
1

IoTShare: A Blockchain-Enabled IoT Resource
Sharing On-Demand Protocol for Smart City

Situation-Awareness Applications
Bechir Hamdaoui, Mohamed Alkalbani, Ammar Rayes†, and Nizar Zorba‡

Oregon State University, Corvallis, OR 97331, hamdaoui,alkalbmo@oregonstate.edu
† Cisco Systems, San Jose, CA 95134, rayes@cisco.com‡ Qatar University, Doha, Qatar, nizarz@qu.edu.qa

Abstract—We propose a Blockchains-based, distributed proto-
col for enabling the deployment of IoT networks on-demand on
top of IoT devices. Specifically, the proposed protocol leverages
Blockchains technology to: (i) enable distributed and secure
authentication, registration, and management of participatory
IoT devices; (ii) provide fast discovery of IoT resources and
scalable and secure instantiation of IoT networks-on-demand;
and (iii) manage payment operations and ensure reliable fund
transfers among the network entities. The proposed protocol
relies on a peer-to-peer network communication infrastructure
to allow communications among the IoT devices in a distributed
manner, and uses a self-recovery/self-healing mechanism to en-
sure robustness against device failure and maliciousness.The
protocol also introduces and uses a reputation system to monitor
registered devices to keep track of their service delivery quality,
so that their service delivery reputations could be leveraged
for future device selection and mapping. We implemented and
evaluated the proposed protocol intensively using simulations,
and showed that it scales well with network parameters, is
resilient to faulty devices, and is robust to 51% attack.

Index Terms—Smart Cities, IoT Networks, Blockchains.

I. I NTRODUCTION

The proliferation of Internet of Things (IoT) devices
emerges as a key enabler for a new era of city services
and applications [1]. These city services and applications,
ranging from realtime surveillance and precision health tocity
traffic control and emergency management, can be enabled via
carefully-chosen collections of geographically distributed IoT
devices, with sustained Internet connectivity, that interactively
execute specific tasks as dictated by the underlying applica-
tions they support [2]. Such collections of IoT devices, forming
what we term hereparticipatory IoT networks-on-demand (or
NoD) instances, are created dynamically, on-demand upon end
users’ requests.

Albeit its great potential in enhancing city service respon-
siveness, the enabling of this participatory IoT networks-on-
demand paradigm requires new, innovative networking so-
lutions that can overcome key challenges arising from the
increased network connectivity demands due to the large
numbers of IoT devices and from the devices’ limited power
and computing resource capability. Fortunately, new network-
ing technologies are being emerged as potential solutions

This work was supported in part by Cisco Systems and the US National
Science Foundation (NSF) under NSF award No. 1162296 and 1923884.

Copyright (c) 2020 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org.

to these challenges. For instance, cognitive radio (e.g., [3,
4]) and mmWave (e.g., [5, 6]) network access are being
adopted to tackle the wireless connectivity and bandwidth
challenges, whereas other technologies such as in-network
caching (e.g. [7–9]) and edge cloud offloading (e.g. [10,
11]) are emerging as potential solutions for overcoming the
resource limitation problems of these IoT devices.

In addition, blockchains technology [12], the main technol-
ogy behind Bitcoin, emerged as a potential method for decen-
tralizing the recordkeeping of digital currency transactions. It
allows Bitcoin users to transfer funds, validate transactions and
record information in a fully distributed manner without the
need for any intermediary party. All transactions are recorded
into blocks, verified by all users, and added to the blockchains.
Users use public keys as their identities to provide anonymity
and privacy, and any user can choose to be responsible for
mining and adding blocks to the blockchain ledger. Though
has initially been used for cryptocurrency, due to its dis-
tributed nature and great ability in simplifying recordkeeping,
blockchains has been adopted in many recent works to support
IoT. In this paper, we propose a distributed resource allocation
protocol that leverages blockchains technology to enable and
ease IoT device resource sharing on-demand to support smart
city applications and services.

A. Related Work: Blockchains for IoT Support

There have been recent works that focused on adopting
blockchains technology for IoT support, and in this section,
we go over some of the notable ones. Most of prior work
focuses on securing IoT communication through the use of
consensus among IoT devices, and on the use of blockchains
as a method for storing data or system configurations. In [13],
the authors discuss IoT and its presence in today’s technology
advancement and the need for more secure database manage-
ment and data access. The authors dive into the limitations
of IoT devices in terms of security, give a brief description
of blockchain technology and its advantages, and propose a
new method of altering existing blockchain technology to help
cater IoT devices by proposing to include a shared ledger and
move processing from IoT devices to central entities. The
authors conclude that IoT technology is not fully ready to
use blockchains. Unlike this work, our framework integrates
blockchains with IoT to increase network security and scalabil-
ity. In [14], the authors propose to integrate IoT, blockchains



2

and cloud technologies altogether. Their methodology relies
on pushing most of blockchains processing to the cloud,
while still allowing IoT devices to connect to the cloud but
for authentication purposes. They show that latency presents
the biggest challenge when it comes to integrating IoT and
cloud services, and propose to rely on local clusters as a
better alternative. Our proposed framework touches on similar
aspects in the sense that it also uses local clusters instead
of centralized entities in the cloud to do the processing.
However, our proposed protocol relies on edge devices to
do the processing while limiting the processing threshold
through the use of proof-of-stake (POS) instead of proof-of-
work (POW) approach [15].

