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Abstract—We propose Ai r VAP, a framework for enabling
scalable database-driven dynamic spectrum access and siag.
We bring together the merits of compressive sensing and
collaborative filtering to provide accurate radio occupany map
while reducing the network overhead cost and overcome the
scalability issue with conventional approaches. We startrbm
an observation that close-by users have a highly correlated
spectrum observation and we propose to recover the spectrum
occupancy matrix in the borough of each sensing node by
minimizing the rank of local sub-matrices. Then, we combine
the recovered matrix entries using a similarity criterion to get
the global spectrum occupancy map. Through simulations, we
show that the proposed framework minimizes the error while
reducing the network overhead. We also show that the proposke
framework is scalable when considering high frequencies.

Index Terms—Wideband spectrum sensing; compressive sam-

GHz bandwidth or more, a higher number Vs must be
deployed to be able to obtain a complete radio occupancy
map covering the entire wideband spectrum, as well as to
overcome the hidden terminal problem, where due to, for
example, fading, differerdN's may observe different primary
signals, thereby leading to different occupancy decisions
Fortunately, by exploiting spectrum occupancy sparsi@ &
inherent to spectrum usage, compressive sensing theory [2]
has been leveraged to sense widebands (e.g., 1 GHz band-
width) at lower sensing overheads (e.g. [14]). Now given
that within the same region, the spectrum occupancy seen
by the differentSNs can roughly be the same for some set
of bands, theoccupancy matrix* has a low-rank property.

The aim of this work is to exploit this low rank property
to construct the occupancy matrix from smaller numbers of
observations/sensors [4, 5].

Let us illustrate this further with a simple example. Con-
sider the spectrum occupancy matrix whose columns again

Opportunistic spectrum access has great potential for overepresent the occupancy decisions taken$dys for each
coming radio resource shortage challenges that wireless syband of the wideband spectrum. If th#Vs are close to
tems are currently facing [1]. Broadly speaking, spectrumeach other, then they roughly observe the same wideband
sensing techniques that have been proposed for spectrugpectrum occupancy, resulting in a low-rank spectrum occu-
awareness can be categorized into two classes: sensiag-bagancy matrix. Therefore, one can estimate all the entries of
approaches [2-5] and database-driven approaches [6-12fhe spectrum matrix by only taking and relying on a small
While the former class allows users to identify unused specnumber of measurements [5, 15]. This can be done by means
trum portions on their own via local measurements, therlatteof the low-rank matrix theory which consists of formulating
provides users with radio occupancy databases, which useg optimization problem whose objective is to minimize the
can query to acquire spectrum occupancy information irrtheirank of the matrix, as will be detailed later. This approach
vicinity. These databases can, for example, be constrimted is often referred to as collaborative filtering in the maehin
relying on observations collected from sensing node§s) learning community [16].
that are deployed specifically for this sensing task. Dateba  Although collaborative filtering reduces the network over-
driven approaches are more attractive due to their practicyead, it fails to scale well with the number of bands. This
appeal [6], and as a result, have recently been adoptgfhitation comes from the propagation nature of signals at
and embraced by industries (e.g., Google [10], Spectrurgifferent spectrum frequencies, and especially at high fre
Bridge [11], RadioSoft [12]), standard organizations (e.9 quencies (e.g. millimeter waves) that is being adopted in 5G
5G), and government agencies (e.g., FCC [13]). systems [17]. Note thafNs at different locations tend to

However, current spectrum database-driven approaches sbserve a completely different spectrum occupancy, which
fer from several shortcomings. For instance, they are piiyna  can result in losing the low-rank property of the spectrum oc
designed for TV white spaces [6], which represent only acupancy matrix. Howevetlose-by SN's do observe a similar
small portion of the wideband spectrum that can potentlzdly  occupancy, which means if close-byN's are re-arranged in
shared. In addition, TV carrier frequencies are mostly welo the spectrum occupancy matrix based on their neighborhoods

1 GHz, and hence, these signals can propagate long distanc@gen the low-rank property is preserved but only locallg;,i.
requiring only a small number ofNs to get the spectrum

occupancy in a relatively wide r_egion. Therefore, to extend 1t is the matrix whose columns each corresponds to the oocigs of
spectrum databases to cover wider spectrum ranges, say @ different bands as seen by the corresponding

pling; local low rank matrix completion; collaborative filt ering.

