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Abstract—We propose AirMAP, a framework for enabling
scalable database-driven dynamic spectrum access and sharing.
We bring together the merits of compressive sensing and
collaborative filtering to provide accurate radio occupancy map
while reducing the network overhead cost and overcome the
scalability issue with conventional approaches. We start from
an observation that close-by users have a highly correlated
spectrum observation and we propose to recover the spectrum
occupancy matrix in the borough of each sensing node by
minimizing the rank of local sub-matrices. Then, we combine
the recovered matrix entries using a similarity criterion to get
the global spectrum occupancy map. Through simulations, we
show that the proposed framework minimizes the error while
reducing the network overhead. We also show that the proposed
framework is scalable when considering high frequencies.

Index Terms—Wideband spectrum sensing; compressive sam-
pling; local low rank matrix completion; collaborative filt ering.

I. I NTRODUCTION

Opportunistic spectrum access has great potential for over-
coming radio resource shortage challenges that wireless sys-
tems are currently facing [1]. Broadly speaking, spectrum
sensing techniques that have been proposed for spectrum
awareness can be categorized into two classes: sensing-based
approaches [2–5] and database-driven approaches [6–12].
While the former class allows users to identify unused spec-
trum portions on their own via local measurements, the latter
provides users with radio occupancy databases, which users
can query to acquire spectrum occupancy information in their
vicinity. These databases can, for example, be constructedby
relying on observations collected from sensing nodes (SN s)
that are deployed specifically for this sensing task. Database-
driven approaches are more attractive due to their practical
appeal [6], and as a result, have recently been adopted
and embraced by industries (e.g., Google [10], Spectrum
Bridge [11], RadioSoft [12]), standard organizations (e.g.,
5G), and government agencies (e.g., FCC [13]).

However, current spectrum database-driven approaches suf-
fer from several shortcomings. For instance, they are primarily
designed for TV white spaces [6], which represent only a
small portion of the wideband spectrum that can potentiallybe
shared. In addition, TV carrier frequencies are mostly below
1 GHz, and hence, these signals can propagate long distances,
requiring only a small number ofSN s to get the spectrum
occupancy in a relatively wide region. Therefore, to extend
spectrum databases to cover wider spectrum ranges, say 10

GHz bandwidth or more, a higher number ofSN s must be
deployed to be able to obtain a complete radio occupancy
map covering the entire wideband spectrum, as well as to
overcome the hidden terminal problem, where due to, for
example, fading, differentSN s may observe different primary
signals, thereby leading to different occupancy decisions.
Fortunately, by exploiting spectrum occupancy sparsity that is
inherent to spectrum usage, compressive sensing theory [2]
has been leveraged to sense widebands (e.g., 1 GHz band-
width) at lower sensing overheads (e.g. [14]). Now given
that within the same region, the spectrum occupancy seen
by the differentSN s can roughly be the same for some set
of bands, theoccupancy matrix1 has a low-rank property.
The aim of this work is to exploit this low rank property
to construct the occupancy matrix from smaller numbers of
observations/sensors [4, 5].

Let us illustrate this further with a simple example. Con-
sider the spectrum occupancy matrix whose columns again
represent the occupancy decisions taken bySN s for each
band of the wideband spectrum. If theSN s are close to
each other, then they roughly observe the same wideband
spectrum occupancy, resulting in a low-rank spectrum occu-
pancy matrix. Therefore, one can estimate all the entries of
the spectrum matrix by only taking and relying on a small
number of measurements [5, 15]. This can be done by means
of the low-rank matrix theory which consists of formulating
an optimization problem whose objective is to minimize the
rank of the matrix, as will be detailed later. This approach
is often referred to as collaborative filtering in the machine
learning community [16].