In [16], the authors discuss the advantages of integrating
blockchains in the industrial sector to provide overall better
business opportunities, visibility and transparency. Theau-
thors’ proposal is to use blockchains as a method of keeping
track of IoT devices data. This data is then federated to differ-
ent agencies based on their keys in the blockchain. This allows
for access to specific entries in the blockchain all the time and
to specific agencies, thereby providing more transparency to
the data collected while still keeping its privacy from other
agencies. The authors in [17] propose the use of blockchains
to keep track of IoT devices and their configurations and do so
via Ethereum, which allows to write custom code on top of the
blockchain and to use POS instead of POW. The authors also
propose limiting the number of IoT devices needed in the POS
round to minimize the communication overhead associated
with the miner selection scheme. The authors in [18] propose
a new protocol that leverages micro-controllers technology to
enable the visualization of IoT devices. The authors argue
that cloud centric virtualization mechanisms for IoT devices
tend to experience high latency while moving the work to the
edge devices yields better performance. The authors provide
simulation to their approach in measuring the latency between
two arduino devices connected to a wifi network. The authors
argue that using their approach lowers the overall latency,
compared to using a cloud centric approach. They also discuss
the possibility of integrating blockchains as part of the soft-
ware on the edge devices, to enable more secure and scalable
implementation of their protocol.

Our proposed framework differs from those existing works
in that in addition to enabling distributed censuses among
IoT devices, it provides a distributed method for reserving
IoT resources on-demand, while at the same time adopting
blockchains to increase scalability, security and robustness.

B. Our Contributions: IoTShare

We proposeIoTShare, a distributed, blockchain-based
protocol that enables the deployment of networks-on-
demand (NoD) instances on top of participatory IoT devices.
IoTShare leverages blockchains to enable distributed IoT
resource sharing on-demand. Specifically, it enables:

• Management and recordkeeping of participatory IoT de-
vices. It does so by providing a mechanism that allows
IoT devices to authenticate, join and register themselves
to the network, and to broadcast and share their resource

ID and characteristics (e.g., type, amount, location, dura-
tion, etc.) with the already registered devices.

• Distributed mappings ofNoD requests on top of the reg-
istered IoT devices. It does so by providing a mechanism
that allows the discovery of IoT devices that satisfy the
requirements ofNoD requests, and the mapping of the
accepted requests on top of the discovered IoT resources.

• Service delivery verification by providing mechanisms
that allow the monitoring of committed devices to ensure
that they are meeting their delivery agreements. The
mechanisms also allow for the building and maintaining
of trust and reputation scores for devices, based on
their delivered service quality to help filter out malicious
devices that do not perform their agreed upon tasks.

• Fast recovery from failed service delivery due to ma-
licious (or non-malicious) device behaviors, where IoT
devices intentionally or unintentionally fail to deliver
agreed upon services. This is achieved by providing
a self-recovery mechanism that allows to find quick
replacements to failed devices upon their detection by
the monitoring mechanism.

• Service rewarding through a mechanism that handles the
payment to devices upon completing their service deliv-
ery. It essentially allows to check for fund availability and
to transfer funds between different devices once service
is successfully delivered.

The proposed protocol,IoTShare, also incorporates a reputa-
tion system to monitor and keep track of services delivered
by registered IoT devices, to ensure that service delivery
agreements are met. Using simulations,IoTShare is evaluated
intensively to assess its scalability, its resiliency to faulty
nodes, and its robustness to malicious behaviors.

The rest of the paper is organized as follows. In Section II,
we describe the network infrastructure used by the proposed
protocol. In Section III, we presentIoTShare, the proposed
IoT resource sharing on-demand protocol. In Section IV, we
study and assess the effectiveness of the proposed protocol.
In Section V, we discuss the security aspects and challenges
pertaining to IoTShare. In Section VI, we highlight and
discuss open research directions and challenges. Finally,we
conclude the paper in Section VII.

II. SYSTEM ARCHITECTURE ANDDESIGN GOALS

We begin by describing the system model and architecture
of the studied smart city to enable the deployment of partici-
patory IoT networks on-demand. Then, we present the design
goals and requirements of the protocol,IoTShare, introduced
to enable distributed embedding of these IoT networks on-
demand on top of participatory IoT devices. We finally provide
a brief background on blockchains technology for complete-
ness sinceIoTShare is based on such an emerging technology.

