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Abstract—This paper proposes a distributed resource sharing
protocol for enabling dynamic deployment of IoT networks
on-demand in smart cities. The proposed protocol leverages
Blockchain technology to: (i) enable distributed and secure
management of IoT devices; (ii) provide fast discovery of IoT
resources and scalable on-demand networks; and (iii) ensure
reliable fund transfers for service payment among the network
entities. The protocol relies on a peer-to-peer network infras-
tructure to allow communication among the IoT devices in a dis-
tributed manner, and uses a self-recovery/self-healing mechanism
to ensure robustness against device failure and maliciousness.
The protocol also introduces and uses a reputation system to
monitor and keep track of services delivered by registered devices
for quality of service delivery assurance. We implemented and
evaluated the proposed protocol intensively using simulations to
assess its effectiveness in terms of scalability to network sizes and
robustness to device failures.

Index Terms—Smart City, Internet of Things (IoT),
Blockchains Technology, Participatory IoT Networks on-Demand.

I. INTRODUCTION

One key technology that can be potentially leveraged for
promoting smart cities is the use of Internet of Things (IoT)
devices [1], whose proliferation emerges as a key enabler for
a new era of services and applications that urban cities can
benefit from greatly, by enabling new city applications ranging
from realtime surveillance and precision health to city traffic
control and emergency management. These envisioned IoT
applications would typically involve and rely on a collection of
geographically distributed IoT devices, with sustained Internet
connectivity, that collectively and interactively perform some
task as dictated by the underlying application. Such a collec-
tion of IoT devices, forming what we term here a participatory
IoT networks-on-demand instance, is created dynamically, on-
demand, upon a request made by some end user, referred to
as a consumer.

Albeit their great potentials in enabling networks on-
demand in urban cities to enhance city services and respon-
siveness, the proliferation of IoT devices has also given rise to
new unique challenges, specifically the need for having to deal
with network congestion bottlenecks, resulting from the high
demands of wireless bandwidths needed to provide Internet
access to these IoT devices, and with the IoT devices’ limited
resources (power, CPU, etc.) that can potentially constrain
their participation in IoT applications [2]. Such challenges
must be overcome in order for IoT resource sharing protocols
like the one proposed in this paper to be deployed, and thus for

the IoT networks-on-demand to be enabled, thereby promoting
and supporting various IoT applications and services beneficial
to smart cities. The good news is that there have recently been
lots of interest and work efforts from the research community,
at both academic and industry levels, aimed at developing
new innovative technological solutions to overcome these
challenges. Examples of emerging technological solutions that
tackle the high demands in wireless bandwidths and that are
becoming fortunately mature and ready to be adopted include
cognitive radio network access (e.g., [3–6]), MIMO (e.g. [7–
9]), and wideband/mmWave spectrum usage (e.g., [10–13]).
As for dealing with the limited resources of IoT devices in
terms of energy, computation, and storage capacities, technolo-
gies such as edge cloud computing (e.g. [14–17]), in-network
caching (e.g. [18, 19]), and device offloading (e.g. [20–22])
have emerged as potential solutions for such resource limita-
tion problems, and are also becoming more mature and ready
for adoption. For secure management of the IoT devices and
safe communications among them, Blockchain [23] emerged
as a suitable solution that can tackle such issues in a distributed
manner. These new technologies will allow millions of IoT
devices in large urban cities to be provided Internet access and
connectivity, with enough data rates, computation resources,
and storage capacities.

In this paper, we propose a distributed, blockchain-based
protocol that enables dynamic deployment and mapping of
networks-on-demand instances on top of IoT devices. Specifi-
cally, we leverage blockchains technology to allow distributed
IoT resource sharing on-demand by easing the management
of IoT devices, enabling the mapping of networks-on-demand
requests on top of the IoT resources, and ensuring robustness
against malicious behaviors using self-recovery/self-healing
mechanisms. The proposed protocol also introduces and relies
on a reputation system to monitor and keep track of services
delivered by registered IoT devices, to ensure that quality of
service (QoS) and service-level agreements (SLA) require-
ments are met. Using simulations, the proposed protocol is
evaluated intensively to assess its scalability performance and
its robustness to device failures.

The rest of the paper is organized as follows. In Section II,
we describe the network infrastructure used by the proposed
protocol. In Section III, we present our proposed IoT resource
sharing on-demand protocol. In Section IV, we study and
assess the effectiveness of the proposed protocol vis-a-vis of its
scalability with network sizes and robustness to device failures.