Although collaborative filtering reduces the network over-
head, it fails to scale well with the number of bands. This
limitation comes from the propagation nature of signals at
different spectrum frequencies, and especially at high fre-
quencies (e.g. millimeter waves) that is being adopted in 5G
systems [17]. Note thatSN s at different locations tend to
observe a completely different spectrum occupancy, which
can result in losing the low-rank property of the spectrum oc-
cupancy matrix. However,close-by SN s do observe a similar
occupancy, which means if close-bySN s are re-arranged in
the spectrum occupancy matrix based on their neighborhoods,
then the low-rank property is preserved but only locally; i.e.,

1It is the matrix whose columns each corresponds to the occupancies of
the different bands as seen by the correspondingSN .



although the entire occupancy matrix may not be low-rank,
sub-matrices preserve their low-rank property. We will refer
to this as local low-rank property. Hence, to maintain the
merits of collaborative filtering in reducing network overhead
while taking advantage of the cooperation, this local low-
rank property can be exploited to design efficient sensing
techniques suitable for database-driven wideband spectrum
access.

In summary, compressive sensing and collaborative filtering
are found to be useful theories for enabling cooperative
wideband spectrum sensing at reduced sensing overhead.
However, they suffer from a scalability issue when it comes
to considering wideband spectrum (a few GHz). In this work,
we propose a sensing framework that exploits the local low-
rank property mentioned above to enable scalable occupancy
matrix construction suitable for wideband spectrum.

Methodology and Contributions. Our key motivation is
to build a radio occupancy map for the wideband spectrum
(e.g. 10 GHz or wider) to enable spectrum sharing through a
framework termed asAirMAP. We propose to combine the
merits of compressive sensing and low-rank matrix theories
to reduce the sensing and network overhead while accurately
acquiring the spectrum occupancy in the borough of eachSN .
Unlike previous works, our work relies onlocal low-rank ma-
trix approximation to get the complete spectrum occupancy in
the neighborhood of eachSN . That is, instead of completing
the spectrum occupancy matrix such that it has a low-rank
property, we propose to focus on exploiting the local low-
rank property. This stems from the fact that neighboringSN s
tend to observe the same spectrum occupancies.

The main contributions of this work are:
• We propose an efficient sensing framework that enables

scalable construction of the spectrum occupancy matrix
for wideband spectrum access and sharing.

• To the best of our knowledge, we are the first to use
and combine local low-rank matrix approximation theory
with compressive sampling to enable scalable wideband
spectrum occupancy recovery at low overhead.

• We construct the spectrum sub-matrices using propaga-
tion models suitable for wideband spectrum. This allows
to improve the estimation of the observations reported in
edges of the regions, thereby enhancing the accuracy of
the proposed recovery approach.

The rest of this paper is organized as follows. Section II
describes the proposed framework and the intuition behind
it. Section III discusses the proposed local low rank based
spectrum occupancy matrix recovery as well as its perfor-
mance. Section IV presents the numerical evaluation. Sec-
tion V reviews the related works. This work is concluded in
Section VI.

II. W IDEBAND SPECTRUMOCCUPANCY RECOVERY

FRAMEWORK

A. Framework Overview

We proposeAirMAP, a scalable sensing framework that is
suitable for database-driven wideband spectrum access and

sharing.AirMAP relies on a set ofJ SN s deployed on
a region of interest to construct and update the database
(DB) with accurate occupancy information ofI bands in
the borough of theseSN s. Here, we assume that the entire
wideband spectrum is composed ofI bands. The different
components ofAirMAP are illustrated in Fig. 1. First, it
is important to mention that our focus in this work is on
a DB covering very wideband spectrum, e.g. more than 10
GHz. We assume that theSN s leverage compressive sampling
theory that exploits spectrum occupancy sparsity to enable
sub-Nyquist spectrum sampling rates (e.g., [18]). However,
even with sub-Nyquist sampling rates, eachSN is assumed
not to able to sense the entire spectrum of interest due to
its wideness, but rather senses a portion of it; say 1 GHz
bandwidth as done in [2]. To reduce the computation and
the reporting overheads, the compressed measurements are
reported to theDB which recovers the spectrum occupancy of
the portion sensed by eachSN by exploiting prior information
about the spectrum occupancy. Typically, different spectrum
portions are assigned to different types of applications, each
with a different occupancy statistics [19]. TheDB exploits
this occupancy heterogeneity across the different spectrum
portions, as proposed in [3], to recover occupancies of the
entire spectrum.

