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Abstract—Data center network (DCN) topologies have re-
cently been the focus of many researchers due to their vital role
in achieving high DCN performances in terms of scalability,
power consumption, throughput, and traffic load balancing.
This paper presents a comprehensive comparison between two
most commonly used DCN topologies, Fat-Tree and BCube,
with a focus on structure, addressing and routing, and proposes
a new DCN topology that is better suited for nowadays
data center networks. We show that our proposed topology,
termed Circulant Fat-Tree, alleviates traffic congestion
at the core switches, improves network latency, and increases
robustness against switch and server failures when compared
to traditional Fat-Tree DCN topologies.

I. INTRODUCTION
Data centers nowadays consist of tens of thousands of

servers and switches, all connected with high-speed com-
munication links. The network topology design choice of
these data centers is vital to ensuring scalability [1] and to
improving data throughput [2] and power consumption [3].
As shown in Fig. 1, traditionally, data center network (DCN)
topologies are built hierarchically, and are composed of
core, aggregation and access (aka edge) layers [4]. Recent
years have witnessed an exponential growth in DCN traffic,
with a global data traffic projected to reach 20.6 ZB by
2021, about a three-fold increase from 2016 [5]. In addition,
measurement-based studies [6], [7] show that the average
traffic loads on core-layer switches are much higher than
those on aggregation- and access-layer switches. With the
booming of social media, DCNs have been growing even
more rapidly, both in size and in numbers, making them
more susceptible to device and link failures, which in turn
results in frequent data routing failures and flow disruption.
In this paper, we study existing DCN topologies, and

propose Circulant Fat-Tree topology, an improve-
ment over the traditional Fat-Tree topology to better suit
nowadays data center networks. Our proposed Circulant
Fat-Tree outperforms traditional Fat-Tree by:
1) Alleviating traffic congestion at the core switches by
balancing traffic loads across the different network
switches.

2) Improving network latency by reducing the average
path lengths between communicating servers.

3) Increasing robustness against network failures by pro-
viding more possible paths between servers.

The reminder of this paper is organized as follows.
In Section II, we provide a taxonomy of various typolo-
gies that have been proposed in the literature, and detail
the two commonly used DCN topologies, Fat-Tree and

Fig. 1. Hierarchical Structure of DCNs.

BCube. We introduce and present our proposed Circulant
Fat-Tree topology in Section III and evaluate its perfor-
mance in Section IV. We conclude the paper in Section V.

II. DCN TOPOLOGIES
In the past few years, there has been a tremendous research

focus on developing new DCN topology designs with the aim
of improving the DCN performance in terms of cost, power
consumption, and traffic and resource management [1], [8]–
[14]. Generally speaking, as shown in Fig. 2, these proposed
topologies can be categorized based on device function
type, device technique type, or architecture type. In the
device function taxonomy, DCN topologies can be viewed
as either switch-centric (e.g. Fat-Tree, Portland [10], and
VL2 [11]), or server-centric (e.g. BCube [8] and DCell [9]).
In switch-centric topologies, the forwarding function is en-
abled and implemented by switches only, whereas, in the
server-centric topologies, servers are also enabled with such
a forwarding capability and do play a role in data routing
decisions. DCN topologies can also be categorized according
to devices technique; that is, optical (e.g. OSA (Optical
Switching Architecture) [15]), hybrid (e.g. C-Through [12]
and Helios [13]), or electrical (e.g. Fat-Tree, BCube, DCell,
and Jellyfish [14]). DCN topologies can also be categorized
based their architecture and can be viewed as tree-based
architecture (e.g. Fat-Tree, Portland [10], and VL2 [11]),
recursive-based architecture (e.g. BCube [8] and DCell [9]),
or random-based architecture (e.g. Jellyfish).
Next, we compare the two commonly used network

topologies, Fat-Tree and BCube, by highlighting their pros
and cons vis-a-vis of their structure, data addressing, and
routing capability.
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Fig. 2. Taxonomy of existing DCN topologies.