A. System Model and Architecture

We consider a city-wide network constituted of many IoT
devices spread all over the city, and a set of access points
(also referred to as edge clouds) also spread across the cityto
provide Internet connectivity to the devices. An IoT device



3

interested in joining the network needs to advertise, upon
joining the network, its device characteristics or directory
containing key information such as its resource type, re-
source availability, location, and bounty. The system allows
devices to submit networks-on-demand (orNoD) requests, to
be mapped on participatory IoT devices. A device submit-
ting a request is referred to asa consumer. For example,
an NoD request could be initiated to serve for tracking a
target (e.g., malicious person) that is moving through different
regions in the city. Each submittedNoD request is propa-
gated to other IoT devices in the network using a peer-to-
peer communication infrastructure to enable its mapping to
the available IoT devices, as will be explained later. Our
proposed protocol,IoTShare, uses blockchains for device
management and request mapping onto IoT devices. For this,
a setM of IoT devices are designated to serve as miners,
which are responsible for handling fund transfer and device
payment through creation and addition of blocks; more on
this will be provided later. EachNoD request is submitted in
the form of 5-tupleG=(V , E , D , C, B ), with V specifying
the number of requested nodes (also referred to as request
size), E specifying the set of connections/edges between
the requested nodes,D specifying the request duration,C=
{(Loc1, T ype1, Cap1), . . . , (LocV , T ypeV , CapV )} specify-
ing the location, the resource type and the resource capacity of
each requested node, andB specifying the bounty associated
with the request. Note that all these request parameters are
to be determined by the application being supported by the
NoD request, and are provided by the consumer initiating the
request as input toIoTShare. We consider that the IoT devices
are located randomly across the city, and that the city is divided
intoL different regions. When an IoT device joins the network,
its characteristics will be added as an entry toDirectory, a
data structure that is updated every time a new device joins
the network, and is stored and maintained by all devices
through the blockchains, to be described later. Each entry of
Directory contains the following device characteristics.

• Device ID: Serial number and/or IP/MAC addresses.
• Resource Type(s): sensing (video, temperature, traffic

density), computation, and/or communication.
• Location: GPS location and region ID.
• Availability: Time period(s) during which device is avail-

able for participating in networks on-demand instances.
• Capacity: Amount/capacity of the resource available for

sharing; i.e., computation (CPU power), sensing (sensed
data per second), and/or bandwidth (bps).

• Network access type: Technology type used for connect-
ing to the network; e.g., WiFi and/or cellular.

• Bounty: Cost of service.

B. Design Goals and Requirements

To enable networks-on-demand mapping on top of participa-
tory IoT device resources,IoTShare must meet the following
design goals and requirements:

a) NoD request mapping: IoTShare should provide a
mechanism for each IoT device, willing to participate in
networks-on-demand, to join the network, and to obtain all

information needed to allow it to interact and communicate
with other existing devices. It should also allow the mapping
of NoD requests on top of participatory IoT devices.

b) Service delivery and integrity: IoTShare should pro-
vide monitoring mechanisms that ensure that the committed
devices are performing their tasks and operations as agreed
upon. The protocol must also provide a backup plan for
recovering from service interruptions and service agreement
violations resulting from device misbehavior and/or failure.

c) Service rewarding, payment and incentiveness:
IoTShare should provide a mechanism that ensures that
the served devices be rewarded for their offered services.
With blockchains, this boils down to providing a secure
mechanism for checking fund availability and for transferring
funds between different devices. Making sure that devices are
rewarded for their offered service will serve as great incentive
for devices to join the network, participate on networks on-
demand, and do and complete their tasks as agreed upon.

d) Scalability and distributivity: Due to the complexity,
in size and numbers, of the system at hand, it is important
that the different components of the protocol be scalable and
implementable in a distributed manner whenever possible.

e) Security and fault tolerance: IoTShare should con-
tain mechanisms that ensure the security of IoT devices, as
well as the robustness against malicious behavior (intentional)
and/or failure (unintentional) of devices during the perfor-
mance of their assigned tasks.

C. Blockchains

IoTShare relies on blockchains technology [12] to allow
scalable, distributed and fast management and mapping of the
NoD requests. InIoTShare, a blockchains,BC , is used to act
as a Turing State Machine to ensure data integrity and validity
throughout the system, and contains a time stamped history
of all transactions occurred in the system. For each mapped
NoD request, transactions are added to the blockchains to
contain and record all information about the accepted requests
(e.g., the devices that choose to be part of the networks on-
demand and serve as providers). Each device is associated with
a wallet,W , where a wallet is a key pair of private and public
keys. When a consumer issues a bountyB (the reward that
each provider will receive as a payment for its offered service),
a private key is used to sign that transaction. Later on, anyone
in the network could use the signature as well as the public key
to validate a said transaction. Each transaction is signed with
a different signature to remove threat of double spending [19].
Miner nodes are in charge of collecting transaction entriesand
adding them to the blockchains,BC .
IoTShare does not adopt Bitcoin’s proof-of-work (or POW)

as the method for miner selection, due to its inefficiency and
the challenges it presents when used in the context of IoT. Such
challenges arise from the limited storage and computation
resources that IoT devices have, the delay sensitivity that
applications to be supported by mapped IoT networks may
have, and the limited bandwidths of the links (often wireless)
that connect the IoT devices to the network. For these reasons,
IoTShare uses the proof-of-stake (PoS) as its method for
selecting miners [15]. This will be discussed later in the paper.