A major problem in spectrum sensing is the hidden terminal
problem, which we address in this framework by relying on
multiple SN s deployed across the entire region of interest to
provide redundant sensing of each portion of the spectrum.
Now since having eachSN sense all portions of the entire
spectrum is impractical, we propose to uselocal low-rank
approximation to efficiently recover the spectrum occupancy
in the borough of each of theJ SN s.

To sum up,AirMAP consists of:(i) having eachSN sense
a small portion of the wideband spectrum of interest,(ii)
recovery of band occupancies of all the portions at theDB by
exploiting a priori information about the spectrum occupancy
statistics, and(iii) completion of the occupancy matrix by
using low-rank approximation theory to recover the missing
band occupancies. Next, we will detail each of these phases.

B. Sub-Nyquist Wideband Spectrum Sensing and Recovery

1) Spectrum Occupancy Model: We consider a practical
scenario where a wideband spectrum is allocated to mul-
tiple applications; e.g., aviation, satellite communications
and maritime, wireless communications, TV broadcasting,
ISM, etc. [19]. Applications of the same type are typically
allocated bands within the same block. Hence, the spectrum
is considered to have a block-like occupancy structure, where
each block (accommodating applications of a similar type) has
different occupancy behavioral characteristics. The wideband
spectrum can then be grouped intog disjoint contiguous
blocks,Gi, i = 1, · · · , g, with Gi

⋂

Gj = ∅ for i 6= j. Each
block, Gi, is a set ofni contiguous bands such thatI =
∑g

i=1 ni. Now provided that the actual spectrum occupancy
has been observed to be under-utilized; i.e, the total number
of occupied bands is small, wideband spectrum sensing can



Fig. 1. An overview of the different components ofAirMAP.

be enabled at sub-Nyquist sampling rates [4, 14]. However,
even with sub-Nyquist sampling rates, given that the spectrum
of interest is wideband, it is unpractical to assume that each
SN can sense the entire spectrum. Therefore, in this work,
we assume that eachSN can only sense few,gb contiguous
spectrum blocks out of theg blocks.

2) Compressed Wideband Spectrum Sensing: Exploiting
the fact that the spectrum is under-utilized, compressive
sampling theory allows to sense and recover then bands
using m < n branches [2]. After tuning to the block of
bands of interest, each branch uses an independent pseudo-
random sequence mixed with the received signal to yield a
measurement vector [14]

y = ΨF−1(x+wf ) = Ax+ η, (1)

wherey ∈ R
m is the measurement vector taken by eachSN ,

F−1 is the inverse discrete Fourier transform, andΨ is the
sensing matrix assumed to have a full rank, i.e.rank(Ψ) =
m. Here,Ψ contains them PN sequences generated at the
mixer.

After collecting the compressed measurements, and in
order to reduce the reporting overhead as well as the compu-
tation complexity at theSN s, the compressed measurements
are sent to theDB to recover the different bands’ occupancy
as observed by eachSN .

3) Heterogeneous Spectrum Occupancy Recovery: In
AirMAP, the DB exploits the occupancy variability across
the different blocks to recover the spectrum occupancy infor-
mation [3]. In essence, this approach encourages the search
of the occupied bands in the blocks that have higher average
sparsity levels. Such a variability in the block sparsity levels
can be incorporated in the formulation through carefully
designed weights and formulated as the following weighted
ℓ1−minimization recovery scheme

P1 : min
x

gb
∑

i=1

ωi‖xi‖ℓ1 s.t.‖Ax− y‖ℓ2 ≤ ǫ (2)

wherex = [xT
1 , · · · ,x

T
gb
]T , xT

l is a nl × 1 vector, andωi,
the weight assigned to blocki for i ∈ {1, · · · , gb}, can be

expressed as [3]ωi =
1/k̄i∑gb

j=1
1/k̄j

andǫ is a predefined desired
error.