A. Fat-Tree

Fat-Tree as a DCN topology was first introduced by Al-
Fares et. al [1] as an improvement to the tree topology. The
main characteristic of Fat-Tree topology is that the number of
links connecting a switch to its lower-layer switches is equal
to the number of links connecting the switch to its parent
switch. This feature helps in alleviating traffic congestion
at the root level by considering multiple core switches as
opposed to only one.
1) Structure: As shown in Fig. 3, there are three types of

Fat-Tree switches, and depending on which layer the switch
is placed in, a switch is either called a core, aggregation,
or edge/access switch. A Fat-tree topology has k pods, with
each pod having k/2 edge and k/2 aggregation switches.
Also, each pod has a link to each core switch via aggregation
switches. Each switch in the edge layer is connected to
k/2 servers. For illustration, we consider k = 4 pods in
Fig. 3 with 4 switches in each pod, two of which are
aggregation switches and two are edge switches. Likewise,
each aggregation switch has two ports connecting it to the
edge switches and to the core switches. In general, a Fat-Tree
with k pod has k3/4 servers.
2) Addressing: Fat-Tree topology has special IP address-

ing. Switches in the edge and aggregation layers are assigned
IP addresses of the form 10.pod.switch.1, where pod =
0, 1, . . . , k − 1 denotes the pod number, and switch =
0, 1, . . . , k− 1 denotes the position of the switch in the pod,
starting from left to right and bottom to top. Core switches
are assigned addresses of the form 10.k.j.i, where j, i =
1, 2, ..., k/2 denote the switch’s coordinates, starting from
top-left. Finally, servers are assigned addresses of the form
10.pod.switch.ID, where ID = 2, 3, ..., k/2 + 1 denotes
the position of the server in the subnet, starting from left to
right. Fig. 3 shows how addresses are assigned to the Fat-
Tree when k = 4.

3) Routing: Routing is performed into two steps, first
based on primary prefix and then based on secondary suffix
lookup. For each incoming packet, destination address prefix
is checked in primary table first, and if longest prefix is
matched, which means packets are being routed down to the
servers, then the packet is forwarded to the specified port.
Otherwise, the secondary level table is checked and the port
entry with the longest suffix match is used to forward the
packet, which means packets are being routed up towards
core switches. At the core switches, packets are simply
directed to the pod in which the destination is located.

B. BCube
BCube is a server-centric topology introduced mainly to

support modular data centers [8]. One of its other main
purposes is also to support all the traffic patterns (one-to-
one, one-to-several, one-to-all, and all-to-all).
1) Structure: BCube is a recursive structure, with

BCube0 is constructed by n servers that are connected to an
n-port switch, BCube1 is constructed from n BCube0 that
are connected to n switches, and so on. In general, BCubek
is constructed from n BCubek−1 that are connected to nk

n-port switches. Each server in BCubek has k + 1 ports,
numbered from level-0 to level-k. Thus, BCubek has nk+1

servers and nk switches. Fig. 4 shows the BCube structure
with n = 4 and k = 1.
2) Addressing: Servers in BCubek are assigned addresses

akak−1a0 with ai ∈ {0, 1, ..., n− 1}. Switches, on the other
hand, are assigned addresses in the form < l, sk−1sk−2s0 >
where l = {0, 1, ..., k} is the level of the switch. The ith

server in the jth BCube0 connects to the jth port of the
ith level-1 switch. For example, server 12 is connected to
switch < 0, 1 > in level 0 and to switch < 1, 2 > in level
1. Fig. 4 shows how addresses are assigned to BCube when
n = 4 and k = 1.
3) Routing: BCube uses the Hamming distance technique,

h(A,B), to denote the distance between two servers, A
and B, which corresponds to the number of different digits
within their address arrays. When a packet is forwarded from
source to destination, one digit is changed in each step.
Thus, the path length is at most k + 1. There are k + 1
edge-disjoint paths between any two servers in a BCubek
topology. These paths can be utilized for achieving high
bandwidth in order to improve one-to-one, one-to-many, and
all-to-all traffic performances. Fig. 4 shows an example of
routing in BCube1 when n=4.
Table I presents a summary of the Fat-Tree and BCube

features that we presented.

III. THE PROPOSED TOPOLOGY DESIGN: Circulant
Fat-Tree

To overcome these aforementioned challenges, we pro-
pose an improved Fat-Tree topology, termed Circulant
Fat-Tree in this paper. Circulant Fat-Tree im-
proves DCN performances by reducing data traffic travers-
ing congested links, thereby reducing network latency. In
addition, Circulant Fat-Tree improves the robustness
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Fig. 3. Fat-Tree topology with k = 4.

