the lower the total migration energy overhead. This point
will be further illustrated by the experiments presented in the
following section.

Algorithm 1 [ θ, γ ] = Proposed Heuristic
(
Non, Nsleep

)
1: for each Po ∈ Opm do
2: Os = {∀ i ∈ V s.t. θ(i) = Po}
3: Pon ← PickOnPMs(Non)
4: Psleep ← PickSleepPMs(Nsleep)
5: Ps ← Pon ∪ Psleep ∪ Po

6: [~x, ~y] = SolveOptimization(Ps, Os)
7: Migrate VMs that should be placed on a PM ∈ Pon

8: Try placing VMs that should be placed on a PM ∈ Psleep on
any ON PM /∈ Pon

9: Update θ and γ
10: end for

VII. FRAMEWORK EVALUATION

The experiments presented in this section are based on
real traces of the VM requests submitted to a Google cluster
that is made up of more than 12K PMs (see [5] for further
details). Since the size of the traces is huge, we limit our
analysis to a chunk spanning a 24-hour period. Since the
traces do not reveal the energy costs associated with moving
the submitted VMs, nor do they reveal enough information
that allow us to estimate the costs to move the VMs (e.g.
the memory dirtying rate, the network bandwidth, etc.), we
assume that the VM’s moving overhead follows a Gaussian
distribution with a mean µ = 350 Joule and a standard
deviation δ = 100 [44]. The selection of these numbers is
based on the energy measurements reported in [44], which
show that the moving overhead varies between 150 and 550
Joules for VM sizes between 250 and 1000 Mega Bytes. These
moving costs include the energy consumed by the source PM,
the destination PM, and the network links.

As for the power consumed by an active PM, P (η), it
increases linearly from Pidle to Ppeak as its CPU utilization,
η = Ucpu/Ccpu, increases from 0 to 100% [45, 46]. More
specifically, P (η) = Pidle + η(Ppeak −Pidle), where Ppeak =
400 and Pidle = 200 Watts. A sleeping PM, on the other hand,
consumes Psleep = 100 Watts. The energy consumed when
switching a PM from sleep to ON is Es→o = 4260 Joules, and
that when switching a PM from ON to sleep is Eo→s = 5510
Joules. These numbers are based on real servers’ specs [47–
49].

Overload Prediction. We start our evaluations by showing
in Fig. 3 the number of overloads predicted when our frame-
work is run over the 24-hour trace period. These overload pre-
dictions are based on predicting the VM’s CPU and memory
demands in the coming τ = 5 minutes using our proposed
Wiener filter with safety margin. Although our framework
works for any τ value, the selection of τ = 5 is based on
the fact that Google traces report resource utilization for the
scheduled VMs every 5 minutes. The number of the most
recent observed samples considered in prediction is L = 6 as
our experiments showed that considering more samples would
increase the calculation overhead while making negligible
accuracy improvements. As for the safety margin, The EWMA
weight factor α is set to 0.25 as our experiments showed that
this is the value that balanced the most between reducing
the under and the over estimation error. The parameters of
our migration heuristic are set to Non = 1 and Nsleep = 1.
The values of the parameters that are specified here will be
used throughout all the following experiments unless otherwise
specified. For the sake of comparison, we also show in
Fig. 3 the number of overloads that were not predicted by
our predictors. Observe how low the number of unpredicted
overloads is; it is actually zero with the exception of three
short peaks. This proves the effectiveness of our framework
vis-a-vis of predicting overloads ahead of time, thus avoiding
VM performance degradation.

In order to evaluate how effective our prediction technique
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Fig. 3. Number of overloads that were predicted and that were unpredicted
by our framework over time.
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Fig. 4. Total number of unpredicted overloads during entire testing period
using different overload avoidance techniques.
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Fig. 5. Total migration energy overhead under each of the three heuristics.
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Fig. 6. VM moving energy overhead.
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Fig. 7. The number of waken PMs to host the moved VMs.
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Fig. 8. Total migration overhead aggregated over the entire testing period
(normalized w.r.t. Enhanced Largest First overheads).
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Fig. 12. Google cluster’s total consumed energy during the 24-hour trace
period for the different schemes.
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is compared to existing overload avoidance techniques, we
report in Fig. 4 the total number of unpredicted overloads
during the entire 24-hour trace period for the following over-
load avoidance techniques: i) Fast Up Slow Down (FUSD)
online prediction technique [31], and ii) the Threshold-Based
Avoidance Technique [19–22] where overloads are predicted
when the CPU/memory utilization of the overcommited PM
exceeds 90%. We also report in Fig. 4 the total number of
unpredicted overloads during the entire 24-hour trace period
for our proposed Wiener filter with and without safety margin.
Observe from Fig. 4 that both the FUSD and the Threshold-
based avoidance technique had a larger number of unpredicted
overloads compared to our proposed Wiener filter. This shows
that our proposed prediction module is more effective in
terms of predicting overload compared to existing techniques.
Observe also that by adding a safety margin to our proposed
Wiener Prediction technique, the number of unpredicted over-
loads was reduced further. The gap between the case with and
without safety margin quantifies the benefit of adding a safety
margin to our prediction module.

