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ABSTRACT

In this paper, we propose content-centric, in-network eonicaching and placement approaches that
leverage cooperation among edge cloud devices, contentlgrdp, and GPS trajectory information to
improve content delivery speeds, network traffic congesticcache resource utilization efficiency, and
users’ quality of experience in highly populated cities. ril@pecifically, our proposed approaches exploit
collaborative filtering theory to provide accurate and @fit content popularity predictions to enable
proactive in-network caching of Internet contents. We ps#pa practical content delivery architecture that
consists of standalone edge cloud devices to be deploydtkigity to cache and process popular Internet
contents as it disseminates throughout the network. We sti®wv that our proposed approaches ensure

responsive cloud content delivery with minimized serviggruption.

. INTRODUCTION

The world has withessed an unprecedented growth in its upbpnlation throughout the years. Studies
show that the world’s urban population has expanded by ad@utillion per year, and by 2050, 70% of this
population is expected to be living in citfesContent delivery networks have emerged as a potentialisolu
for meeting the data demands of cities and the quality of eepee (QOE) of users alike. Fog computing [1],
[2] has been leveraged to bring data closer to user locaf®jnsnd enhance overall network performance;
later evolving to address urban challenges using infoonatadvances in communication technology, and
the Internet [4]. Building such an infrastructure is in@ealy difficult due to the proliferation of Internet
devices and to the huge data demands that these devices genddate. For instance, recent studies show
that by 2021, global mobile data traffic will increase sewdh{from 2016) reaching 49 exabytes per month,

most of which will be mobile video content, with a percentggejected to reach up to 78% by 2021 [5].

In traditional IP networks, geographically distributedddimited content delivery nodes service different

regions throughout the world [6]. These nodes are typicklbated at the Internet edges over multiple
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backbones while remotely servicing different regionshaligh utilizing caching paradigms to push coﬁtent
closer to the consumer improves network performance [&ruis large urban networks naturally experience
added latency due to their increased mobility, congestm, hops traversed within the network. That is,
content in large urban communication networks must travére system, to and from a remote data center
hosting the content, multiple times resulting in subparfgrerance. In addition, different users may request
the same content incurring excessive duplicate contenesdg. Thus, pushing content closer to the requesting

user using content-centric delivery principles can helpriowe performance.

Traditional caching methods typically concentrate on oavork parameter rather than consider multiple
parameters and metrics. This work accounts for multiplevagt metrics in the caching decision such as
latency, distance, caching capacity, city population diexss time variability of content popularity, and intra-
and inter-neighborhood content popularity. In additior® ekesign a complete framework using an existing
urban communication network where different caching pesicand protocols can be evaluated. Also, we
leverage Content-Centric Networking (aka Named-Data WHeking) which, unlike traditional IP networking,
allows for caching to be analyzed and controlled at much tdexel; that is storing small data chunks of
the order of a single packet. Traditional methods typicaltyy cache large chunks or full content and are
ill-equipped to analyze or control caching granularityndly, the large size of caches and massive size of

Internet catalogs makes our study a valuable task.

The content-centric networking and delivery paradigm is@psed Internet architecture that shifts from
today’s host/IP-centric content delivery principle to aadeentric delivery one, where data is being routed
in the Internet based on its content rather than on its phidacation [8]. In this paper, we present
a framework that leverages edge cloud computing capa&lsilidnd content-centric delivery principles to
improve content delivery speeds and reduce network traffteighly populated cities. Specifically, we first
propose in Section Il a content delivery architecture thaiststs of standalone edge cloud devices to be
deployed in the city to cache and process popular Interngeab as it disseminates throughout the network,
thereby improving content downloading time, reducing finét traffic, and avoiding network congestions.
For instance, in the case of the LinkNYC netw&rk New York City network we use throughout this work
as a use-case for illustrating and evaluating our proposadapts (see Section II-A for more on LinkNYC),
the already-deployed, traditional payphone kiosks, whegraded with storage and computing capabilities,
can play the role of these edge cloud devices, to be refesraddloudletsthroughout. Then, in Sections Il
and IV, we present four complementary content-centric icactechniques that ensure responsive content
delivery with minimized service disruption. These teclugig exploit:(i) content popularity among city users
to make efficient in-network caching decisions to improvateat delivery responsivenegs;) cooperation

and information sharing among city cloudlets to bring Int&#rcontent closer to end users with minimum