Finally, we conclude the paper in Section V.

II. NETWORK MODEL

We consider a city-wide network infrastructure, constituted
of many IoT devices distributed randomly across the city,
and a set of edge clouds/access points also spread across
the city to provide Internet connectivity to the devices. We
assume the city is divided into L regions. A device interested
in participating in networks-on-demand needs to advertise,
upon joining the network, its device characteristics or directory
containing information such as its resource type, resource
availability, bounty, etc. The system allows devices to submit
networks on-demand requests, to be mapped on IoT devices
already in the network. A device submitting a request is
referred to as a consumer, and an example of a network
on-demand request could be initiated to track a target (e.g.,
malicious person) that is moving through different regions
in the city. Submitted requests are propagated to other IoT
devices in the network using a peer-2-peer communication
infrastructure. Our proposed protocol uses blockchains to
enable distributed management of the IoT devices and the
mapping of submitted requested onto these devices, and hence,
a set M of IoT devices are designated to serve as miners,
which are responsible for handling fund transfer and device
payment through creation and addition of blocks; more on this
will be provided later.

We assume that each IoT network on-demand request
is submitted in the form of 5-tuple G=(V , E , D , C,
B ) where: V is the number of requested nodes (also
referred to as request size), E is the set of edges be-
tween the requested nodes, D is the duration of request,
C= {(Loc1, T ype1, Cap1), . . . , (LocV , T ypeV , CapV )} is
the (location, resource type, resource capacity) of requested
nodes, and B is the bounty associated with the request.

When a device joins the network, its characteristics are
added as an entry to a shared data structure, called Directory,
which is updated every time a new device joins the network,
and is stored and maintained by all devices through the
blockchains (BC), to be described later. More specifically, each
entry of Directory contains the following characteristics.

• Device ID: Serial number and/or IP/MAC addresses.
• Resource Type(s): Sensing (video, temperature, traffic

density), computation, and/or communication.
• Location: GPS location and region ID.
• Availability: Time periods during which device is avail-

able for participating in networks on-demand.
• Capacity: Amount of resource available for sharing;

i.e., computation (CPU power), sensing (sensed data per
second), battery level (dBW) and/or bandwidth (bps).

• Network access type: Technology type used for connect-
ing to the network; e.g., WiFi and/or cellular.

• Bounty: Cost of service.

Note that the terms device and node will be used inter-
changeably throughout to refer to the same thing.

III. THE PROPOSED IOT RESOURCE SHARING
ON-DEMAND PROTOCOL

This section provides a detailed description of the proposed
protocol, which can be described through three main phases:
Initialization phase, Resource Reservation phase and Fund
Transfer phase. Initialization phase deals with joining and
registration of newly arrived devices to the network. Resource
Reservation phase tackles the needed steps to be taken to allow
for the requests’ mapping, including finding and approving
providers, monitors and miners. Fund Transfer phase is the
phase where funds are transferred from the consumer to the
provider nodes, once a request is fulfilled. Throughout this
paper, we assume that neighboring nodes are nodes that are
connected to the same access point. Next, we describe each
of these three phases.

A. Initialization Phase

New nodes joining the network have to obtain the following
information before they can become part of the ongoing peer-
to-peer network.

• W : Private/Public Key pair associated with a device to
serve as its wallet unique address.

• BC: The blockchains currently being maintained and used
by the nodes in the peer-to-peer network.

• Directory: Directory file containing all devices’ charac-
teristics, currently being used by the nodes in the network
.

New nodes start the initialization phase by obtaining a
wallet. This could be obtained by simply downloading and
running a piece of software to create a unique Private/Public
Key pair; a random seed is used to obtain such a Private/Public
Key pair combination. New nodes have to obtain a copy of
Directory, which contains an up-to-date information about
the different resources and nodes in the network. New nodes
connect to a DNS, maintained by different provider and miner
nodes in the network, to get information about highly reputed
nodes in the network. The incentive to provide this service is
to allow for more consumers to join the network and request
resources. There could be multiple DNSs with multiple seeds
that point to different nodes in the network. New nodes use
DNS seeding to obtain a list of nodes in the network in
which it can request Directory from. New nodes can limit
themselves with a shortened version of Directory that only
contains a handful of highly reputed nodes in each region.
Also, connecting to neighboring nodes or any node in the
network allows new nodes to obtain Directory. Depending
on the nodes’ purpose from joining the network, it can decide
whether or not to download full BC version. This is done
in a similar fashion to obtaining Directory by connecting
to other miner nodes. Miner nodes are the only nodes that
need full BC version. Once BC is obtained, new nodes can
verify the integrity of all transactions throughout the network
by verifying the signatures and public keys associated with
each entry in BC. Since this is computationally intensive, a
node can limit itself with a light BC version, where a Light