VM Migration Energy Overhead. Having shown the
efficiency of our proposed prediction module, we now evaluate
how efficient our proposed migration heuristic is when com-
pared to existing migration strategies. In order to do that, we
plot in Fig. 5 the total migration energy overhead (including
both VM moving and PM switching overheads) incurred by the
migration decisions of our proposed heuristic to avoid/handle
the overloads reported in Fig. 3 along with the total energy
overhead associated with the migration decisions of the two
existing heuristics:

• Largest First [34–37]: This heuristic considers one over-
loaded PM at a time, and orders all its hosted VMs in
a decreasing order of their resource usage. It then starts
migrating VMs from the top of the ordered list, one at a
time, until the PM’s usage goes below its capacity.

• Sandpiper [41]: It is similar to Largest First with the
exception that it uses, as a sorting metric, the VM’s
resource usage divided by the VM’s moving energy cost.

Both of these heuristics handle multi-dimensional resources
by considering the product metrics, and both select the PM
with the largest slack as a destination for each migrated VM.

Observe from Fig. 5 that our proposed heuristic incurs
significantly lesser total migration overhead when compared
to the other two heuristics. We next analyze the two com-
ponents/sources of migration energy overhead, VM moving
overhead and PM switching overhead, separately, so as to shed
some light on how and what each component contributes:

1) VM Moving Energy Overhead. Fig. 6 shows the VM mov-
ing energy overheads under each of the three heuristics
throughout the 24-hour period. Observe that our heuristic
has lower moving overheads. This is due to the fact
that for each overloaded PM, our heuristic identifies and
migrates the VMs with the least moving cost.

2) PM Switching Energy Overhead. Fig. 7 shows the number
of PMs that were switched ON because of VM migration.

Observe that the number of PMs that forced to be turned
ON when hosting migrated VMs is much smaller under
our heuristic than under the other two heuristics. This is
because both Largest First and Sandpiper heuristics give
a higher priority to the PMs with the largest slack, but
without accounting for the PMs’ power states.

The discussions and insights drawn above from Figs. 6 and 7
explain why our approach achieves lower total migration
overhead when compared to the other heuristics as shown in
Fig. 5.

Having compared the energy overhead of our migration
heuristic against Largest First and Sandpiper, we now propose
an enhancement for these existing heuristics so that they
account for the power state of the PMs in the cluster, and
evaluate our heuristic against the enhanced versions of these
existing techniques. The enhancement basically makes Largest
First and Sandpiper place the migrated VM on a sleeping PM
only if the VM can’t be fitted in any already ON PM, whereas
if multiple ON PMs have enough slack to host the moved
VM, then the ON PM with the largest slack is selected for
placement. This is different from the original implementation
of these heuristics (as described in [34–37, 41]) where the
migrated VM is placed on the PM with the largest slack
regardless of whether the PM is ON or asleep.

Fig. 8 shows the total migration energy overhead (including
both the VM migration and the PM switching overheads)
aggregated over the entire 24-hour testing period for the
enhanced versions of Largest First and Sandpiper as well as for
our proposed migration heuristic, normalized with respect to
the aggregate overheads of the Enhanced Largest First heuris-
tic. Results show that our heuristic incurred significantly lower
migration overhead than even the enhanced version of those
heuristics. The main reason why these enhanced heuristics still
incurred higher overheads than our heuristic is due to the fact
that they both select first what VM(s) to migrate, then they
search for an ON PM to fit the VM(s) selected for migration,
where they don’t always succeed in finding an ON PM with
enough resource slack to fit the VM(s) selected for migration
and end up waking up some PMs from sleep. Furthermore,
the metric that these heuristics use to combine the CPU and
memory resources does not always make good VM selections
for migration. Our heuristic addresses these limitations by
solving a well-formulated optimization problem. Fig. 8 also
shows the overheads of a lower bound of the optimal migration
decisions, where the results show that our heuristic’s overhead
is very close to the lower bound of the optimal solution. Details
on how the lower bound is calculated will be provided in the
following paragraph.

