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Abstract

IoT emerges as an unprecedented paradigm with great potential for changing how people interact, think and live. It

is making existing Internet services feasible in ways that were previously impossible, as well as paving the way for new

situation-awareness applications suitable for smart cities, such as realtime video surveillance, traffic control, and emergency

management. These applications will typically rely on large numbers of IoT devices to collect and collaboratively process

streamed data to enable real-time decision making. In this paper, we introduce the concept ofSemantic Virtual Space

(SVS), an abstraction for virtualized cloud-enabled IoT infrastructure that is commensurate with the goals and needs of

these emerging smart city applications, and propose and discuss scalable architectures and mechanisms that enable and

automate the deployment and management of multiple SVS instances on top of the cloud-enabled IoT infrastructure.

I. I NTRODUCTION

IoT has been broadly defined as an ecosystem of smart objects that interact autonomously with each other, fundamen-

tally altering how humans interact with the natural world. One of its enormous impacts lies in making existing smart city

services feasible in ways that were previously impossible,as well as in paving the way for a wide range of new smart

city applications, ranging from video surveillance and traffic control to emergency management and precision health.

These applications typically involve monitoringspaceand objectsand, in some cases, the interactions between them,

and do so by relying on large numbers of IoT devices with sustained one-to-one—and possibly one-to-many—device

connectivity to collect and collaboratively process streamed data to enable real-time decision making.

A. Unleashing the Power of Participatory IoT

In this work, our vision of IoT transcends a mere object-centric view, and considers IoT as adistributed and Internet-

accessible infrastructurethat seamlessly integrates the physical and virtual worldswith capabilities far exceeding the

computational intelligence, functionality and reliability of today’s systems. This IoT infrastructure may serve multiple

entities and groups (private or public) of people within a city, where the interest of each entity in collecting information

derives directly from the mission of the entity itself. The factors that impact interactions with the physical infrastructure
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Fig. 1. Semantic virtual space

include heterogeneity among participating organizationsand groups, asymmetry in information processes among the

groups, and asynchronous dissemination of critical information to participating groups. Embedding”semantic views”

into IoT to support group interests and services would require intelligent management of the physical and computing

infrastructure in order to personalize and adapt to situational and environmental conditions, as required by the supported

application.

B. The Concept of Semantic Virtual Space (SVS)

To address the above challenge, we propose the concept ofSemantic Virtual Space (SVS), an abstraction for virtualized

cloud-enabled IoT infrastructure commensurate with the goals and needs of the associated organization and underlying

application. To illustrate this concept, consider a large event like the Soccer World Cup or the Olympic Games taking

place in some major city. An event of this scale usually attracts lots and lots of people and is also usually organized

for a fixed period of time (e.g., a month) during which, the city is often faced with some major challenges, including

resolving traffic congestion, ensuring coordinated and easy access to attractions (e.g., parking, restaurants, hotels, etc.),

providing realtime surveillance for people’s and city’s safety, being well-prepared for emergency relief operations(e.g.,

accident, fire, etc.), and monitoring and controlling health-related matters (e.g., pollution, disease epidemics, etc.). Our

vision is that for such a large-scale event, the city-wide IoT infrastructure can be leveraged to address such challenges. It

can, for example, be used to enable and support applicationsserving three different city entities with different missions:

(i) alert police and city officials about security threats that can be identified through realtime video surveillance; (ii)

guide medical staff (e.g., ambulance) efficiently through traffic to offer its aid as quickly as possible during emergency

relief operations; and (iii) assist and guide visitors to easily find their points of interest (e.g., hotels, restaurants, etc.).

Each of these three missions constitutes a different SVS, and may involve only some components of the physical/IoT

infrastructure. Fig. 1 depicts the multi-layered architecture supporting these three SVSs, each designed to capture the

interest and mission of each of the three different city entities.

An instantiation of an SVS to support a situation-awarenessapplication consists then of adynamic, on-demandlogical

grouping of a set of geographically distributed participatory IoT devices, created to process, filter and fuse collected data
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into accurate and actionable information for realtime decision making, as required by the underlying application [1].

Throughout, we will be referring to each SVS instantiation as aparticipatory IoT network-on-demand (NoD) instance.