2https://en.wikipedia.org/wiki/LinkNYC
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network resource usaggji) collaborative filtering theory to provide accurate and éffit content popularity
predictions to enable proactive in-network caching of imé¢ contents; aniv) user trajectory information
obtained through GPS to enable content prefetching, thadding realtime content access to mobile users

with minimized service disruption. We finally conclude thappr in Section V.

[I. CLOUDLET-DRIVEN CONTENT DELIVERY ARCHITECTURE

We present techniques that combine content-centric dglipanciples with the edge cloud computing
paradigm to improve content delivery responsiveness addces network congestions in highly populated

cities. Throughout, we use LinkNYC [6] as our use case fostiating and validating our proposed concepts.

A. The LinkNYC Use Case

LinkNYC [6], an infrastructure project announced in 2014 d&recame operational in 2016, provides a
novel data network offering free gigabit Wi-Fi in New YorktZi{NYC) by replacing thousands of payphones
with kiosk-like structures calletlinks, making LinkNYC the largest and fastest free public Wi-Fivmark

in the world.

Fig. 1 shows the locations of these
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and process content locally, thus reducingronx (BX); Manhattan (MN); Queens (QU); Staten Island (SI)

the need for having to request content from
its source every time a local user requests it. Throughoetwill refer to these capable Links asntent-
delivery cloudlets (CDCs) which are essentially small-scale cloud datacenters sttae data closer to

(mobile) end users [9]. Naturally, the number and placenoér@DCs depend, among other factors to be



discussed later, on the number and locations of currengiialied payphonéswhich are shown in Fig.41
and summarized in Table | for the LinkNYC use case. Manhatahe most dense of the five boroughs
with 3,409 payphones and Staten Island is the most spar$eaniyy 51 payphones. Unlike traditional
content delivery networks, where a limited number of renssevers are distributed throughout the world,
our proposed approach leverages edge cloud computing ig bontent closer to end users by selecting
and designating a subset of the LinkNYC's Links to play thie if CDCs. Our preliminary CDC selection

and placement approach is presented next.

Table |

PAYPHONES IN THE FIVE BOROUGHS OINYC

Borough # Payphones Avg. distance # CDCs
Manhattan 3409 43.2m 50
Queens 1042 136.8 m 25
Brooklyn 1004 150.8 m 25
Bronx 591 1255 m 20
Staten Island 51 606 m 10
Total 6097 2125 m 130

B. Cloudlet Selection and Placement

As consumers become increasingly mobile, the placementD&<Cin large cities becomes both crucial
and challenging. Specifically, mobile users that underggdent handoffs as they move across a path while
being connected results in QoE issues [10] if CDCs’ placdraelnemes are not carefully designed. Clearly
relying on a single CDC is insufficient to meet the demand & thobile consumers, and thus, having
content readily available in multiple nearby CDCs is indispable to ensure responsive content delivery
and maintain acceptable QoE. In what follows, we discussteting approaches that efficiently select and
decide on the placement of multiple CDCs to enable contentric networking and delivery in smart cities,

and as done throughout, we consider the LinkNYC network asise-case for evaluating such approaches.

We apply a hierarchical clustering technique to NYC's bgtoaito decide for the placement of CDCs.
Since the connectivity of NYC's payphone backhaul is unknowe assume that Links are physically
connected (e.g., by fiber optic cables) to their nearesthheig. Given a particular NYC borough (e.g.