TABLE I
FEATURES OF FAT-TREE AND BCUBE TOPOLOGIES:N=NUMBER OF SERVERS, n=NUMBER OF n-PORT SWITCHES, k= NUMBER OF BCUBE LEVELS

Structure Routing
Nbr of
Servers

Nbr of
Switches

Nbr of
Wires

Connecting Rule Server
Degree

Diameter Decider Type Protocol Node-Disjoint
Paths

Fat-Tree n3/4 5N/n 3N

A switch can
connect to other
switches.
A server has only
one direct link
to another switch

1 6
Switches
only

Two-level
lookup
table

Equal-cost
multi-path
routing
(ECMP)

1

BCube nk+1 (NlognN)/n N(k + 1)

Switch-to-switch
connections are
not allowed.
A server has k+1
direct links to k+1
other switches.

k + 1 2(k + 1)

Servers
and
Switches

Hamming
distance

BCube Source
Routing
(BSR)

k + 1

Fig. 4. Construction of BCube1 from BCube0 with n = 4. Source is
(03) and destination is (20). Using hamming distance yields two parallel
paths: (03) → (00) → (20) or (03) → (23) → (20).

of DCNs against node and link failures by increasing the
number of possible paths among server pairs.

A. The Physical Structure
Similarly to Fat-Tree, the switches in Circulant

Fat-Tree are also categorized into core, aggregation and
edge switches. Edge and aggregation switches are arranged
into k pods, where every edge switch connects k/2 servers.
The total number of servers and switches are k3/4 and
5 ∗ k2/4 respectively. In Circulant Fat-Tree, every
pod is connected to the adjacent pod through its aggregation

and edge switches situated at the pod’s border. Formally,
if pod switches are addressed in the form 10.pod.switch.1,
then the connecting rule between adjacent pods are as
follows. For every pod, 10.pod.k/2−1.1 switch is connected
to 10.pod + 1.k/2.1 and 10.pod.k − 1.1 is connected to
10.pod+1.0.1. Hence, the number of wires in Circulant
Fat-Tree is increased by 2(k− 1) when compared to Fat-
Tree. However, the increase in number of wires is negligible
especially when the number of pods is large. For example,
when k = 24 this increase is only 0.4%. Figure 5 shows an
example of Circulant Fat-Tree where k = 6.

B. Key Features of Circulant Fat-Tree

Circulant Fat-Tree outperforms traditional Fat-
Tree in each of the following performance metrics.
1) Alleviating Traffic Congestion at Core Switches: In

Fat-Tree DCNs, the average link loads at the core switches
are higher than those at aggregation and edge switches. For
instance, any two servers belonging to two different pods can
only communicate through core switches. However, unlike
Fat Tree, in Circulant Fat-Tree, any two servers
belonging to any two consecutive pods can communicate
directly through aggregation switches without needing to go
through core switches. For fair comparison, throughout, we
only consider paths whose lengths (number of hops) do not



Fig. 5. The proposed Circulant Fat-Tree with k = 6.

TABLE II
APL COMPARISON

APL: adjacent pods only APL: all pods
No. of Fat-Tree Circulant Fat-Tree Circulant
Servers Fat-Tree Fat-Tree
128 6 5.125 5.688 5.496
1024 6 5.469 5.859 5.804
3456 6 5.681 5.911 5.884

exceed 6, since this is the maximum path length of Fat-Tree
topologies.
2) Reducing Average Path Length (APL): APL is a key

performance metric for evaluating DCN topologies, as it cap-
tures end-to-end latency of traffic between pairs of servers.
The proposed Circulant Fat-Tree reduces APL of
(k3/4 − k/2) pairs of servers1 among a total of (k4/16)
pair of servers from 6 (as in the case of Fat-Tree) to only
4. When k = 24, this, for example, corresponds to reducing
APL of about 16% of the total pairs from 6 hops to 4 only.
More on this will be provided in the next section.
3) Reducing Network Latency: Most DCN routing al-

gorithms use the shortest path metric for making routing
decisions. Since Circulant Fat-Tree reduces the APL
among communicating servers, then the average network
latency achieved under Circulant Fat-Tree is reduced
when compared to Fat-Tree, especially for communicating
servers belonging to adjacent pods; this is shown in Table II.
4) Improving Robustness Against Node/Link Failure:

Circulant Fat-Tree is more tolerant to switch
and server failures than Fat-Tree topologies. Robustness
to network failures is improved because Circulant
Fat-Tree increases the number of possible paths between
pairs of servers belonging to consecutive pods when com-
pared to Fat-Tree.