In this work, we propose scalable architecture and mechanisms that allow the instantiation, deployment and management

of multiple participatory NoD instances to enable and automate a wide range of situation-awareness and safety smart

city applications. These targeted applications share key characteristics and requirements. Firstly, they requireinteractive

execution among, and involvement of, the devices participating in the NoD instance. For example, for the realtime video

surveillance case, measurements made by individual cameras can be noisy, and therefore, collective measurements are

needed to refine the estimates and avoid false detections. Besides, when the surveillance system is being used to track

moving objects, multiple different field views may be neededto be able to make reasonably accurate decisions. Secondly,

realtimeextraction of actionable knowledge is needed to be able to take timely actions. For example, in the case of an

emergency management instance, it is important that the security officials and medical staff be informed immediately of

what happens, what to do, and where to go, so that necessary actions are taken timely. Thirdly, they may only be needed

temporarily, typically days or weeks, as for the case of sports and concert events, thus calling for elastic and virtualizable

resource provisioning solutions to allow for resource scaling. These aforementioned requirements signal then a paradigm

shift from the traditional‘collect data now and analyze it later’ approach to the‘collect, analyze and decide on the

fly’ approach, and our proposed framework distinguishes itselfby leveraging key emerging technologies like edge cloud

computing, IoT and blockchains to allow and ease such a paradigm shift.

This paper is organized as follows. We first present the proposed architecture in Section II. Our architecture couples

IoT device potentials with cloud computing capabilities [2] to enable our envisioned situation-awareness smart city

applications, and throughout, we will refer to this architecture asCoT (Cloud of Things) Infrastructure. We then

present the proposed blockchain-enabled distributed mechanisms in Section III, and the edge cloud offloading techniques

in Section IV. Finally, we highlight key open research challenges in Section V, and conclude the paper in Section VI.

II. V IRTUALIZABLE CLOUD-OF-THINGS (COT) INFRASTRUCTURE

A. Scalable Architecture for Elastic and Fast NoD Instantiation

Our envisioned architecture is cloud-enabled IoT infrastructure, referred to asCoT Infrastructure. It consists of

4 tiers (Fig. 2). The top tier, Tier 1, contains the differentautonomous clouds (autClouds), which are the logical

entities that own conventional cloud platforms (e.g., Amazon clouds) and provide interfaces for user access. Each

autCloud typically covers multiple regions in the world, each constituted of several (core) clouds (coreClouds),

where, in most cases, acoreCloud is nothing but a datacenter. In this architecture, the set ofall coreClouds forms

Tier 2. Tier 3 constitutes the set of all edge clouds (edgeClouds), which are essentially small-scale datacenters deployed

at the network edge in a city to bring data and computing closer to the IoT devices. For example, LinkNYC1 [3, 4],

an infrastructure project announced in 2014 and became operational in 2016, replaces thousands of payphones with

kiosk-like structures, called Links, to offer fast, free Wi-Fi access to everyone in New York City. When equipped with

1https://en.wikipedia.org/wiki/LinkNYC
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Fig. 2. CoT Infrastructure

appropriate computing and storage resources, these Links can be viewed in the case of New York City asedgeClouds.

Finally, Tier 4 represents the IoT devices where each deviceis to be associated with one (or more)edgeCloud(s) for

connectivity, accountability, and service purposes.

B. Service Provider Entities: Functionalities and Interactions

We envision that the architecture proposed above will trigger the emergence of new service/bunisness provider entities.

Here, we introduce two:IoT Device Brokers andNoD Service Agents.IoT Device Brokers are perceived as business

entities that serve as brokers for theparticipatory IoT devices, and can, for example, be responsible for handling the

registration and authentication of IoT devices (e.g., obtaining their resource capacity, location, mobility information,

etc.), defining and managing payments and other associated logistics, assigning registered IoT devices to appropriate

edgeClouds, and publishing and making this information available to other entities.NoD Service Agents, on the

other hand, are high-layer service providers that serve as the liaison between NoD clients, cloud platform providers, and

IoT Device Brokers. They can, for instance, be responsible for receiving NoD requests from the different interest groups

(e.g. law enforcement officials, interested in tracking a suspected criminal in some area, can issue a request describing

the requirements and specifications of their surveillance application to theNoD Service Agent) (Step 1 in Fig. 2).