Brooklyn), we construct an Euclidean minimum spanning (E®IST) using Prim’s algorithm [11] where

3NYC Open Data: https://nycopendata.socrata.com



Figure 2. CDC placement: Brooklyn

edge weights are equal to the geographic distances betiwedrirnks. The EMST topology for the Brooklyn
borough is represented in Fig. 2 by the small dots as the nad@ghe lines connecting these dots as the
edges. Although we focused here on Brooklyn borough, theesapproach applies to each of the other
boroughs. Initially, all Links in the borough are considgte be part of the same membership and form
a single community. In order to promote and enable cloudi®en content delivery, some Links will be
chosen to play the role of CDCs based on their average hoptcdorthe remaining Links within their
respective communities. First, the probability that rexjsieare initiated from each Link is assumed to
be proportional to its respective surrounding populatiengity,v;, and is defined as; = % where

N, is the number of Links in the entire borough network (e.god&tyn). (The population densities of all
LinkNYC's Links—; for Link i—are estimated as described in [7]). Let's nhow denoteSbthe shortest
path matrix that contains the length of the shortest pathngb feom each Link in the borough network.
Given the Link request probability vectar = (ry,79,...,7x,), @ weighted average shortest path vector,
s = S-r, is then computed, where each entry value of the vector septe the weighted average hop count
to be traversed had all content requested by all borougls tesm provided through the Link corresponding
to the entry. Then, the Link with the minimum sum of weightegrage hop counts is selected as a CDC.
This ensures that content is placed as close as possible tgetbgraphic location of potential consumers
within a community. Once selected, the incident edge betwke CDC and the Link with the minimum
average hop count is removed, thus forming two disjoint comitres. For each of these two communities,
a CDC is selected providing the minimum average hop coustltiag in two CDCs and their respective
communities. Next, a CDC is selected in the community exmeing the highest average hop count. Once
selected the incident edge is removed and the same proqesstgauntil the desired number of CDCs is
reached. The CDC placement decision process is a one-tiloalat#gon done prior to network deployment

resulting in a time complexity o®(N?). Fig. 3 shows the average hop count for the 5 major boroughs as
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why our heuristic considers assigning CDCs to only

highly populated areas, thereby limiting the incurred aafsteployment. Now the question that arises is
how to decide on the appropriate number of CDCs. One appraachse here is to estimate the number
of CDCs that corresponds to the 'elbow’ in the CDC curve, giue Fig. 3, and use it to be the number of

CDCs to be selected. The last column of Table | shows theséersrior each borough, and Fig. 2 shows
the clusters/communities for the Brooklyn’s network whensidering the number of CDCs that corresponds
to the elbow value (i.e., # of CDCs 25). The 5 boroughs range in size from small, medium to largd, an

our framework yields similar performance gains when apbte cities with different sizes.

So far, we iterated the benefits of using cloudlet-drivertenindelivery architectures vis-a-vis of their abil-
ity to reduce downloading time and network backhaul traffiche following two sections, we present ideas

and approaches that enable efficient content delivery ih siaudlet-driven communication architectures.

[1l. CONTENT-CENTRIC CACHING: A POPULARITY-DRIVEN APPROACH

Cloudlet-driven architectures do not guarantee the bestmpeance unless key factors like content hetero-
geneity, user mobility, content popularity, and resouneglability are carefully accounted for. Therefore, in
the rest of this paper, we focus on content-centric cachipgaaches that account for these aforementioned
factors. Specifically, we will begin in this section by pretieg a caching approach that accounts for content
popularity information, and discuss in the next sectiore¢hother content-centric caching approaches that

account for other factors. All these proposed approaches@mnplementary to one another.

A. Popularity-Driven Content Caching

Traditionally, caching consists of fetching content upequest and storing it locally based on some
cache replacement policy, such as First-In-First-Out (§|AVlost Recently Used (MRU), Least Recently
Used (LRU), and Least Frequently Used (LFU) [12]. Theseitimtal solutions, however, are not suitable

for Internet content delivery in highly populated citiesaimly due to the diversity, volume, and dynamics
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nature of Internet content. In this section, we investigat®ntent-centric LFU caching approach that is more
suitable for these highly populated cities by incorpomtmd relying on the popularity of content encoun-
tered by the CDCs when deciding on which content to caches pbpularity-based LFU method, denoted
pLFU, works as follows. Each CDC computes and maintains an egiofathe average number of each
contentf’s requests encountered by the CDC. We propose to estimatavitrage number periodically using
an exponentially weighted moving average approach. Speltyfi the average numbet’), of encountered
contentf’s requests estimated at th€" update period window is computed eﬁg) = ﬁégck_l) +(1- ﬁ)c%
Wherecgfi) is the number of contenf’s requests encountered during th€& window period, and3 is a
weighting design parameter set betwé@esnd 1. Each contenf is then associated with @opularity index

to be computed by CDG during thek! window period aspgc) = c /def () where F is the set of
contents encountered by the CDC. Upon arrival of new corgrdtwhen needed, a CDC uses the popularity

index to decide on which content to cache.