4

Fig. 1. IoTShare architecture with main operations

III. T HE PROPOSEDPROTOCOL: IoTShare

In this section, we present our distributed IoT resource
sharing on-demand protocol,IoTShare, which is developed
with the aim to meet the aforementioned design goals and
requirements. Note that the terms device and node will be
used interchangeably throughout to refer to the same thing.

A. IoTShare functions

At its highest level,IoTShare has the following operations,
which are shown in Fig. 1.

a) Device management: To allow IoT devices to partici-
pate in networks on-demand,IoTShare provides a mechanism
for these participatory devices to register with the network,
and acquire information about other registered devices so they
can join and form peer-to-peer networks with existing devices.
Upon joining the network, a node connects to some other
nodes already joined the network and requests a copy of
Directory and the blockchains,BC . It also broadcasts its
device information to the other nodes in the network.

b) NoD request mapping: This phase of the protocol
provides a mechanism to allow the discovery of IoT devices
satisfying the requirements of the requests, such as availability,
capacity, bounty, etc, and the mapping of the accepted requests
on top of the discovered IoT resources. It also allows for
checking whether the consumers who initiated theNoD re-
quests have sufficient fund to pay for their received service.

c) Service delivery and integrity: To provide a monitor-
ing mechanism and to ensure service delivery and integrity,a
set of monitor devices, denoted byK and selected during the
2nd phase above, will be appointed to serve as monitors. Their
job is to monitor the devices (or providers) that are committed
to offer their service to a submitted request by monitoring their
uptime, CPU usage, disk usage, network usage, etc. They also
act as a fallback mechanism to remove committed devices that
fail to deliver and replace them with other nodes. Once failed
devices are detected, the monitors intervene by flagging the
violating node and issuing a replacement request throughout
the network. InIoTShare, these monitors act as a first-resort
for node replacement as soon as service violation/failure is
detected, given that they meet the request requirements. This
is calledfast recovery response in our protocol. If the monitors
cannot meet the request requirements and thus had to find and

rely on other nodes in the network to recover from the failure,
we refer to this asslow recovery response. The final scenario
happens when no nodes (providers) in the network could be
found to fulfill the request. In this case, the request is dropped,
and service delivery failure is recorded and reputation scores
of those nodes responsible for such a failure will be reduced
accordingly, so that their likelihood of being selected forfuture
requests will be updated. Upon the completion of service
(fulfilling the request’s required service), all monitors will
vote whether to add these providers to the blockchains,BC ,
based on collected performance metrics and service agreement
expectations.

d) Trust and reputation building: IoTShare uses and
relies on a reputation system that assigns a score to each node
to ensure high quality and on time delivery of service. Upon
completion of a request, monitors report whether the provider
nodes met their service agreements, and assign a score to
each provider to reflect its service quality. The reputation
scores of those providers that do not meet their agreed upon
service requirements or fail to deliver their service are reset
to zero. Monitor nodes create and sign an entry containing
these scoring information to be added to the blockchains. The
reputation system plays two key roles inIoTShare. It ensures
high service quality by allowing the selection of reliable and
trustworthy nodes, and improves system security by increasing
robustness against malicious behavior.IoTShare’s adoption
of blockchains technology for signing, updating and keeping
track of reputation scores of nodes in the network allows
consumers to select only those nodes with high reputation by
specifying in their request the minimum score a node needs
to have to be able to participate in the request. This ensures
that high service quality is maintained. Blockchains allows
for transparent access to scores and makes it too difficult
for malicious nodes to manipulate and change the scores,
increasing system security robustness.

e) Rewarding and payment: IoTShare supports billing
and reputation management, which is mainly done through
BC and the miner nodes. Before a consumer node issues a
request, it has to sign the request with its key using its wallet,
W , private key (more on this will be discussed later). The
request is propagated through the network using peer-2-peer
communications to the provider nodes. Provider nodes verify
funds availability and request validity using the signature and
public key combination. Also, an entry to be added to the
BC has to be signed by consumer node and it also has to
have monitor nodes signatures for their voting round results.
The first is used to transfer funds from the consumer node
to provider nodes, while the second is used to update the
reputation of the provider nodes and to allow a percentage of
the funds to go to the monitor nodes. Miners, using proof-of-
stake, determine a winner that is appointed to add a new block
to theBC , which reduces the computational entry requirement
to be a miner in the network.

f) System security and robustness: Every request sub-
mitted to the network is signed by the consumer node; i.e.,
the issuer. Since other nodes in the network can verify the
signature using the public key, which is associated with the
node’s wallet and the message, no node can change the



5

contents of the messages sent in the network. Blockchains
entries contain request information, list of accepting nodes,
list of accepting monitors, and the mining node. Miners will
have to verify every entry for its signature validity, and ifan
invalid signature is found, then the entry is dropped. When
requests are successfully mapped, consumers sign the request,
and nodes accepting to serve as providers sign it too, so as to
be known which addresses/nodes to be rewarded after service
completion. Monitors sign also with voting information as
well as with reputation score updates. Also, when a block
is found, providers have to verify the signatures attached with
the message for validity or else the block is dropped.