C. Global Spectrum Occupancy Matrix Completion

Having recovered the vectorx from the compressed mea-
surementy using (2), the energy in each band is compared
to a threshold to decide on the occupancy of each band,
i.e., = 1

T

∑T
t=1 |xi[t]|2 ≶ λ where T is the number of

samples andλ is a predefined threshold that depends on the
noise floor. Then, these spectrum decisions are updated to the
spectrum occupancy matrixR. Since eachSN is sensing only
a small portion of the wideband spectrum, most entries of
the spectrum occupancy matrix are missing. Conventionally,
collaborative filtering is used to recover these missing entries
of R as long as the number of observed decisions inR is
at leastξ = O(α5/4r logα) with r is the rank ofR and
α = max(I, J) [15, Theorem 1.1]. That is, the recovery can
be formulated as a convex optimization

P2 : min
X

rank(X) s.t.
∑

(i,j)∈Ω

(

Rij −Xij

)2
≤ ǫ (3)

or

P3 : min
X

‖X‖∗ s.t.
∑

(i,j)∈Ω

(

Rij −Xij

)2
≤ ǫ (4)

where‖·‖∗ is the nuclear norm andΩ is the the observed part
of R. Note that the main difference between both approaches
is thatP3 does not require any knowledge about the rank of
R.

When considering high frequencies, this approach fails as
the low-rank property is not preserved. This stems from the
fact that SN s in different locations observe a completely
different spectrum occupancy when the frequencies of interest
are relatively high. In this work, we overcome this limitation
by proposing an approach that relies on the fact that low-
rank property (though is not preserved in the global matrix)
is still preserved at the sub-matrix levels, and can therefore be
used to complete the global occupancy matrix. This proposed
approach is described next.



III. AirMAP: PROPOSEDLOCAL LOW-RANK

APPROXIMATION APPROACH

The distance betweenSN s is an important metric for our
proposed framework. We start from the following observation:
the portion (sub-matrix) of the spectrum occupancy matrix
that contains close-bySN s possesses a low rank property,
though the global matrix does not. Therefore, each sub-
matrix of the global occupancy matrix can be efficiently
completed/constructed usingP3, as described next.

A. Spectrum Sub-matrices Construction

The spectrum occupancy matrix can be seen as a rating
matrix containing zeros and ones, where zeros denote that
bands are unoccupied and ones denote that the bands are
occupied. First, we scale the values to make the mean equal
zero by subtracting0.5 from each entry of the observed
entries in the matrix. This is to distinguish between the
observed occupancies (part ofΩ) and the ones that need
to be recovered (containing zeros). Then, based on their
locations, eachSN is associated to one or more sub-regions
among theq sub-regions. The width of each sub-region is
decided based on how far the highest carrier frequency can be
detected, which can be computed using practical propagation
models for high frequencies [17]. Overlapping between the
sub-regions is desired to help decide on the accupancy of
the SNs in the sub-regions boundaries. The number of sub-
regions,q, depends only on the highest carrier frequency and
the desired accuracy recovery. After deciding on the number
of sub-regions,q, and their anchor points (centers),{ck}

q

k=1,
theSN s are associated with the anchor points in their range.
Note that unlike the approaches proposed for recommendation
systems, which use local low-rank matrix approximation such
as LLORMA [16] and SLOMA [20], the anchor points are
constructed independently from theSN s.

B. Local Low-rank Spectrum Sub-matrices Recovery

The occupancy of each spectrum sub-matrixMk for k =
1, . . . , q is the solution to the optimization problem

P4 : min
X

‖X‖∗ s.t.
∑

(i,j)∈Ωk

(

Rkij −Xij

)2
≤ ǫ (5)

where Ωk is a subset ofΩ containing observations used to
complete the matrixMk. Note that P4 is similar to P3

except that it only considers a subset of the observed spectrum
occupanciesΩ.