B. The LinkNYC Framework

We experimented with the LinkNYC use case to demonstratéémefits of adopting such a popularity-
driven content caching approach in these cloudlet-driventent delivery architectures. Fig. 4(a) shows
content delivery latency (measured in terms of number okhopversed by the content) for the Brooklyn’s
LinkNYC network when varying the average number of contaguests undef RU and pLFU. In this
experiment, we assume that each CDC is capable of storingt &6 of the total popular content (cache
capacity of each CDC is 3% of total content). If requestedeainis not available at a CDC, it is requested
through neighboring CDCs otherwise it must be fetched frtwa driginal publisher. The figure depicts
the average content delivery latency undey:the traditional, single-CDC content delivery approa€hry,
(7i) cloudlet-driven content delivery approach with k-meanstdring [13] (M), and(iii) cloudlet-driven
content delivery approach with the clustering method desdrin Section II(CL). For the two clustering

methods, the number of CDCs is set2® (as determined by the elbow curve shown in Fig. 3).

First, observe that incorporating content popularity winesiking caching decisions (i.e., pLFU) allows

even the single-CDC deployment approach {JHg) to provide a near 25% reduction in average latency com-



pared to using LRU caching (T.Ry). Though reduced, the average latency obtained via thelaxﬁgbbasgd
content caching approach still remains high (47.5 hops)ismbt good enough for dynamically changing
environments. Second, the figure also shows that couplingeiwork caching through the deployment of
multiple CDCs (as ink M andC'L) with population-based content caching reduces the Igtenen further

by pushing content of interest even closer to end users.rdseat both KMgy and Cl gy provide latency
reductions of about 58% and 67% compared tq FR whereas KM.ry and Cly ry provide about 65%
and 80% latency reduction compared to,I#y. Note that these latency improvements are a result of the
adoption of the cloudlet architecture, which allows to grand cache content closer to end users. Therefore,
such improvements come at the hardware and deployment asstsiated with these cloudlets. In the case
of LINKNYC, these costs, for instance, should not be sigaiftc since already existing payphone stations
and networks have been converted to play the role of closidleough, they still need to be upgraded with

extra storage and processing capabilities).

To investigate the impact of the number of CDCs, we show in. Bip) the latency behavior for
Brooklyn's network. As expected, latency improves as moBC€ are deployed. However, it flattens out
as the percentage of CDCs increases, and does so around 2pance8t for the Brooklyn network, which

corresponds to the optimal number 2if as determined in Section Il and shown in Table I.

IV. TOWARDS COOPERATIVE, PROACTIVE AND PREDICTIVE CONTENT-CENTRIC CACHING:

POTENTIAL IDEAS WITH THEIR ASSOCIATED CHALLENGES

Although accounting for content popularity improves dogatding latency, more can still be done. In this
section, we propose techniques that rely(éncloudlet cooperation(ii) content popularity prediction, and

(7i1) GPS trajectory information to improve content deliveryp@ssiveness even further.