To account for IoT devices’ limited storage capacity,
IoTShare uses compressed Blockchains, where at every pe-
riod chosen by the protocol, all balances in the network are
summed up into states. These states act as a new Block that has
to be verified by the miners. Every node has to sign its wallet
stating its balance. Miners will verify the signatures and so will
nodes that receive the generated block. This in turn minimizes
the size of the blockchains and ensures better scalability for
our protocol. The number of monitors at each request can
be adjusted for to provide better security and robustness and
to lower fees associated with each request. Consumers can
choose to have no or some monitors to ensure better reliability
and service delivery expectations.

B. IoTShare phases

IoTShare’s operations can be described through three main
phases: ’Initialization, ’Resource Reservation’ and ’Mining
and Fund Transfer’. Initialization phase deals with the joining
and registration of newly arrived devices to the network.
Resource Reservation phase deals with the mapping of re-
quests, including finding and approving providers, monitors
and miners. Fund Transfer phase is the phase where funds are
transferred from the consumer to the providers once a request
is fulfilled. Throughout, we assume that neighboring nodes are
nodes that are connected to the same access point.

1) Initialization Phase: A new node joining the network
has to first obtainW , the Private/Public Key pair that will
serve as its wallet address, andBC and Directory, the
blockchains and device directory files currently being usedby
the network. The node, for instance, can download and run a
software that allows for the creation of a unique Private/Public
Key pair. The new node needs to connect to a DNS to
obtain a list of nodes in the network from which it can
requestDirectory andBC . There could be multiple different
provider and miner nodes in the network that can play the role
of a DNS, with each node having a different seed that points
to a different set of nodes in the network. New nodes can limit
themselves with a shortened version ofDirectory that only
contains a handful of highly reputed nodes in each region.
Also, connecting to neighboring nodes or any node in the
network allows new nodes to obtainDirectory, which will
contain updated information about the different resourcesas
well as the nodes in the network.

OnceBC is obtained, new nodes can verify the integrity
of all transactions throughout the network by verifying the

(a) Step 1: A new node N joins the
network

(b) Step 2: node N obtains private
and public key pair

(c) Step 3: Node N queries DNS
for addresses of a list of joined
nodes (e.g., N2 and N3)

(d) Step 4: Node N obtains
Directory andBC files

(e) Step 5: Node N assigns itself
an ID and propagates its info (e.g.,
updatedDirectory) to the network

(f) Step 6: Node N picks its neigh-
bors and becomes part of the net-
work

Fig. 2. Illustration of the main steps of the Initializationphase

signatures and public keys associated with each entry inBC .
Since these transactions are computationally intensive, any
non-miner node opts for downloading a light version ofBC ,
which is a blockchains with a shortened length that includes
a limited set of past mined blocks, plus a current state of
all nodes’ balances in the network. If a new node desires to
become a provider, it advertises its resources to neighboring
nodes, and using gossip protocol [20], all nodes in the network
add the new nodes’ information to their localDirectory. The
value ofR (the node’s reputation) is set to 0, and its associated
W address is included inDirectory. A new node can now
listen to a specific port for upcoming transactions and for any
new requests submitted to the network. These initialization
steps are depicted in Fig. 2.

2) Resource Reservation Phase: A consumer node first
starts by creating anNoD request,G, and prior to submitting
it to the network, it must sign the request to enable provider
nodes to verify wallet address ownership and funds avail-
ability. Although having a full version ofDirectory offers
a full view of the network, which can help request specific
nodes, to limit the resource reservation overheard, a consumer
node opts for a lighter version ofDirectory and limits itself
to connecting to a handful of nodes only. Consumer nodes
communicate their requests with other nodes using the gossip
protocol [20]. Provider and monitor nodes are selected and
decided on a first-come first-serve approach basis, with nodes
replying to the request first get to take the role. As requests
propagate through the network, nodes must adhere to the
following; this is also illustrated via Fig. 3.



6

(a) Step 1: S3 creates and formats its
request G and sends it to its neighbors

(b) Step 2(a): Monitors append them-
selves to the request and forward it to
their neighbors

(c) Step 2(b): Providers append them-
selves to the request and forward it to
their neighbors

(d) Step 3: Communication between
different nodes is established and S3
assigns work

Fig. 3. Resource reservation illustration: A network with two resource types:
sensing (S) or computing (C). S3 is a consumer node with a requestG.