I. INTRODUCTION



although the entire occupancy matrix may not be low-ranksharing. Ai r MAP relies on a set ofJ SNs deployed on
sub-matrices preserve their low-rank property. We wileref a region of interest to construct and update the database
to this aslocal low-rank property. Hence, to maintain the (DB) with accurate occupancy information af bands in
merits of collaborative filtering in reducing network ovedd  the borough of thes&Ns. Here, we assume that the entire
while taking advantage of the cooperation, this local low-wideband spectrum is composed bfbands. The different
rank property can be exploited to design efficient sensingomponents ofAi r MAP are illustrated in Fig. 1. First, it
techniques suitable for database-driven wideband spactruis important to mention that our focus in this work is on
access. a DB covering very wideband spectrum, e.g. more than 10
In summary, compressive sensing and collaborative filgerin GHz. We assume that thgVs leverage compressive sampling
are found to be useful theories for enabling cooperativeheory that exploits spectrum occupancy sparsity to enable
wideband spectrum sensing at reduced sensing overheaglib-Nyquist spectrum sampling rates (e.g., [18]). However
However, they suffer from a scalability issue when it comeseven with sub-Nyquist sampling rates, eag¢N is assumed
to considering wideband spectrum (a few GHz). In this work,not to able to sense the entire spectrum of interest due to
we propose a sensing framework that exploits the local lowits wideness, but rather senses a portion of it; say 1 GHz
rank property mentioned above to enable scalable occupantandwidth as done in [2]. To reduce the computation and
matrix construction suitable for wideband spectrum. the reporting overheads, the compressed measurements are
Methodology and Contributions. Our key motivation is  reported to theD B which recovers the spectrum occupancy of
to build a radio occupancy map for the wideband spectrumhe portion sensed by eadtV by exploiting prior information
(e.g. 10 GHz or wider) to enable spectrum sharing through @about the spectrum occupancy. Typically, different spauatr
framework termed agi r MAP. We propose to combine the portions are assigned to different types of applicatioashe
merits of compressive sensing and low-rank matrix theoriesvith a different occupancy statistics [19]. THeB exploits
to reduce the sensing and network overhead while accuratetytis occupancy heterogeneity across the different spectru
acquiring the spectrum occupancy in the borough of é48¢h  portions, as proposed in [3], to recover occupancies of the
Unlike previous works, our work relies docal low-rank ma-  entire spectrum.
trix approximation to get the complete spectrum occupancy in -~ A major problem in spectrum sensing is the hidden terminal
the neighborhood of eac$iV. That is, instead of completing problem, which we address in this framework by relying on
the spectrum occupancy matrix such that it has a low-ranknultiple SN's deployed across the entire region of interest to
property, we propose to focus on exploiting the local low-provide redundant sensing of each portion of the spectrum.
rank property. This stems from the fact that neighboSidgs ~ Now since having eacl$ N sense all portions of the entire
tend to observe the same spectrum occupancies. spectrum is impractical, we propose to useal low-rank
The main contributions of this work are: approximation to efficiently recover the spectrum occupancy
o We propose an efficient sensing framework that enables the borough of each of thg SNs.
scalable construction of the spectrum occupancy matrix To sum upAi r MAP consists of{(i) having eachSN sense
for wideband spectrum access and sharing. a small portion of the wideband spectrum of interdst)
o To the best of our knowledge, we are the first to userecovery of band occupancies of all the portions atftie by
and combine local low-rank matrix approximation theory exploiting a priori information about the spectrum occupan
with compressive sampling to enable scalable widebandtatistics, and(iii) completion of the occupancy matrix by
spectrum occupancy recovery at low overhead. using low-rank approximation theory to recover the missing
« We construct the spectrum sub-matrices using propagdsand occupancies. Next, we will detail each of these phases.
tion models suitable for wideband spectrum. This allows ] ]
to improve the estimation of the observations reported irfP: SUP-Nyquist Wideband Spectrum Sensing and Recovery
edges of the regions, thereby enhancing the accuracy of 1) Spectrum Occupancy Model: We consider a practical
the proposed recovery approach. scenario where a wideband spectrum is allocated to mul-
The rest of this paper is organized as follows. Section Iltiple applications; e.g., aviation, satellite commurimas
describes the proposed framework and the intuition behin@nd maritime, wireless communications, TV broadcasting,
it. Section Ill discusses the proposed local low rank basedSM, etc. [19]. Applications of the same type are typically
spectrum occupancy matrix recovery as well as its perfora||0cated bands within the same block. Hence, the spectrum
mance. Section IV presents the numerical evaluation. Seds considered to have a block-like occupancy structurerevhe
tion V reviews the related works. This work is concluded in €ach block (accommodating applications of a similar tyjae) h
Section VI. different occupancy behavioral characteristics. The ol
spectrum can then be grouped ingodisjoint contiguous
blocks, G;,i = 1,--- ,g, with G;(G; = 0 for i # j. Each
) block, G;, is a set ofn; contiguous bands such that =
A. Framework Overview S°¢ . n;. Now provided that the actual spectrum occupancy
We proposéii r MAP, a scalable sensing framework that is has been observed to be under-utilized; i.e, the total numbe
suitable for database-driven wideband spectrum access aidl occupied bands is small, wideband spectrum sensing can