A. Cloudlet Cooperation for Faster Content Access

Content caching and placement decisions should depend miptom local but also on neighboring
CDC conditions and observations, such as content popylatibrage capacity, content availability in the
neighborhood, user population, and link/network conditfoongestion, data rates, etc.). Intuitively, when a
new content is requested within some local CDC, the deaswn(i) whether to cache the new content or
not, (i7) which CDC to cache the content at, aidi) which existing cache content to evict should involve
both local and neighboring CDCs, so that globally optimalcpiment decisions can be made. For example,
if the new content is available at a nearby CDC, then therehinigt be a need for caching it again at
the local CDC, thus saving local cache resources. Now if #& oontent is not available locally, nor in
neighboring CDCs, then the decision whether to cache or mmald depend on its community popularity,

not just its local popularity. If this content is popular elgh to cache, then the decision to where it should



be cached at should weigh in its popularity indexes at thierdiit CDCs within the community. Eve% if
the content is just being requested by a user located witl@D@& i, it might be more efficient to cache it

at a neighboring CDC if future requests are to be generatedsbys within the neighboring CDC and/or
the neighboring CDC has more available cache space. Dagigooperative content caching and placement
approaches that consider the aforementioned performaspee® is an open research problem that has not
been addressed yet. And deriving models that capture theugacontent and network aspects influencing
these decisions, such as content popularity, storageaaildil, content availability, user population, and

network condition, is a challenging task that requireshiertand careful study.

One proposed approach is to introduce a utility funcﬂéﬁ) that each CDG maintains for each of its

encountered contenft, updates every periok, and uses to make content placement and caching decisions.
As an initial step, we propose that this function captures models the following aspects:

« Content popularity: A popularity index of each content as observed by CDdliring update window
k. This index is computed by CDZas explained in Section IlI-A.

« Content availability: A binary availability index of each content, where 1 indingtthat the content
is cached in CDG during update window:, and 0 otherwise.

« Population density: This reflects the population density of CDOCas described in Section 11-B.

« Node storage capability:It captures the storage capacity and availability of CDC

« Network delay: It represents the delay experienced by a user belonging ¢oGinC i requesting
content cached at a neighboring COCIt essentially captures the number of hops, as well as tte li

bandwidth capacity of each hop, connecting COGsd ;.

We propose to model the utility as a weighted average of amktmost,unetgffi) , and a node cos&{node}’;.);
i.e.,u}? = aunetgffi) +(1—a)umde}’f2. The network cost is proportional to the popularity dengfig content
popularity and availability, and the network delay. It repents a weighted average latency that users’ requests
generated within all CDCs will experience had conténbeen cached at CDZ On the other hand, the
node cost is proportional to the local file popularity, lopapulation density and inverse proportional to the
intra-CDC delay. Note that this initially proposed nodetcisiction is simple. Other models that capture
the nodal cost (processing, storage, memory, energy,rmtrg accurately can be considered. The parameter

« balances between the need for having responsive conteméryeind that of keeping storage costs low.

As these above network and content conditions change awer #ach CDC must periodically maintain
and compute utility function values for encountered cotstefhis could be done by having CDCs query
neighboring CDCs for content popularity indexes, popalatiensities, and CDC resource availability, and
use this information for updating these values, which aemthsed as follows for caching and placement
decisions. Upon request of a contefit CDC i first finds the least utility value across the set of CDCs

that contain contenf at periodk and checks ifi) it is above a target utility value threshold that needs
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to be achieved; this can, for example, be the minimum redua&ency, andq) Z/{}’? is less then the least
utility value across the set of CDCs that contain contgmtt periodk, then contentf is cached at CDG.

Otherwise, no caching takes place.

All these proposed models and approaches need furthetig@atisn that we leave for future consideration.

B. Collaborative Filtering for Proactive Content Caching

In the previous section, the focus was on deriving modelsdipture storage capacity availability, content
popularity, user populations, and content availability.this section, we focus on designing methods that
provide effective ways of acquiring the information needed computing these models. Specifically, we
leverage collaborative filtering theory to predict key paeders, such as content popularity, content features,
etc., thereby eliminating the need for acquiring it fromgidioring CDCs. For instance, content popularity
indexes vary over time and across communities, and are uaaleabeforehand [14], and hence, it would

be very beneficial to have prediction approaches that caviggsome accurate estimates in realtime.