• Provider nodes may accept to serve in a number of
requests, depending on their locations, resource/time
availability, and/or whether they can meet the constraints
and/or bounty associated with the request. Nodes could
also choose to serve as monitor nodes instead of provider
nodes. After deciding (to serve either as monitors or as
providers), nodes must append their acceptance informa-
tion to the request before propagating and passing the
request further to the neighboring nodes. Note that as
requests pass through the nodes, first nodes to receive
the request are more likely to accept it, making it more
likely for closer nodes to accept neighboring nodes’ re-
quests. This promotes realtime resource reservation with
minimum delay.

• The process continues until the request is fully accepted
or rejected, where fully accepted means that a provider
node has been found for each node of the request.
Forever looping can be avoided by limiting the number of
hops traversed until the request is fully mapped to some
threshold,H , or by using a timeout threshold,Tmax ; i.e.,
if the request is not fully accepted within a certain time
period, it is rejected.

• Once the request is accepted entirely (all of its requested
nodes are found), then provider nodes collaborate to
deliver the agreed upon service. Note that all provider
nodes accepted to participate in a request know about all
other (provider and monitor) nodes’ information because
such an information is appended in the request as the
request propagates through. Note that if a request is not
accepted, then the requesting consumer node has to create
a new request with lower constraints and/or bounty in an
effort to find a mapping to the request.

a) Monitoring node functions and selection process:
Each accepted request is associated with a number of provider
nodes as well as a minimum number,M , of monitoring
nodes, as specified by the request. Monitoring nodes are
responsible for watching over provider nodes to ensure that
they are delivering their service as agreed upon, and do
so by monitoring the providers’ uptime, CPU usage, disk
usage, network usage, etc. This serves two key functions: it
serves as backup during node failure recovery, and it helps
in updating the reputation and trust scores of the different
nodes by scoring providers upon service completion. When
committed providers fail to deliver their agreed upon service,
monitors, upon detecting such failure, flag the failing nodes to
the rest of the network, and issue a node replacement request
to replace the failing providers. When no replacement is found,
these monitors play the role of immediate node replacement
provided that they meet the request requirements. Upon service
completion, all monitors initiate a voting process to give and
update the reputation scores of the providers based on their
received service quality, with the scores of the provider nodes
that fail to deliver being set to zero, so that their likelihood of
being selected in future requests is reduced.

Nodes can choose to participate as providers or as monitors.
As a request propagates through the network, the request is
considered to be accepted when a minimum number,M , of
nodes are chosen to serve as monitors. To limit malicious-
ness of possible monitoring nodes, the consumer node also
decides on the selection of some of the nodes to serve as
monitors, while the other monitors are chosen from random
nodes. Also, if nodes were chosen using gossip protocol
and adopting the lighter directory file method, monitor nodes
append their information to the request as it propagates andthe
first M nodes to identify themselves as monitors are chosen.
Monitor nodes monitor provider nodes as well as other monitor
nodes to ensure service agreements are met and to overcome
maliciousness.

Their job is to monitor the devices (or providers) that
are committed to offer their service to a submitted request
by monitoring their uptime, CPU usage, disk usage, net-
work usage, etc. They also act as a fallback mechanism to
remove committed devices that fail to deliver and replace
them with other nodes. Once failed devices are detected, the
monitors intervene by flagging the violating node and issuing
a replacement request throughout the network. InIoTShare,
these monitors act as a first-resort for node replacement as
soon as service violation/failure is detected, given that they
meet the request requirements. This is calledfast recovery
response in our protocol. If the monitors cannot meet the
request requirements and thus had to find and rely on other
nodes in the network to recover from the failure, we refer
to this asslow recovery response. The final scenario happens
when no nodes (providers) in the network could be found to
fulfill the request. In this case, the request is dropped, and
service delivery failure is recorded and reputation scoresof
those nodes responsible for such a failure will be reduced
accordingly, so that their likelihood of being selected forfuture
requests will be updated. Upon the completion of service
(fulfilling the request’s required service), all monitors will



7

vote whether to add these providers to the blockchains,BC ,
based on collected performance metrics and service agreement
expectations.

b) Node reputation update and failure recovery: Monitor
nodes have the ability to raise a flag indicating a misbehavior
from a specific provider node. In this case, a voting round
including all monitor nodes is done, during which it will be
decided whether the said provider node violated the service
agreement or not. If the number of votes is higher than a
threshold,Vmin , then the node is flagged as misbehaved
and its misconduct is broadcasted throughout the network.
Reputation is set to 0 for the misbehaving node and the
accepted request is re-advertised to neighboring nodes. Ifa
provider node went down during task performance, its status
in the directory is changed to inactive by monitor nodes and
is broadcasted throughout the network. Monitor nodes get to
accept the resources first because of their proximity from the
misbehaving node. This creates another incentive for monitor
nodes to keep monitoring provider nodes to detect failures.
Once a request is over and if no flags were raised, monitor
nodes get to vote to decide whether provider nodes met the
service agreement of the request. If votes exceedVmin , a new
entry that includes consumer node, provider nodes, monitor
nodes, and the requestG is broadcasted to be added to the
BC . Monitors receive a Monitor Bounty,Mb, as a reward
for their monitoring service, which is a percentage of the
bounty associated with the request. This provides an incentive
to do the monitoring job. The provider nodes’ reputations are
increased for their successful fulfillment of the served request.