Heuristic’s Optimality and Execution Time. We also
wanted to compare the energy overhead of our heuristic’s
decisions against the optimal solution obtained by solving the
full optimization problem that was introduced in Section V.
However, the large number of integer decision variables that
are involved in the full optimization problem has prevented
us from finding the optimal solution within a reasonable time.
This has led us to compare our heuristic against a lower bound
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of the optimal solution that can be calculated quickly and
efficiently.

Any time a set of PMs Opm are predicted to overload, the
lower bound for the migrations with the least total energy
overhead to avoid the predicted overloads can be calculated as
follows. For each PM in Opm, the VM(s) with the least moving
cost that should be removed from the considered PM to avoid
the overload are identified by finding the exact solution of a
two-dimensional 0-1 Knapsack problem [50]. The lower bound
is then obtained by aggregating the VM moving costs of all the
VMs that need to be removed from all the PMs in Opm. This
is a lower bound on the optimal solution as it identifies which
VMs need to be migrated to avoid the predicted overloads
such that the VM moving costs (the first part of the objective
in Eq. 6) are minimized while completely ignoring the PM
switching costs (the second part of the objective in Eq.6). This
is the case since no CPU or memory resources are reserved
for the removed VMs and thus no PM needs to be waken from
sleep, and as the removed VMs are not contending over the
resource slack that is available on the PMs that are ON in the
cluster.3

Fig. 9 shows the lower bound energy overhead for the mi-
grations needed to avoid all the overloads that were predicted
within the 24-hour trace period. The figure also shows the
total migration energy overhead (including both VM moving
and PM switching overheads) for our proposed heuristic under
different values of Non and Nsleep when handling all the
predicted overloads within the 24-hour trace period. Observe
that for the case of Non = 1 and Nsleep = 1, our heuristic
had a migration overhead that is around 20% larger than the
lower bound of the optimal solution. Observe also that after
increasing the parameters of our heuristic to Non = 5 and
Nsleep = 5, the energy overhead of our heuristic becomes less
than 1% larger than the lower bound of the optimal solution.
This shows that the migration decision made by our heuristic
are very close to the optimal case where we know for sure
that the overhead of the optimal case must be larger than
or equal to the lower bound. Observe also that there is no
significant difference in the total overhead of our heuristic’s
migration decisions when increasing the parameters further to
be Non = 10 and Nsleep = 10.

We also show in the second column of Table I how much
time on average it took our heuristic to make migration
decisions any time a set of PMs were predicted to overload
within the 24-hour trace period under the different parameters.
The execution time is based on running a Matlab code for our
heuristic on an x-86 platform that has 2 sockets, each socket
has 8 cores, each core has 2 threads with a CPU frequency
of 2.6 Ghz and a 62 GB RAM. The Integer Linear Program

3It is worth mentioning that the Knapsack-based constructed lower bound
was preferred over the lower bound that can be obtained by solving the Linear
Program (LP) relaxation of the optimization problem presented in Section
V as our evaluations based on Google traces showed that our constructed
lower bound was always tighter than the bound obtained by solving the LP
relaxation. Furthermore, for the case when large number of PMs are predicted
to overload, our constructed lower bound requires less amount of memory
resources to calculate when compared to the LP relaxation lower bound.

in our heuristic is solved by Matlab’s Mixed-Integer Linear
Programming solver and using the default configurations of the
solver as specified in [51]. Observe that on average only few
seconds were needed for our heuristic to make the migration
decisions needed to avoid the PMs from overloading under
the different parameters. The larger the number of ON PMs
(Non) and the sleeping PMs (Nsleep) that were considered as
candidate PMs to host the migrated VMs by our heuristic,
the higher the average time needed to make the necessary
migrations, but also the lower the energy overhead of the made
migrations as we have seen in Fig. 9.