Il. WIDEBAND SPECTRUMOCCUPANCY RECOVERY
FRAMEWORK
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Fig. 1. An overview of the different components Af r MAP.
be enabled at sub-Nyquist sampling rates [4,14]. Howevegxpressed as [3}; = Zgg/i’“l/k ande is a predefined desired
j=1 J

even with sub-Nyquist sampling rates, given that the spettr error.

of interest is wideband, it is unpractical to assume thaheac

SN can sense the entire spectrum. Therefore, |n_th|s worke  Global Spectrum Occupancy Matrix Completion

we assume that eac§iV can only sense fevg;, contiguous

spectrum blocks out of thg blocks. Having recovered the vectar from the compressed mea-
2) Compressed Wdeband Spectrum Sensing: Exploiting ~ Surementy using (2), t_he energy in each band is compared

the fact that the spectrum is under-utilized, compressivd® @ thr?Sho}d to def'de on the occupancy of each band,

sampling theory allows to sense and recover thbands 1€+ = 72— |zi[t]]° = A whereT is the number of

using m < n branches [2]. After tuning to the block of Samples and is a predefined threshold that depends on the

bands of interest, each branch uses an independent pseudtse floor. Then, these spectrum decisions are updatee to th

random sequence mixed with the received signal to yield #PCtrum occupancy matri Since eactbN is sensing only

measurement vector [14] a small portion of the wideband spectrum, most entries of
the spectrum occupancy matrix are missing. Conventionally
y = VF ' (z+ws) =Az+mn, (1)  collaborative filtering is used to recover these missingiest

) of R as long as the number of observed decisions iis
wherey € R™ is the measurement vector taken by ea®h,  at |least¢ = O(a®/*rloga) with r is the rank ofR and

F~! is the inverse discrete Fourier transform, afids the  — max(I,J) [15, Theorem 1.1]. That is, the recovery can

sensing matrix assumed to have a full rank, tenk(¥) =  pe formulated as a convex optimization

m. Here, U contains then PN sequences generated at the

mixer. P : min rank(X) s.t. Z (Rij — Xij)2 <e (3
After collecting the compressed measurements, and in X (i.7)€n

order to reduce the reporting overhead as well as the compu-

tation complexity at theSN's, the compressed measurements°’

are sent to thé B to recover the different bands’ occupancy P3: min||X]|, s.t. Z (Rij — X; _)2 <e @)