BC is a blockchains of shortened length that includes a limited
set of past mined blocks, plus a current state of all nodes’
balances in the network. If a new node desires to become
a provider, it advertises its resources to neighboring nodes,
and using gossip protocol [24], all nodes in the network add
the new nodes’ information to their local Directory. The
initial value of R (the node’s reputation) is set to 0, and its
associated W address is included in Directory. New nodes
can now listen to a specific port for transactions and for any
new requests that are submitted to the network.

B. Resource Reservation Phase

A consumer node starts by creating a request G to be
advertised to the network. It also has to sign the request to
enable provider nodes to verify wallet address ownership and
fund availability. Consumer nodes that decide to have full
version of Directory will have full view of the network
and can request specific nodes from Directory. To limit
the overheard associated with reserving resources, a consumer
node could opt for a lighter version of Directory and limit
itself to connecting to a handful of nodes only. Consumer
nodes that opted for the lighter version of Directory have
to communicate their requests with other nodes using gossip
protocol [24]. In the case of direct communications, provider
nodes can accept or reject, depending on whether they can
meet the constraints and/or bounty associated with the request.
If a provider node does not reply due to it being down, the
consumer node advertises that the node went down, and all
other nodes update their Directory accordingly. Consumer
nodes use first come first serve when picking provider nodes,
and the provider nodes that reply to the request first gets to
take the request. Also, if the request has to be satisfied with
more than one node, then it must peform the following:

• Provider nodes start by accepting a percentage of the
requests, a percentage that can be related to the location
of resources requested, duration and percentage of data
to be computed, etc. Provider nodes could also decide
to reject the request and become monitor nodes instead
by appending their info to the request as monitor nodes
before propagating the request further.

• Accepting provider nodes append their acceptance info
to the request and pass it to neighboring nodes.

• The process continues until the request is accepted or
rejected. This can be done by limiting the number of
hops until the request is mapped to some threshold, H ,
or by using a timeout threshold, Tmax ; i.e., if the request
is not fully accepted within a certain time period, it is
rejected.

• Once the request is accepted entirely (all of its requested
nodes are found), then provider nodes collaborate to
perform the assigned task. This can be achieved because
all provider nodes will have accepting nodes information
due to the appending process.

• First nodes to get the request are more likely to accept
it, which makes it more likely for closer nodes to accept

neighboring nodes’ requests. This allows for real time
resource reservation with minimum delays due to locality.

If the request is not accepted, then the requesting consumer
node has to create a new request with lower constraints or
higher bounty. If the request is accepted, a minimum number,
M , of monitors is chosen. In the direct communication ap-
proach, 50% of the monitor nodes are chosen by the consumer
node and the other 50% are chosen from neighboring provider
nodes. This is done to limit the possibility of malicious
monitor nodes. Also, if nodes were chosen using gossip
protocol and from the lighter directory file, monitor nodes
append their information to the request as it propagates, and
the first M nodes to identify themselves as monitors are
chosen. Monitor nodes keep track of provider nodes, including
CPU usage, Uptime, Disk usage, RAM usage, network traffic,
etc. to ensure SLAs are met and to prevent maliciousness.
Monitor nodes have the ability to raise a flag indicating a
misbehavior from a specific provider node. In this case, a
voting round including all monitor nodes is done, during which
it will be decided whether the said provider node violated
the set SLAs or not. If the number of votes is higher than
a threshold, Vmin , then the node is flagged as misbehaved
and its misconduct is broadcasted throughout the network.
Reputation is set to 0 for the misbehaving node and the
accepted request is re-advertised to neighboring nodes. If a
provider node went down during task performance, its status
in the directory is changed to inactive by monitor nodes and it
is broadcasted throughout the network. Monitor nodes get to
accept the resources first because of their proximity from the
misbehaving node. This creates another incentive for monitor
nodes to keep monitoring provider nodes to detect failures and
misbehavior. Once request is over and if no flags were raised,
monitor nodes get to vote to decide whether provider nodes
met the request’s SLA or not. If votes exceed Vmin , a new
entry is broadcasted to be added to BC that includes consumer
node, provider nodes, monitor nodes, and the request, G .
Monitors receive a Monitor Bounty, Mb, as a reward, which
is a percentage of the bounty associated with the request.
This provides an incentive to do the monitoring job. And the
provider’s reputation is increased for their successful request
fulfillment.