C. Global Recovery via Weighted Decisions

Having recovered the spectrum occupancy in each sub-
matrix, a global decision, combining these sub-matrices, is
made. This is illustrated in Fig. 2. To decide on the observa-
tions of theSN s located close to the edges of the regions
covered by each of the sub-matrices, we account for the
decision of the neighboringSN s. The elements of the global
spectrum matrix̂R is then expressed as

R̂ij =

q
∑

k=1

Kkij
∑q

s=1 K
s
ij

Mkij (6)

whereKkij is a kernel function applied to the distance,dik,
between SN i and an anchor pointck. As the distance
increases,Kkij converges to zero. We opted for the following
kernel (similarity function)

Kkij(dik) =

{

1, if x < dth

e−βdik , otherwise
(7)

with dth is a distance threshold andβ is a decay parameter.
This similarity function tends to give constant weight within a
given neighborhood. As we get further, the similarity decays
and goes exponentially to zero.

Finally, the final binary matrix is obtained by checking the
sign of each element of the matrixR.

Fig. 2. The different steps of the local low rank matrix basedrecovery. (1)
Spectrum sub-matrices construction, (2) Local low rank matrix completion
of each sub-matrix, (3) and (4) Global matrix completion.

D. Computational and Communication Overhead

The merit of the proposed framework is that it builds
an accurate radio occupancy map to enable database-driven
wideband spectrum sharing. The proposed framework does
so while ensuring scalability, in terms of network overhead.
Conventionally, making occupancy decisions of spectrum in
vicinity of a SN incurs a communication overhead that is
linear inT , I, andJ. When using compressive sensing without
collaborative filtering, the incurred communication overhead
is linear inT , J, the number of compressed samplesm, and
⌊I/n⌋. AirMAP incurs a communication overhead cost that
is linear in T , J, and the number of compressed samples
m. Therefore, network overhead reduction is achieved with
our proposed scheme, which also results in lesser reporting
energy. In terms of computational complexity, the weighted
recovery results inO(m2n3) per SN measurement. Hence,
the total computation complexity for spectrum recovery is
O(Jm2n3T ). The complexity of the recovery of the global
occupancy is equivalent toq times the recovery ofP4, or
even lesser since this can be excused in parallel.

IV. SIMULATION RESULTS

We consider synthetic data to assess the efficiency of
AirMAP using Matlab where simulations is made as follows.
We assume the presence of multiple primary users operating



in some ofI = 250 bands (this can be in the5−15 GHz range
with 20 MHz bandwidth each) unless specified otherwise. The
deployment of the active users follows a Poisson point process
(PPP) with density2/Km2 deployed in the 2D plane. To
mimic real-world scenario, we assume high-frequency bands
are reused more frequently than low-frequency bands. Each
SN senses only one fifth of the total bands, using sub-Nyquist
sampling [3]. To define the sub-matrices, we first compute
how far a signal sent over a frequencyfc with a powerP = 10
W can go. We adopted the 3GPP TR 38.901 UMa LOS path
loss model [17] given by

PLdB = 32.4+ 20 log10
(

d(m)
)

+30 log10
(

fc(GHz)
)

(8)

for 0.5 < fc < 100GHz and the shadow fading standard
deviation equal to7.8 dB. We consider the sensitivity to be
−120 dBm, bellow which a signal a considered absent. This
allows defining the radii of the circles centered at the anchor
points as illustrated in Fig 3. The sensing nodes are deployed
according to a uniform PPP with density10/Km2 deployed
in the 2D plane. TheSN s are linked to the closest anchor
point forming the sub-matrices. To assess the performance of
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Fig. 3. Example of deployment of the sensing nodes.

AirMAP, we generate the entire spectrum occupancy matrix
to compare the final recovery matrix with it. Since our focus
is on the spectrum occupancy matrix completion, we consider
the wideband spectrum recovery of the observed portion from
eachSN to be error free. The spectrum matrix completion
is done using [21]. First, we observed from the generated
spectrum occupancy matrix that the low-rank property for
the sub-matrices is confirmed while the global matrix has no
low-rank property (rank > 50 for the case of having 250
bands).
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Fig. 4. Error: proposed approach vs traditional approach.