One challenge with our popularity-based caching (pLFU)aagh (discussed in Section Ill) is that it may
not scale well considering the volume of content that usars e interested in accessing. One approach
to overcome this challenge is to use collaborative filteramgl low-rank matrix theory [15] to help predict
popularity of contents whose popularity indexes are notknget through the use of contents with known
popularity indexes. The idea is that each content can becia¢sd with one (or a combination) of some
content categories/interests (e.g., Sports, Politicterainment, etc). For movie content, this categorization
could refer to the conventional classifications: actionmedy, drama, documentary, etc. Formally, a content
f can be described by a vector of featurgswhere each feature measures the degree to which the content
falls within a particular category/interest. Now the dimiition of content categories within a community
served by CDGC during windowk can, for instance, be represented by a parameter vectoag@ay\lote
that the distribution of interests may change from one tiniedaw to another. The popularity index of
contentf encountered at CDE can then be computed @ék) = (ng))Ta:f. We can also write popularity
indexes of all content using matrix notation B§") = ©®" x whose rows and columns correspond to the
CDCs and contents, respectively. Hebd"”’s are the columns of matri®*) and thex ,'s are the columns

of the matrix X.

We presented some solution approach idea that has greaitipbtfor effectively predicting content
popularity. This idea requires future investigation.
C. Mobility Prediction for Real-Time Content Delivery

In addition to bringing Internet content closer to end usarghat content delivery latency is reduced,

cloudlet-driven content delivery architectures in thegghly populated cities are required to support and



handle user mobility. In these cities, users will be recejv@nd downloading content on the move. Therlelfore,
mobile users are expected to experience frequent hanawofissadifferent CDCs during a connection lifetime,
resulting in intermittent connectivity and service didiaps, especially near the edge of CDCs’ coverage,
which is detrimental for mobile service continuity and aleQoE [10]. In this case, even though a handoff
may be imminent, interest requests must still be requestasing potential packet losses and increased
response times. Although careful placement of CDCs immaxeerall network performance, the mobility

nature of city users gives rise to service disruption isghasneed to be addressed.

For this, we propose to rely on content prefetching appresdbr overcoming these issues. Specifically,
we rely on GPS technology to predict the mobile user’s paith @refetch content on the CDCs located
on the user’s expected path. For instance, a CDC-aware pathwhere N is the number of CDCs on a
mobile user’s path, can consist of a 4-tupl€;, R;,d;, s;), i = 1,2,..., N, with C; representing CDG,

R; andd; representing’;’s throughput and coverage area, andepresenting the expected speed traveled
within C;'s coverage area. Content chunks can then be prefetchedeo@ECs belonging to the user's
path based on thesR;, d; and s, parameters. For example, a mobile user can first obtain a 8kee
path, Py = (C1,Ry,dy,$1),-..,(Cn,Rn,dN, sNn), through a central server where state information and
parameters of all CDCs are maintained. The mobile user canaitain from the server a content-specific
manifest file, containing content details such as conter#, siuration, publisher, etc. Once received, the
mobile user parses the manifest file to acquire the conteatasid in turn the maximum number of chunks
based on the maximum transmission unit (MTU) of the netw@®te mobile user also maintains a current
chunk number,S,,,., which is used to inform candidate CDCs of the starting chaoknber to begin
prefetching at as the user moves across a path. Based on Hile mger’s current speed;, distance within

the CDC's coverage ared;, and throughputR;, the expected amount to be downloaded within the current
CDC can be estimated t&[D;] = fj—RZ and hence, the expected chunk number for the candidate GDC t
begin prefetching at i$f)—${'}J + Scur. This process is repeated until the entire content has bedetghed

or the user has arrived at its destination. That is said, wdragins for future investigation are a thorough
assessment of their ability to prevent service disruptibmobile users, a study of the impact of mobility
on the numbers of CDCs that need to be placed, and the finditigeo&ppropriate numbers that account

for user mobility.

V. CONCLUSION

This paper proposes a set of in-network, content-centritiiog approaches for large urban cities, and
shows that such approaches improve network responsivamesesduce backhaul traffic congestions. Our
presented approaches leverage cooperation and informgti@ring among network devices, prediction and
collaborative filtering of content popularity within cityegions, and user trajectory information obtained

through GPS to provide faster content delivery, lesser lnagktraffic, and better QoE.
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