IV. PERFORMANCE EVALUATION:
In this section, we evaluate and compare our proposed

Circulant Fat-Tree topology to Fat-Tree topology in
1We only consider pairs whose servers belong to different pods.

terms of the metrics presented in Section III-B. To ensure a
fair comparison, we only consider path lengths of at most
6 hops. Recall that Circulant Fat-Tree increases the
number of servers that can be reached from another server
via pod-level by at least 200% when compared to Fat-Tree.
For example, when referring to Fig. 5, a server connected to
switch 10.3.0.1 in pod 3 can communicates with 38 other
servers without needing to go through core-level switches.
On the other hand, this same server can only communicate
with 8 servers when Fat-Tree topology is used for the same
scenario. Fig. 6 shows the number of servers that can reach
each other through pod-level switches instead of core-level
switches for both topologies, Fat-Tree and Circulant
Fat-Tree, with path length of at most 6 for different total
numbers of servers.
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Fig. 6. Number of servers that can reach other servers without going
through core-level switches with path length of at most 6.

Without loss of generality, to measure the network traffic,
we suppose that each server sends one traffic unit (e.g.,
one packet) to every other server in the network. This
scenario is called all-to-all traffic. We also assume that traffic
is routed along shortest paths, where here the number of



hops is used to measure the path length. To ensure a fair
comparison, we assume that the maximum shortest distance
(in number of hops) among all the server pairs is at most
6 for both topologies. Fig. 7 shows the total amount of
traffic that crosses core-level switches when all server pairs
(each belonging to a different pod) are communicating. In
this experiment, the number of servers is varied from 128
to 3456. Observe that Circulant Fat-Tree reduces
the core-level traffic when compared to Fat-Tree, especially
when the number of servers is low. This reduction varies
from 35% to 10% when the number of servers goes from
128 to 3456.
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Fig. 7. All-to-All traffic between two random pods.

Fig. 8 shows that Circulant Fat-Tree reduces APL
between any two adjacent pods when compared to Fat-Tree.
APL achieved under Circulant Fat-Tree varies from
5.125 to 5.680 as opposed to 6 in the case of Fat-Tree.
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Fig. 8. APL between any two consecutive pods.

Fig. 9 shows the total amount of traffic that crosses core-
level switches under all-to-all traffic scenario when consid-
ering server pairs in the entire network. The figure shows
that lesser traffic goes through core-level switches under

Circulant Fat-Tree than under Fat-Tree, with a traffic
reduction that varies from 34% to 10% when the number of
servers varies from 128 to 3456. Therefore, Circulant
Fat-Tree reduces the congestion at core-level switches
by balancing traffic among all switches: core, aggregation
and edge. This is one of key features of Circulant
Fat-Tree.
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Fig. 9. All-to-All traffic in entire network.

Now when considering all servers communicating to
all servers regardless of their pod, APL achieved under
Circulant Fat-Tree is also smaller than that achieved
under Fat-Tree. This is illustrated in Fig. 10.
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Fig. 10. APL for the entire network.

In Circulant Fat-Tree, the multiple redundant
paths that are introduced between any two adjacent pods
result in alleviating core-level traffic congestion, reducing
network latency, and improving robustness to switch and
server failures. We only consider paths of length ≤ 6 to en-
sure fairness with the Fat-Tree. Fig. 11 shows Circulant
Fat-Tree results in more possible routing paths between
any two adjacent pods than Fat-Tree. For example, in



Circulant Fat-Tree, when the total number of servers
is 1024, any two servers in two consecutive pods have 78
possible routing paths with length ≤ 6. Fat-Tree, on the
other hand, has only 64 possible routing paths with the same
length.

0 500 1000 1500 2000 2500 3000 3500

Total Servers

0

20

40

60

80

100

120

140

160

180

P
o
ss
ib
le

P
a
th

Fat-Tree

Circulant Fat-Tree

Fig. 11. Average number of possible paths between any two servers in
two consecutive pods.

V. CONCLUSION
We propose the Circulant Fat-Tree topology, an

improvement over the traditional Fat-Tree topology to bet-
ter suit nowadays data center networks. The proposed
Circulant Fat-Tree topology alleviates traffic conges-
tions at core-level switches by providing a better balance of
traffic loads across the different network switches, reduces
latency of data communicated across servers by reducing
the average path lengths among communicating servers, and
augments robustness against network failures by increasing
the number of possible paths between server pairs.
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