as observed by eac$iV. X (ipe

3) Heterogeneous Spectrum Occupancy Recovery: In
Ai r MAP, the DB exploits the occupancy variability across Where||-||. is the nuclear norm an@is the the observed part
the different blocks to recover the spectrum occupancyrinfo of R. Note that the main difference between both approaches
mation [3]. In essence, this approach encourages the seartththat#’; does not require any knowledge about the rank of
of the occupied bands in the blocks that have higher averadge
sparsity levels. Such a variability in the block sparsityels When considering high frequencies, this approach fails as
can be incorporated in the formulation through carefullythe low-rank property is not preserved. This stems from the
designed weights and formulated as the following weightedact that SNs in different locations observe a completely
¢1—minimization recovery scheme different spectrum occupancy when the frequencies oféster
are relatively high. In this work, we overcome this limitati
by proposing an approach that relies on the fact that low-
rank property (though is not preserved in the global matrix)
is still preserved at the sub-matrix levels, and can theedbe
wherez = [zT,--- 217, =l is an, x 1 vector, andw;,  used to complete the global occupancy matrix. This proposed

gb

the weight assigned to blockfor i € {1,---,g,}, can be approach is described next.

&b
Py min Y will@ile, stz —yll, < (2)
* 1=1



I11. Ai r MAP: PROPOSEDLOCAL LOw-RANK whererj is a kernel function applied to the distancgy,

APPROXIMATION APPROACH between SNi and an anchor point;. As the distance

The distance betweeSiN's is an important metric for our increasesk;, converges to zero. We opted for the following
proposed framework. We start from the following observatio Kernel (similarity function)
the portion (sub-matrix) of the spectrum occupancy matrix 1 if 2 < i
that contains close-byNs possesses a low rank property, Kfj(dik) = { ’—Bd» .
though the global matrix does not. Therefore, each sub- ' e” P4k, otherwise
matrix of the global occupancy matrix can be efficiently
completed/constructed usingfs, as described next.

()

with d** is a distance threshold anlis a decay parameter.
This similarity function tends to give constant weight visitla
A. Spectrum Sub-matrices Construction given neighborhood. As we get further, the similarity decay

The spectrum occupancy matrix can be seen as a ratirg"d 9oes exponentially to zero. _ _
matrix containing zeros and ones, where zeros denote that Finally, the final binary matrix is obtained by checking the
bands are unoccupied and ones denote that the bands &/@n of each element of the matrix
occupied. First, we scale the values to make the mean equal
zero by subtracting).5 from each entry of the observed
entries in the matrix. This is to distinguish between the Local completion
observed occupancies (part @j and the ones that need
to be recovered (containing zeros). Then, based on their
locations, eactbN is associated to one or more sub-regions
among theq sub-regions. The width of each sub-region is
decided based on how far the highest carrier frequency can be
detected, which can be computed using practical propagatio
models for high frequencies [17]. Overlapping between the
sub-regions is desired to help decide on the accupancy of i :
the SN's in the sub-regions boundaries. The number of sub- The spectrum occupancy database
regions,q, depends only on the highest carrier frequency and _ _
the desired accuracy recovery. After deciding on the numbe@g' 2. The different steps of the local low rank matrix basecbvery. (1)

. ; . pectrum sub-matrices construction, (2) Local low rankrixatompletion

of sub-regionsg, and their anchor points (center§y;, }7_,,  of each sub-matrix, (3) and (4) Global matrix completion.

the SN's are associated with the anchor points in their range.

Note that unlike the approaches proposed for recommendatio _ o

systems, which use local low-rank matrix approximatiorhsuc P- Computational and Communication Overhead

as LLORMA [16] and SLOMA [20], the anchor points are  The merit of the proposed framework is that it builds

constructed independently from tt$&Vs. an accurate radio occupancy map to enable database-driven

B. Local Low-rank Spectrum Sub-matrices Recovery Widebgnd spec_trum shar_ir_lg. _The proposed framework does
so while ensuring scalability, in terms of network overhead

The occupancy of each spectrum sub-matrixfor k = Conventionally, making occupancy decisions of spectrum in
1,...,q s the solution to the optimization problem vicinity of a SN incurs a communication overhead that is