3) Mining and Fund Transfer Phase: Miner nodes listen
to broadcasts sent by consumer nodes, provider nodes and
monitor nodes at all times. They add transactions that include
fulfilled requests, reputation changes to their backlog once
received. As transactions accumulate, miner nodes verify each
transaction using the public key and signature associated
with each transaction. At every mining period chosen by the
protocol, a miner node is selected at random to add a block to
the blockchains,BC . The probability of a miner node being
selected is related to how much stake it has in the system
(Total funds). Miner nodes with more stake will have higher
probability of winning the mining task. To be a miner winner,
a node must satisfy:

Hash(PrevHash,WalletAddr, Content, T ime) ≤

Balance(WalletAddr)

TotalBalance
×Difficulty (1)

where:
• PreviousHash: Hash generated for previous block.
• Content: Transaction(s) to be added to the block.
• WalletAddr: Public key associated with the miner node.
• T ime: Period selected to produce a miner node winner.
• Balance(WalletAddr): Balance of the miner node.
• TotalBalance: Total fund available for all nodes.
• Difficulty: Current difficulty level set for network.

a) Miner selection: Given a miner’s input parameters
(i.e., PrevHash,WalletAddr, Content, T ime), the hash
function produces a value that is used to determine whether
the miner wins. Here, for a givenDifficulty, the higher

(a) Step 1: Any node wanting to be a
miner checks the inequality.

(b) Step 2: Only node C4 satisfies the
inequality and wins the mining.

(c) Step 3: The winning miner sends
the new block to its neighbors.

(d) Step 4: Nodes verify inequality
satisfaction and block validity. When
so, new block is added toBC .

Fig. 4. Single-miner winner illustration: An IoT network with two types of
resources: sensing (S) or computing (C).

the miner’s stake (i.e., balanceBalance(WalletAddr)), the
greater the chance of being selected as a miner. The adjustable
parameter,Difficulty, serves as a way for ensuring that only
one winner miner is likely to be selected. That is, the smaller
the value/level of the chosenDifficulty parameter is, the
tighter Inequality (1) is, and hence, the less likely the inequal-
ity is to be met. Every miner computes this hash function
and checks whether the hash value satisfies the inequality, and
if it does (and hence the miner wins this mining period), it
advertises the new block to the rest of the network so the block
can be added. This is illustrated in Fig. 4. In case no miner
satisfies this inequality and no nodes in the network receive
a valid block by next the mining period (period selected by
the protocol to produce a miner node winner), all nodes in
the network decrease the value ofDifficulty to ensure that
at the next mining period, the likelihood of finding a miner
increases. If two or more miners satisfy the inequality and
broadcast the new block to be added, the block is dropped
by all nodes and theDifficulty is increased, so as again to
reduce the likelihood of having multiple miners satisfyingthe
inequality by the next mining period.

b) Mining reward: New mined blocks are unconfirmed
until Lmin blocks have been mined. Once the number of
blocks that have been mined reachesLmin , all the previous
transactions in current block are said to be confirmed and
the winner miner receives a reward,R (Miner Reward)). This
gives an incentive for miner nodes to participate in the miner
selection process. If one of the miner nodes attempted to create
fake entries in theBC and broadcast it to the rest of the
network, other nodes in the network would drop it if it does
not satisfy the inequality above.



8

IV. PERFORMANCEEVALUATION OF IoTShare

In this section, we present and analyze the performance
results of the proposed protocol,IoTShare, using simulation.

A. Simulation Method and Setup

1) Network setup: We consider a network ofN nodes/IoT
devices placed randomly in a city. The network is modelled
as a graph whose vertex set is the set of allN nodes
and the edge set consists of random connections among the
nodes in the system. We assume that the city is split intoL

regions, indexed0, 1, ...,L− 1, and the devices are distributed
randomly within the different regions. In our simulation, the
number of neighbors each node is directly connected to is
selected uniformly betweenNeighmin and Neighmax . Only
fully connected graphs, where each node can be reached from
any other node, are simulated. Each node is randomly assigned
a resource type, which can be either of sensing or computing
type. At any time slot, a node can be in one of the following
states:idle, provider, monitor, miner or failed node. Initially, a
node starts in idle state, and as networks on-demand requests
arrive, its state changes accordingly; e.g., when a node accepts
to serve in a request, it changes its state to provider; when it
accepts to serve as a miner, it changes its state to a miner, etc.