In turn, these agents translate these requirements and specifications into NoD requests, and send them to the different

autClouds (Step 2) so that NoD requests are disseminated to thecoreClouds covering the area of interest (Step 3),

as specified in the request, triggering then the execution ofthe NoD instantiation mechanisms (discussed later). When a

NoD request needs data from devices registered with different autCloud entities,NoD Service Agent can facilitate

this task by federating across the differentautClouds.coreClouds in collaboration withIoT Device Brokers then

run the instantiation mechanisms to discover and locate physical network resources (Step 4) and perform the resource

mapping task (Step 5). The NoD solution is then sent back to the NoD Service Agent (Step 6), which monitors the

created virtual NoD instance and sends its information (e.g., configuration, control, etc.) back to the client (e.g. law

enforcement officials) (step 7).
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III. PARTICIPATORY NETWORKS-ON-DEMAND INSTANTIATION

We now present our mechanisms proposed to manage participatory IoT devices and map NoD instances on top of

these devices. We want to mention that the focus of this work is on thecoreClouds, edgeClouds and IoT devices

layers of the system; that is, the city-level architecturalcomponents. Our mechanisms leverage blockchain technology

to allow: the registration, discovery and management of IoTdevices wanting to participate in NoD instances, enable the

mapping of requested NoD instances onto the registered IoT devices, ensure service delivery and integrity of committed

IoT devices, and reward and secure payments to the IoT devices participated in the NoD instances.

Although blockchain technology [5, 6] is conventionally used for cryptocurrency, due to its distributed nature and great

potential in simplifying recordkeeping, it has been attracting many other applications (e.g., voting, vehicle registrations,

IoT applications, etc.). In this work, we leverage it to design distributed mechanisms for scalable and fast NoD instantia-

tions. Adopting blockchain features in NoD instantiation mechanisms is not, however, straightforward, and presents new

challenges, pertaining to IoT and arising from the following facts and features of the system at hand: (i) IoT devices

have limited storage and computation resources, (ii) the situation awareness applications supported by NoD instances

are delay sensitive, and (iii) the bandwidths available forthese IoT devices could be limited (e.g., wireless connections).

The design approaches we present in this paper aim to addressthese challenges.

A. Blockchain-Enabled NoD Instantiation Mechanisms

We consider a city-wideCoT Infrastructure constituted of many IoT devices spread all over the city, anda set of

edgeClouds also deployed across the city to provide Internet connectivity and resource offloading to the IoT devices.

An IoT device interested in making side income by participating in NoD instances needs to advertise, upon joining the

network, its device characteristics (e.g., resource type/capacity, availability, bounty, etc.) to the devices in thenetwork

including (some of) theIoT Device Brokers overseeing and offering service in that city. As mentionedearlier, in our

architecture,IoT Device Brokers are responsible for receiving and handling the NoD requests, and serve as the liaisons

between the requests and the registered IoT devices by enabling mechanisms and protocols that allow the creation and

management of such NoD instances. The proposed blockchain-based mechanisms consist of two major components, each

playing an essential role towards achieving our ultimate goal of enabling scalable and fast NoD deployments.

1) Registration, discovery and mapping component:(i) Allows participatory IoT devices to join, authenticateand reg-

ister themselves to the network. (ii) Enables the discoveryof IoT devices satisfying the requirements of the NoD requests,

based on devices’ reputations, prices, capacity, availability, etc. And (iii) enables the mapping of the NoD requests on

top of the discovered IoT devices to create the NoD instances. This component has two phases:

• Device authentication and registration phase:Each participatory IoT device is required to register by broadcasting

its device characteristics to all other devices in the city-wide network. Device characteristics include informationsuch

as device ID, device wallet ID, public key, resource type, resource capacity, availability, reputation score, bounty,etc.