C. Fund Transfer Phase

Miner nodes listen to broadcasts sent by consumer nodes,
provider nodes and monitor nodes at all times. They add trans-
actions that include fulfilled requests and reputation changes
to their backlog once received. As transactions accumulate,
miner nodes verify each transaction using the public key and
signature associated with each transaction. At every mining
period chosen by the protocol, a miner node is selected at
random to add a block to the blockchains, BC. The probability
of a miner node being selected is related to how much stake it
has in the system (total funds). Miner nodes with more stake
will have higher probability of winning the mining task. The
equation used for determining the winner miner is



Hash(PrevHash,WalletAddr, Content, T ime) ≤
Balance(WalletAddr)

TotalBalance
×Difficulty

where:
• PreviousHash: Previous hash generated for the last

block in the blockchains.
• Content: The string of transactions/reputation changes

to be added to the block.
• WalletAddr: The public key associated with the miner

node.
• Time: The period selected by the protocol to produce a

miner node winner.
• Balance(WalletAddr): Balance of the miner node.
• TotalBalance: Total funds/balance available for all

nodes in the network.
• Difficulty: The current difficulty level set for network.
The hashing function produces a random value, based on

the inputs, that is compared against the right side of the
equation. The adjustable Difficulty parameter of the network
serves as a method to ensure that only one winner miner is
selected. Every miner computes this function, and if it satisfies
the equation, it advertises the new block to the rest of the
network to be added. In case no miner meets the constraint
and no nodes in the network receive a valid block by next
the mining period (period selected by the protocol to produce
a miner node winner), all nodes in the network decrease the
value of Difficulty. This mechanism ensures that at the next
mining period, the likelihood of a miner meeting the constraint
increases. If two miners met the constraint and advertised the
new block to be added to the rest of the network, the block
is dropped by all nodes and Difficulty is increased, thereby
reducing the likelihood of two miners meeting the constraint
by the next mining period.

New mined blocks are said to be unconfirmed until
Lmin blocks have been mined. Once the number of blocks that
have been mined reaches Lmin , all the previous transactions
in current block are said to be confirmed and the winner miner
receives a reward, R. This gives an incentive for miner nodes
to participate in miner selection process. If one of the miner
nodes attempted to create fake entries in the BC and broadcast
it to the rest of the network, other nodes in the network would
drop it if it does not satisfy the equation/constraint.

IV. PERFORMANCE EVALUATION

In this section, we present and analyze the performance
results of the proposed protocol using simulation.

A. Simulation Setup

We consider a network of N nodes/IoT devices placed
randomly in a city. The network is modelled as a graph whose
vertex set is the set of all N nodes and the edge set consists
of random connections among the nodes in the system. We
assume that the city is split into L = 9 regions, and the
devices are distributed randomly within the different regions.

Only fully connected graphs, where each node can be reached
from any other node, are simulated. The number of neighbors
of each node is selected uniformly between 15 and 25. Each
node is randomly assigned a resource type, which can be either
of sensing or computing type. At every time period, a new
miner is selected based off the miner’s stake in the network
as described in Section III-C. When a request is successfully
accepted, it is propagated throughout the network and added to
the miners’ pending ledger. Every winning miner picks from
the pending requests based off the highest bounty associated
with the pending requests. We assume that nodes are faulty
(whether intentionally or unintentionally), in that a provider
accepting to serve a request may, with some probability,
fail to deliver its service, thereby causing service disruption
and violation of SLAs. The proposed protocol contains a
recovery mechanism that allows recovery from such failures
by promptly finding other nodes that can fulfil and replace the
failing nodes. In the event when no nodes can be found, the
request is dropped, and is categorized as a ’failed request’.
Each node starts with zero balance, and the balance increases
as the node participates more and more on requests and receive
more and more rewards.