Fig. 4 shows the recovery error (computed as the Frobenius
norm) as a function of the number of frequency bands. First,

observe that our proposed framework allows to achieve a high
reduction gain in the error (about 10 times) compared to
classical approach. This is thanks to the observation of the
local rank property (confirmed through simulations). Second,
we observe that as the number of bands increases, the error
decreases for both classical and proposed approaches. This
is because as the number of bands increases, the global low
rank property tends to hold more, and hence, a lower matrix
recovery error is achieved.
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Fig. 5. Error: proposed approach vs traditional approach asa function of
d
th.

In Fig. 5, we study the effect of the proposed similarity
function used for the global recovery. Whendth is small,
the user observation is given more weight with respect to the
closest anchor point decision and lesser weight as theSN gets
further. This helps mainly build an accurate decision for users
located at the edges of the sub-matrices. As this parameter
increases beyond a certain distance threshold, the performance
drops and becomes similar to that of the classical recovery,
as we no longer favor the decision with respect to the closest
anchor point.
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Fig. 6. Effect of the number of submatrices.

Fig. 6 studies the effect of the number of anchor points.
Overall, we observe that as the number of anchor points
increases, a reduction in the error is achieved which confirms
the same observation made in Fig. 4.

V. RELATED WORKS

Spectrum awareness. The proposed framework combines
advances in both wideband spectrum sensing [2–6, 22–24] and
recommendation systems [16, 20]. Authors in [6] proposed
SenseLess, a trustworthy database to provide the spectrum
availability of TV wideband spectrum. However, this database
is only restricted to TV bands. To be able to get the occupancy
of wider bandwidth, authors in [2] made a proof of concept for
a 1 GHz wide bandwidth scanner. There are also some efforts
towards applying machine learning and compressive sampling
theories for spectrum sensing [4, 23, 25, 26]. Authors in [25]
proposed Rxminer which uses a mixed Gaussian and Rayleigh



models to identify spectrum occupancy. Authors in [4] pro-
posed to exploit the low-rank property of the measurement
matrix to recover the unreported measurements. The proposed
approach assumes that all sensing nodes use the same sensing
matrix, which makes the approach unpractical. Moreover, the
proposed modeling fails to capture frequency reuse, which is
crucial in high-frequency bands. This has also been extended
to detect malicious users in [22].

Collaborative filtering . Collaborative filtering was intro-
duced in recommendation systems to handle the informa-
tion overhead. The main approach uses matrix factorization,
which is shown to achieve great performance while being
scalable [27]. This is based on the fact that the users’
preference for a particular item is only controlled by a small
number of latent factors, which translates to a low-rank
rating matrix. This assumption does not hold true in real-
world applications as shown by [16]. Authors in [16] showed
through experiments that when considering the global matrix
having a number of low-rank matrices, better performance is
achieved, making this approach, LLROMA, attractive to other
fields such as multi-label classification, documents, etc. The
main concern with LLROMA is the construction of the sub-
matrices which is done by first randomly selecting a number
of anchor points, and then, using distance metrics, points are
connected to the closest anchor point. Besides, it suffers from
high computation and storage cost. Recently, SLOMA [20]
has been proposed to overcome LLORMA weaknesses by
incorporating the social connections among users. However,
the chosen number of anchor points was not justified for both
approaches.

VI. CONCLUSIONS

We proposedAirMAP, a framework that builds an accurate
spectrum occupancy map for wideband spectrum sharing.
AirMAP exploits the under-utilization of the wideband spec-
trum, the heterogeneity in the spectrum occupancy, and the
spatial correlation between sensing nodes to achieve scal-
able decisions for the spectrum occupancy while incurring
small network communication overhead. While this work
investigates the performance under randomly deployedSN s,
better performance could be achieved when theseSN s are
carefully placed. Moreover, the proposed framework can be
extended to other applications, such as spectrum enforcement
and monitoring, which can help recognize the type of signals
occupying the wideband spectrum.
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