Upon joining the network, device reputation and wallet values will be set to zero, which will be updated, as discussed

later, as the device starts participating in NoD instances.This information will be digitally signed (via public/private

key) before broadcast for authentication and integrity purposes, and will be added to the blockchain by miners. It will
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also be used later to verify and confirm whether a device meetsthe requirements of NoD requests and thus can be

mapped to any of the requests to serve as a participatory device.

• Resource discovery and mapping phase:All NoD requests will be received and handled by theIoT Device Brokers,

and the brokers will serve as the liaison between the devicesand requests. For each received NoD request, to create the

NoD instance, the broker will disseminate the request information to a set of (one or more) devices covering different

regions of the city of interest to the NoD request. An NoD request is modelled with a tupleG = (N,R,L, T, C, S),

with N being the number of needed devices,R being the type of needed resources,L being the locations of devices,

T the time during which these resources will be needed,C the cost/bounty the broker is willing to pay a participatory

device for its service, andS the minimum reputation score a device needs to have to be ableto participate. The

request will be circulated among the devices, and as it goes through them, a device meeting the requirements of the

request can choose to join the NoD instance. And if it does, itupdates the request accordingly, and forwards it to

other devices. By the end of this phase, the devices participating on the requested NoD will all be selected, and the

NoD instance will be created. The broker will assign a uniqueID for each created NoD instance for accountability

and manageability. Once created, the NoD instance can startrunning the underlying application as requested, where

devices will be using their resources to perform their assigned tasks, and possibly be communicating with one another

as dictated by the supported application. Network traffic flow configuration and control, which can be managed via

SDN, is beyond the scope of this work.

2) Verification, payment and accountability component:(i) Ensures that the IoT devices committed to NoD instances

perform their tasks as agreed upon. (ii) Provides backup plans for those devices that fail to deliver their service. (iii)

Secures payment operations and fund transfers from consumers to participatory devices upon completion of their assigned

tasks. And (iv) employs a trust mechanism that allows devices’ reputations to be built-up and updated based on their

successful completion of assigned tasks. These capabilities will be enabled through the three following phases:

• Service delivery monitoring phase:As NoD requests are disseminated through the different participatory devices

during the discovery and mapping phase described above, a set of devices will be selected to serve as monitors whose

job is to probe the committed IoT devices periodically to make sure that they are still up to perform their agreed

upon tasks. Whenever a monitor notices that a committed device is not responding to its probes or observes malicious

activity inferring that the device is not performing its assigned task, the monitor raises a flag and informs all other

devices. This can, for example, be used to trigger a replacement of the failing device, and to rate devices for their

offered service quality to update their reputation and trust levels, as discussed next.

• Building trust and reputation phase:Unlike Bitcoin, which manages cryptocurrency transfers among users and

hence verification can easily be done by looking at the transfer’s wallet/balance, verifying that committed IoT devices

performed their tasks as agreed upon is not a task that can easily and accurately be checked by monitoring devices.

This is similar to online shopping (e.g., eBay) and car transportation markets (e.g., Uber), where service delivery can

be confirmed only after the goods/services are received/delivered. Therefore, like these systems, we rely on reputation-

based schemes to score and select participatory devices. Here, each IoT device participated in an NoD instance receives

a score for its delivered service quality, which is then usedto build its reputation for future participation. In addition
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(b) Number of visited devices.

Fig. 3. Mapping performance results under reliable networks (no node failure) with request size = 10.

to IoT Device Brokers, monitors, as well as devices participated in the same NoD instance, rate devices too, and a

voting mechanism is used to decide on the final rating. Once the rating is decided on, the newly updated reputation

score is broadcast to all devices, and is included in the new block to be added to the blockchain.

• Service delivery verification and payment phase:Now it needs to be decided whether a device performed its service

as it should so funds can be transferred to it. We also rely on voting approaches to make such decisions. Once a fund

transfer is voted on, this transfer transaction is broadcast to all devices and is added to the blockchain too.