2, min ||X], s.t. Z (Rfj _ Xij)Q <e (5) IinearinT,_I, a_ndJ_. When u_sing compressive_seqsing without
X collaborative filtering, the incurred communication oweat
] o ] is linear inT', J, the number of compressed samptesand
where " is a subset of2 containing observations used t0 |1/, | Aj r MAP incurs a communication overhead cost that
complete the matan’“_. Note that %, is similar to &3 s jinear in T, J, and the number of compressed samples
except that it only considers a subset of the observed spBCtr ,,, Therefore, network overhead reduction is achieved with
occupancies.. our proposed scheme, which also results in lesser reporting
C. Global Recovery via Weighted Decisions energy. In terms of computational complexity, the weighted

Having recovered the spectrum occupancy in each sug<CoVery results 'r(_)(m2”3) per_SN measurement. Hence,.

the total computation complexity for spectrum recovery is

matrix, a global decision, combining these sub-matricss, i 5 3 h lexitv of th f the alobal
made. This is illustrated in Fig. 2. To decide on the observa®(/m n°T). The complexity of the recovery of the globa
occupancy is equivalent tq times the recovery of?,, or

tions of the SNs located close to the edges of the regions . _ .
covered by each of the sub-matrices, we account for th&VEN lesser since this can be excused in parallel.
decision of the r]eighborinﬁNs. The elements of the global IV. SIMULATION RESULTS
spectrum matrix is then expressed as

Global completion

(i,5)€Q*

We consider synthetic data to assess the efficiency of
©6) Ai r MAP using Matlab where simulations is made as follows.

! k
R =3 et
" = >, N We assume the presence of multiple primary users operating



in some ofTf = 250 bands (this can be in tHe-15 GHz range  observe that our proposed framework allows to achieve a high
with 20 MHz bandwidth each) unless specified otherwise. Theeduction gain in the error (about 10 times) compared to
deployment of the active users follows a Poisson point @®ce classical approach. This is thanks to the observation of the
(PPP) with density2/Km? deployed in the 2D plane. To local rank property (confirmed through simulations). Seton
mimic real-world scenario, we assume high-frequency bands/e observe that as the number of bands increases, the error
are reused more frequently than low-frequency bands. Eadthecreases for both classical and proposed approaches. This
SN senses only one fifth of the total bands, using sub-Nyquisis because as the number of bands increases, the global low
sampling [3]. To define the sub-matrices, we first computeank property tends to hold more, and hence, a lower matrix
how far a signal sent over a frequengywith a powerP = 10 recovery error is achieved.

W can go. We adopted the 3GPP TR 38.901 UMa LOS path
loss model [17] given by

PLgp = 32.4+20logy, (d(m)) 4+ 301ogy, (f-(GHz)) (8)

for 0.5 < f. < 100GHz and the shadow fading standard
deviation equal tdr.8 d_B. We_con3|der thg sensitivity to be. S0 1000 1300 2000 2500 3000

—120 dBm, bellow which a signal a considered absent. This " (m)

allows defining the radii of the circles centered at the ancho N _

points as illustrated in Fig 3. The Sensing nodes are dedloyegi%' 5. Error: proposed approach vs traditional approacla &snction of
according to a uniform PPP with density/Km? deployed ’

in the 2D plane. TheSNs are linked to the closest anchor In Fig. 5, we study the effect of the proposed similarity
point forming the sub-matrices. To assess the performahce @unction used for the global recovery. Whelt* is small,

the user observation is given more weight with respect to the
closest anchor point decision and lesser weight asfigets
further. This helps mainly build an accurate decision faras
located at the edges of the sub-matrices. As this parameter
increases beyond a certain distance threshold, the peafaren
drops and becomes similar to that of the classical recovery,
as we no longer favor the decision with respect to the closest
anchor point.
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Ai r MAP, we generate the entire spectrum occupancy matrix
to compare the final recovery matrix with it. Since our focus
is on the spectrum occupancy matrix completion, we consider
the wideband spectrum recovery of the observed portion from Fig. 6. Effect of the number of submatrices.