In this evaluation, we consider a time-slotted system, with
the number of requests that arrive at each time step is Poisson
distributed with mean r . For each arrived request G , the
specifications are selected as follows: the request size, V ,
is varied between 5 and 20, the request duration, D , is
drawn from a Bernoulli process with parameter q i.e., average
duration (in number of time slots) equals 1/q), the resource
type of the request is set to 0 (sensing) or 1 (computing)
with equal probability, the locations of requested nodes are
selected randomly, and the request bounty, B , is selected
uniformly between 100 and 1000. Each node has a minimum
bounty, Bmin , below which a request is denied. Bmin is
also drawn uniformly between 100 and 1000. We define the
network load as r

q , which represents the average number of
requests that would have been present in the network at a
time slot had no arrived request been denied to the network.
The average number of requests that are actually present in
the network equals ’network load’ times the ’accepted rate’
of arrived requests. In our simulation, we varied the network
load between 0.2 and 0.6. Finally, the size of mining period,
τmining , (one bock is added to the blockchains every mining
period) is set to 3 time slots, and the number of monitors, M ,
is set also to 3.

B. Scalability Analysis

We first study the performance behavior of the proposed
protocol to assess how well it scales with the network size
(number of IoT devices) by investigating the impact of the
network size on its Acceptance Rate. More specifically, the
Acceptance Rate is defined here as the rate at which requests
are accepted into the network, and is calculated by dividing
the number of accepted requests by the total number of
requests submitted to the network. In Figure 1, we present
the Acceptance Rate while varying the number of IoT devices
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Fig. 1. Acceptance rates of requests when varying number of IoT devices
under different network loads

for different network loads and under two request sizes, 10 and
20, where again the request size is the number of IoT devices
being requested. As expected, we observe from the figures
that the acceptance rate decreases as the network load and/or
the request size increases. This is because as the network
load and/or request size increases, more nodes in the network
become committed to requests, making it harder to find nodes
that satisfy the new requests’ requirements. We also note
that as the network size grows (the number of IoT devices
increases), the acceptance rate increases, merely because more
nodes in the network implies higher chances of meeting new
requests’ requirements and hence higher acceptance rates.

C. Fault Tolerance

We now study the robustness of the protocol against node
failures. We consider that nodes can fail before or after
accepting a request, and assess how well our protocol recovers
from such failures by measuring the Recovery Rate of the
protocol under different failure rates and request sizes. The
Recovery Rate is defined as the fraction of accepted requests
that are recovered successfully from device failures, and is
calculated by counting the number of successfully recovered
requests and dividing it by the total number of failed requests.
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Fig. 2. Recovery rates from device failures when varying number of IoT
devices under different device failure rates: network load = 0.5

Figure 2 shows the behavior of the recovery rate as a
function of the number of IoT devices under different request
sizes (10 and 20), and different node failure rates (probability
of device failure is set to 0.2, 0.3, 0.5, and 0.6) when network
load is 0.5. First, observe that as the number of IoT devices
in the system increases, the recovery rate increases, regardless
of the request size and the node failure rate. This is because
the higher the number of nodes, the greater the likelihood of
finding nodes that satisfy the failed nodes’ requirements, thus
increasing the overall recovery rate. For reasonable network
sizes (e.g., 1000), the recovery rate ranges from 50% to 80%,
depending on the node failure and request size. Second, note
that the device failure rate has little effect on the recovery rate.
The reasoning is that when increasing the device failure rate,
the protocol is still able to recover from failures that happen to
different nodes in the network. Since the load is constant, the
likelihood of finding a node that satisfies the failed network
requirement is the same. Our last finding is that as the request
size increases, the recovery rate declines slightly, and this is
regardless of the node failure rate. As the request size gets
bigger, more nodes are committed, and hence, it becomes
difficult to find replacement for failed nodes, but the effect
is minimal as we only see a slight drop in the recovery rate.



This is due to the fact that there are still unoccupied nodes
throughout the network that can be picked as a replacement
for the failed nodes. To summarize, our results show that the
proposed protocol is robust against faulty nodes and is able
to fully recover from faulty instances for reasonable network
and request sizes.

V. CONCLUSION

We presented a blockchain-based IoT resource sharing
on-demand protocol that enables distributed mapping, man-
agement and maintenance of networks on-demand instances
formed on top of and by IoT devices. The protocol can be used
in smart cities to enable and support a variety of IoT-enabled
applications and services, such as real-time surveillance, emer-
gency operation management, traffic monitoring and control,
and many others. We showed through simulations that our
protocol scales efficiently under different system parameters
and is resilient to faulty devices.
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