B. Performance Results

We consider a time-slotted system where at each time slot, a new NoD request, with service duration (in number of

time slots) following a Bernoulli process with parameterq, arrives according to Bernoulli random variable with parameter

p. We define thenetwork loadasp/q, which essentially represents the average number of NoD requests that would have

been present in the network at a time slot had all arrived requests been accepted. Or said differently, theaverage number

of NoD requests that are actually present in the networkis thenetwork loadmultiplied by the correspondingacceptance

rate of arrived requests. In this experiment, we setp and q in such a way that the network load varies between 0.2

and 0.6. Also, the number of requested devicesN is set to 10, the locationsL of the 10 requested nodes are selected

randomly within the city, the request bountyC is selected uniformly between 100 and 1000, the size of mining period

(during which on block is added to the blockchains) is set to 3time slots, and the number of monitors is set to 3.

1) Device discovery and NoD request mapping:We first study the impact of the network load on: (1) the acceptance

rate of NoD requests and (2) the average number of visited devices before the NoD request is successfully mapped.

Fig. 3(a) shows the acceptance rate under different networkloads. As expected, observe that the acceptance rate increases

with the network size and decreases with the network load. This is because as the network size increases, the likelihood

of finding nodes that can be mapped onto the requests increases, resulting in higher acceptance rates. But as the network

load increases, more nodes in the network become committed to requests, making it harder to find devices that can

meet the new requests’ requirements, thus resulting in lower acceptance rates. Fig. 3(b) shows that the number of IoT

devices visited before a mapping is found decreases as the number of participatory devices increases, since again the
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Fig. 4. Mapping recovery rate under different device failure ratesfor network load = 0.5.

likelihood of finding devices that meet the request’s requirement increases with the size of the network. However, our

results show that such a tendency is not as dependent on the network load as in the case of the acceptance rate metric.

This is because both the already committed and non-committed devices have to be visited to check for their availability

prior to accepting the request, and hence, a higher percentage of committed nodes does not impact the number of nodes

that need to be visited to fulfill a request.

2) Robustness to node failures:We also consider the case when devices could fail during and/or after the mapping

of requests, and propose a failure-recovery mechanism thatincorporates (1) monitoring and detection capability, which

allows to track and check whether committed devices are still up to the assigned task, and (2) re-mapping capability,

which allows to find a quick replacement to failed devices. Tohave a sense of how our recovery mechanism performs,

we show in Fig. 4 the recovery rate of the proposed mechanism by measuring the ratio of the number of successfully

recovered requests to the total number of failed requests. First, note that as the number of IoT devices in the system

increases, the recovery rate increases, regardless of the device failure rate. This is because the higher the number of

nodes, the greater the likelihood of finding nodes that satisfy the failed nodes’ requirements, thus increasing the recovery

rate. Note that the recovery rate could reach up to 80% for reasonable sizes of networks (e.g., 1000). Second, note that

the node failure rate has little effect on the recovery rate.This is because as the device failure rate increases, the recovery

mechanism can still recover from failures that happen to different nodes in the network. Since the load is constant, the

likelihood of finding a node that satisfies the failed networkrequirement is the same.

3) Blockchains robustness to the 51% attack:We now provide some results assessing how robust our blockchains-

enabled mechanism is to the 51% attack [7]. For this, we measure and plot in Fig. 5 the mining frequency (the number

of times a miner has been selected as a miner divided by the total number of miner selections or mining periods) of

each miner under two different network loads. The network inthis experiment contains 200 miners. The figure shows

that no miner has been selected more than 9%, and no miner has been selected overwhelmingly more than the other

miners. This demonstrates that our blockchains-enabled mechanism is robust to the 51% attack.
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Fig. 5. Miner selection distribution: node failure rate = 0.2 and number of miners = 200.

IV. EDGE CLOUD OFFLOADING

In addition to enabling resource provisioning elasticity that allows to scale up and down resources as needed, edge

cloud offloading offers two key benefits [8, 9]. Firstly, it provides great incentives for IoT device participation, as it

exempts them from having to deal with the computation and storage burdens of the supported application, and secondly,

it improves IoT application responsiveness by reducing end-to-end latency.