each SN to be error free. The spectrum matrix completion ) ) )

is done using [21]. First, we observed from the generated Fi9- 6 studies the effect of the number of anchor points.
spectrum occupancy matrix that the low-rank property foroverall, we observe that as the number of anchor points

the sub-matrices is confirmed while the global matrix has ndncreases, a reduction in the error is achieved which cosfirm
low-rank property fank > 50 for the case of having 250 the same observation made in Fig. 4.

bands). V. RELATED WORKS

10 15 20
Number of anchor points

Error (Frob. norm)
ok

Spectrum awarenessThe proposed framework combines
advances in both wideband spectrum sensing [2—6, 22—24] and
recommendation systems [16,20]. Authors in [6] proposed
Senseless, a trustworthy database to provide the spectrum
| | ‘ : availability of TV wideband spectrum. However, this datsda
200 400 600 800 1000 is only restricted to TV bands. To be able to get the occupancy

Number of frequency bands . . .
of wider bandwidth, authors in [2] made a proof of concept for
Fig. 4. Error: proposed approach vs traditional approach. a 1 GHz wide bandwidth scanner. There are also some efforts
towards applying machine learning and compressive samplin

Fig. 4 shows the recovery error (computed as the Frobeniuheories for spectrum sensing [4, 23, 25, 26]. Authors in [25

norm) as a function of the number of frequency bands. Firstproposed Rxminer which uses a mixed Gaussian and Rayleigh

Error (Frob. norm



models to identify spectrum occupancy. Authors in [4] pro- [3]
posed to exploit the low-rank property of the measurement
matrix to recover the unreported measurements. The prdpose

B. Khalfi, B. Hamdaoui, M. Guizani, and N. Zorba, “Explioig
wideband spectrum occupancy heterogeneity for weightetpoessive
spectrum sensing,” ifProc. of IEEE INFOCOM WKSHPS May 2017,
pp. 1-6.

approach assumes that all sensing nodes use the same sensjagJ. J. Meng, W. Yin, H. Li, E. Hossain, and Z. Han, “Collahtive

matrix, which makes the approach unpractical. Moreover, th
proposed modeling fails to capture frequency reuse, wlsch i
crucial in high-frequency bands. This has also been exténde [5]
to detect malicious users in [22].

Collaborative filtering. Collaborative filtering was intro-
duced in recommendation systems to handle the informa-e]
tion overhead. The main approach uses matrix factorization
which is shown to achieve great performance while beingm
scalable [27]. This is based on the fact that the users’
preference for a particular item is only controlled by a dmal
number of latent factors, which translates to a low-rank g
rating matrix. This assumption does not hold true in real-
world applications as shown by [16]. Authors in [16] showed
through experiments that when considering the global matri 9]
having a number of low-rank matrices, better performance is

achieved, making this approach, LLROMA, attractive to othe [10] !

fields such as multi-label classification, documents, eke T |1,
main concern with LLROMA is the construction of the sub-
matrices which is done by first randomly selecting a numbeﬁg
of anchor points, and then, using distance metrics, poigs a
connected to the closest anchor point. Besides, it suffers f
high computation and storage cost. Recently, SLOMA [20]
has been proposed to overcome LLORMA weaknesses bMS]
incorporating the social connections among users. However
the chosen number of anchor points was not justified for botr[116]
approaches.

(14]

VI. CONCLUSIONS

We proposedi r MAP, a framework that builds an accurate
spectrum occupancy map for wideband spectrum sharing.
Ai r MAP exploits the under-utilization of the wideband spec-[18]
trum, the heterogeneity in the spectrum occupancy, and the
spatial correlation between sensing nodes to achieve scal-
able decisions for the spectrum occupancy while incurring19]
small network communication overhead. While this work
investigates the performance under randomly deplay&d,
better performance could be achieved when thg€&es are
carefully placed. Moreover, the proposed framework can bé?!l
extended to other applications, such as spectrum enfordemeyy)
and monitoring, which can help recognize the type of signals
occupying the wideband spectrum.

(17]

(20]
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