By calculating the lower bound of the optimal solution we
were also able to identify some of the cases where we know for
sure that the migration decisions of our heuristic were optimal.
Our heuristic’s migration decisions were optimal any time a
set of PMs were predicted to overload and the costs incurred
by the decisions made by our heuristic to avoid the predicted
overloads were exactly equal to the lower bound costs. We
report in the third column of Table I how many times we know
for sure that the migrations of our heuristic were optimal under
the different parameter values where the reported numbers
are percentages of the total times migrations needed to be
performed to avoid some PMs from overloading during the
entire 24-hour testing period. Observe that the percentages are
very high and slightly increase as Non and Nsleep increase as
further PMs are considered as destination PMs to host the
VMs selected for migration.

TABLE I
EVALUATION OF THE PROPOSED MIGRATION HEURISTIC UNDER

DIFFERENT VALUES OF Non AND Nsleep DURING THE ENTIRE TESTING
PERIOD.

Heuristic Mean Execution Percent of Times We Know that
Parameters Time (second) Migrations were Optimal
(Non = 1, Nsleep = 1) 1.8 88.4%
(Non = 5, Nsleep = 5) 2 96%
(Non = 10, Nsleep = 10) 3.4 97.1%

Number of Active PMs. Since the energy consumed by
ON PMs constitutes a significant amount, we analyze in Fig.
10 the number of ON PMs when running our framework on
the Google traces under each of the three studied migration
heuristics. Recall that each migration heuristic makes different
decisions to handle PM overloads, and these decisions affect
the number of ON PMs, as new PMs may be switched
ON to accommodate the migrated VMs. We also show the
number of ON PMs when no overcommitment is applied.
This represents the case when the exact amount of requested
resources is allocated for each VM during its entire lifetime.
By comparing these results, observe that after a couple of
learning hours, our proposed prediction framework leads to
smaller numbers of ON PMs when compared with the case of
no overcommittment, and this is true regardless of the VM mi-
gration heuristic being used. Also, observe that our proposed
prediction techniques, when coupled with our proposed VM
migration heuristic, leads to the smallest number of ON PMs
when compared with Largest First and Sandpipper heuristics,
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resulting in greater energy savings. It is worth mentioning
that during the first couple of hours, the number of ON PMs
is the same regardless of whether resource overcommitment
is employed and regardless of the migration technique being
used, simply because prediction can’t be beneficial at the early
stage, as some time is needed to learn from past traces to be
able to make good prediction about VMs’ future utilizations.

Energy Savings. Fig. 11 shows the amount of energy (in
Megawatt-Hour) that Google cluster saves every hour when
adapting our integrated framework (the proposed prediction
approach and the proposed migration heuristic) compared to
no overcommitment. Observe that savings are not substantial
at the beginning as the prediction module needs some time
to learn the resource demands of the hosted VMs, but these
savings quickly increase over time as the predictors start to
observe larger traces and tune their parameters more accu-
rately. It is also clear from Fig 11 that although our framework
incurs migration energy overheads (due to both VM moving
and PM switching energy overheads) that would not otherwise
be present when no overcommitment is applied, the amount
of energy saved due to the reduction of the number of ON
PMs is much higher than the amount of energy incurred due to
migration energy, leading, at the end, to greater energy savings.

Finally, the total energy that Google cluster consumes when
adapting our integrated framework is compared to the case
when the cluster is overcommited and uses one of the existing
overload avoidance techniques, FUSD or Threshold-based,
combined with each of the prior work migration heuristics,
Largest First (LF) and Sandpiper (SP), to handle overloads.
Fig. 12 shows the total cluster’s energy consumption during
the entire 24-hour duration normalized with respect to the
no overcommitment case. Observe from Fig. 12 that our
framework cuts the total consumed energy by 40% com-
pared to the no overcommitment case. Observe also that the
cluster’s consumed energy when adapting our framework is
significantly lower than any of the remaining overcommitment
schemes. This is attributed to the fact that by predicting
the resource demands of the hosted VMs accurately and by
making efficient migration decisions, our integrated framework
consolidates the workload using the least number of active
PMs, while keeping redundant PMs in sleep state, which leads
to significant lower energy consumption.

VIII. CONCLUSION AND FUTURE WORK

We propose an integrated energy-efficient, prediction-based
VM placement and migration framework for cloud resource
allocation with overcommitment. We show that our proposed
framework decreases the performance degradation caused by
overloads while also reducing the number of PMs needed to
be ON and the migration overheads, thereby making signif-
icant energy savings. All of our findings are supported by
evaluations and comparative studies with existing techniques
that were conducted on real traces from a Google cluster. For
future work, we plan to conduct further comparative studies
to evaluate our framework against other techniques and using
further real traces.
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