A. Device Cloning for Edge Cloud Offloading

One possible way for enabling edge cloud offloading is toclone the IoT devices at the network edge through the

creation of dedicated virtual machines (VMs) [2, 10, 11]. The concept of cloning wireless devices (IoT, smart phones,

and others) at the edge cloud is introduced to essentially mitigate the resource (CPU, power, etc.) limitations of such

wireless devices by offloading their task computation/execution to the cloud [10, 11]. Task execution offloading via cloud

cloning involves four steps [11]: (i) a clone of the IoT device is first created and hosted in the closest edge cloud; (ii) the

state of the device and its clone is synchronized reactively(when there is change) or periodically; (iii) task is executed

(partially or fully) in the clone, automatically or upon request; (iv) execution outcome of the clone is re-integrated

back to the primary device. Edge cloud offloading via device cloning offers thus three key benefits. First, the clone can

itself provide message brokering services, so that other devices participating in the same NoD instance can, through

their own clones, communicate faster with one another, as their communication will be among and through the cloud

clones. Second, cloning reduces the communication and computation burden of those devices that participate in multiple,

concurrent NoD instances. For example, a camera deployed ina city street can be taking video data to serve three

situation-awareness applications concurrently, each supporting a different interest group; e.g., help locate street parking

spots, provide video surveillance, and assist emergency personnel during relief operations. Cloning can be very handy

in such scenarios, as it eliminates the need for the device tocommunicate with the edge multiple times, one for each

NoD instance. For this, each instance, implemented for example via a process, can justsubscribeto the device clone,

allowing it to receive the video content of relevance to it directly from the clone. Third, it exempts the device from

any computation and device-to-network communication thatmay be needed during the running of the NoD instantiation

mechanisms.
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B. Online Clone Migration for Optimal Cloud-Clone ResourceMapping

Allowing dynamic migration of clones across the differentedgeClouds is important to ensure that resources are

allocated efficiently and application requirements are guaranteed to be met at all times. As a result, few techniques

(e.g., [12]) emerged to allow clone migration so that latency is kept at minimum, where migrations, in these approaches,

are triggered mainly based on device mobility. However, in our envisioned situation awareness IoT applications, device

clones belonging to the same NoD instance will have to communicate with one another, as well as with their devices,

making their interactions a determining factor for deciding whether and if to move, as opposed to just relying on device

mobility. In an effort to address this issue,Flock [13, 14] is proposed to allow live migration of clones to be triggered

based not only on device mobility, but also on inter-clone traffic behaviors and demands as dictated by the underlying

application, thereby improving application responsiveness and resource allocation efficiency. Flock imitates thebird

flocking behavior[15], controlled by three known rules, separation (avoid crowding clones), alignment (steer towards

average heading), and cohesion (steer towards average position), to allow clones to be migrated autonomously between

the differentedgeClouds so that end-to-end latencies are minimized [13].

V. OPEN RESEARCHCHALLENGES

A. Architectural and Functional Design Challenges

1) Architectural entities and their interactions:With respect to the proposed architecture, there remains a need

to identify and clearly spell out the different architectural and service entities, define their roles, functionalities and

responsibilities, and specify their interfaces and interactions. For instance,IoT Device Broker’s responsibilities may

include managing the registration and the monitoring of IoTdevices, a task that can be very challenging due to the

heterogeneity as well as the number of IoT devices at hand. For ease of manageability,IoT Device Brokers may

therefore need to work out careful taxonomy of IoT devices that could for e.g. be domain based (health, traffic, etc.),

ownership based (participatory, public, enterprise, etc.), or mobility based.

2) Unified interactive language:Due to the complexity of theCoT Infrastructure at hand, many types of deal-

making agents (brokers, negotiators, auctioneers, regulators) will emerge in this system, with each agent having different

needs and requirements for its interactions with the other agents. Therefore, ensuring that all the different entities

and agents use unified language with common concepts and constructs that eases their interaction and allows them to

express their requirements and preferences and to learn to function in such a complex system is crucial to the successful

deployment of these NoDs.

3) Intercloud interoperability:Intercloud interoperability eases data deployment and migration across different clouds

for better resource sharing, and provides the flexibility toselect, mix, and/or change cloud service providers with minimal

input and intervention. It also facilitates adoption of newelements to the clouds, and allows software, protocol, and/or

technology reusability across different cloud platforms.Although intercloud interoperability has already been recognized

as an important topic, very little has been done so far to address its challenges. Some open challenges are the definitions

and derivations of metrics that quantify and assess whetherservice providers met their obligated service-level agreements

(SLAs), as well as the development of algorithms and tools that can be used to assess such metrics.
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4) Manageability and control of NoD instances:Significant research has leveraged SDN and NFV to ease network

management and control through the creation of network abstractions and APIs. This led to the development of new

technologies and protocols like OpenFlow, which have gained widespread deployment and usage in a variety of controllers

and network environments. Similar efforts have focused on developing application-aware techniques to ensure QoS

guarantees, exploiting SDN and NFV in mobile networking andedge computing. As a result, a number of SDN-

and NFV-centric dynamic resource allocation frameworks have been proposed with increasing deployment in network

environments and cloud computing infrastructures. Very little work, however, has focused on supporting the deployment

and instantiation of participatory NoD.

B. Blockchain Challenges

In Bitcoin, miners are selected on a Proof-of-Work (POW) basis by solving computationally-heavy puzzles. Although

Bitcoin’s POW requirement ensures system robustness (e.g., tackles double spending and 51% attack problems), it can’t

be used in our framework, simply because IoT devices are not powerful and our underlying applications are not delay

tolerant. Therefore, new mining approaches suitable for IoT that can ensure system robustness but without incurring

heavy computation and long delays need to be investigated. For instance, for miner selection, one approach to consider is

to allow multiple miners to mine for the same block; for example, IoT devices can all mine on a first-come, first-served

basis, and stop mining when and after some number of devices succeed. Proof-Of-Stake based selection approaches,

which do not require devices to solve puzzles but instead rely on devices’ stakes in the system to decide on how

one can serve as a miner, could be the appropriate mining strategy for such systems, but further research needs to be

conducted in this regard. Another idea to investigate is to allow IoT Device Brokers to serve as miners too; since only

IoT Device Brokers serve as consumers in our system, the double spending problems will be inherently solved. Also,

unlike in Bitcoin, where different miners succeeding in finding a nonce generate different hashes/blocks, in our case,

devised approaches need to allow all miners to generate the same block to ensure consistency among multiple miners.

C. Edge Cloud Offloading Challenges

1) Device-clone interaction:To harness the benefits of cloning, questions like how often should each IoT device

upload its data to its clone, and which data to upload remain to be answered. Also, some IoT devices may change their

locations, and if so, how should clones be handled in this case? One way is to allow clone migration, which can handle

mobility, in addition to maintaining low latency and high resource utilization. However, there clearly exist tradeoffs

between migration cost and performance gain that need to be investigated.

2) Live clone migration:Although live migration approaches have already been proposed, there remains an urgent need

for techniques that are suitable for the envisioned IoT applications. Key design requirements that need to be accounted

for are: (i) Triggering clone migrations not just via devicemobility but also via changes in inter-clone traffic behavior and

conditions and clone-to-clone relationships as dictated by the application. (ii) Enabling distributed migration by relying

on local measurements that clones can collect through simple interactions. (iii) Incorporating inter-clone traffic behavior

and demands into the cloud selection mechanism to improve responsiveness. And (iv) promoting design simplicity by

enabling clone migration without requiring changes to existing cloud platform controllers.
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VI. CONCLUSION

This paper proposes distributed architectures and mechanisms that exploit edge cloud computing and blockchains

technologies to enable scalable and elastic deployment of participatory IoT networks-on-demand with the goal of

supporting situation-awareness and safety applications in smart cities. Specifically, it proposes the concept ofSemantic

Virtual Space (SVS), which is an abstraction for a dynamic, cloud-enabled IoT infrastructure that is commensurate with

the goals and needs of the supported smart city applications. SVS leverages edge cloud technology to help mitigate the

resource limitation of IoT devices, and blockchain technology to ease and enable distributed management of participatory

IoT devices at scale. The paper also discusses the vital roleedge cloud computing plays when it comes to enabling

IoT device offloading and elastic resource provisioning, thereby improving the responsiveness of IoT devices and the

applications they support, as well as their incentives for participation. The paper finally describes a set of open research

challenges, pertaining to enabling participatory IoT networks-on-demand through edge clouds and blockchains.
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