2) NoD requests: We consider a time-slotted system, with
the number of requests that arrive at each time step is Poisson
distributed with meanr , and the duration of each accepted
request follows a Bernoulli process with parameterq. Every
NoD request comes in the form of 5-tupleG=(V , E , D ,
C, B ), with V specifying the request size (i.e., the number
of requested nodes),E the set of connections/edges between
the requested nodes,D specifying the request duration,C=
{(Loc1, T ype1, Cap1), . . . , (LocV , T ypeV , CapV )} specify-
ing the (location, resource type, resource capacity) of each
requested node, andB specifying the bounty associated with
the request. Upon its arrival, anNoD request is propagated
across the network, and depending on the request’s require-
ments and the devices’ availabilities and willingness to serve
(e.g., the device has the requested type of resource and the
requested resource capacity, the device’s minimum acceptable
bounty is met, etc.), it can be either accepted or denied.

3) Mining: At every time period, a new miner is selected
as described in Section III-B3. When a request is successfully
accepted, it is propagated throughout the network and addedto
the miners’ pending ledger. Every winning miner picks from
the pending requests based on the highest bounty associated
with the pending requests. We assume that nodes are faulty
(whether intentionally or unintentionally), in that a provider
accepting to serve a request may, with some probability, fail to
deliver its service, thereby causing service disruption and vio-
lation of service agreements.IoTShare contains a mechanism
that allows recovery from such failures by promptly finding
other nodes that can fulfil and replace the failing nodes. For
convenience and completeness, we summarize and provide all
of the notations and variables used in this work in Table I.

4) Parameter setting: Each node maintains the structure
Directory, which contains ID, resource type, resource capac-
ity, location, time availability, and minimum required bounty

TABLE I
IoTShare PARAMETERS

G , 5-tuple request form
D , Request duration
C , (locations, types, capacities) of requested nodes
B , Request bounty
N , Total number of nodes/IoT devices in the network

Directory , Device directory
L , Number of city regions

BC , Blockchains used by the protocol
W , IoT device wallet

BC ′ , Shortened (lightweight) blockchains
H , Request hop limit value

Tmax , Timeout duration for request
M , Number of monitors per request

Vmin , Monitor minimum voting threshold
R , Miner reward value

Bmin , Min bounty for a provider to accept a request
τmining , Miner selection and block addition period

Neighmin , Min number of neighboring nodes per node
Neighmax , Max number of neighboring nodes per node

r , Average number of requests arrive per time slot
q , Bernoulli process parameter; 1/q is average duration

(in time slots) of accepted request

of each participatory device in the network. In our evaluation,
the ID assigned to each node ranges from 1 toV , the resource
type is set to either 0 for sensing or 1 for computation, and
each node starts with zero balance, and the balance increases
as the node participates in serving requests and receives more
rewards. We distribute nodes over a 2D plane and assign each
of them a random x,y coordinate to represent its location.
The 2D plane is divided intoL = 9 regions, where each
node is placed randomly in one of the regions. Each node
is connected to other neighboring nodes, with the number of
neighbors selected uniformly betweenNeighmin = 15 and
Neighmax = 25.

In our simulation, for each arrived request, the request size,
V , is varied between 5 and 20, the request duration,D , is
drawn from a Bernoulli process with parameterq i.e., average
duration (in number of time slots) equals 1/q), the resource
type of the request is set to 0 (sensing) or 1 (computing) with
equal probability, the locations of requested nodes are selected
randomly, and the request bounty,B , is selected uniformly
between 100 and 1000. Each node has a minimum bounty,
Bmin , below which a request is denied. In our simulation,
Bmin is also drawn uniformly between 100 and 1000.

We define thenetwork load as r/q, where againr is the
parameter of the Poisson distribution representing the number
of requests that arrive per time slot.r/q here represents the
average number of requests that would have been present
in the network at a time slot had no arrived requests been
denied to the network. In other words, the average number
of requests that are actually present in the network equals the
“network load” times the “accepted rate” of arrived requests.
In our simulation, we varied the network load between 0.2 and
0.6. Finally, the size of mining period,τmining , (one block is
added to the blockchains every mining period) is set to 3 time
slots, and the number of monitors,M , is set also to 3 in our



9

0 200 400 600 800 1000
Number of IoT Devices

0

20

40

60

80

100

A
c
c
e

p
ta

n
c
e

 R
a

te
 (

%
)

Network Load = 0.2
Network Load = 0.3
Network Load = 0.5
Network Load = 0.6

(a) Request size = 5

0 200 400 600 800 1000
Number of IoT Devices

0

20

40

60

80

100

A
c
c
e

p
ta

n
c
e

 R
a

te
 (

%
) Network Load = 0.2

Network Load = 0.3
Network Load = 0.5
Network Load = 0.6

(b) Request size = 10

0 200 400 600 800 1000
Number of IoT Devices

0

20

40

60

80

100

A
c
c
e

p
ta

n
c
e

 R
a

te
 (

%
) Network Load = 0.2

Network Load = 0.3
Network Load = 0.5
Network Load = 0.6

(c) Request size = 20

Fig. 5. Acceptance rate performance

simulations.

B. Performance Metrics

To assess the effectiveness ofIoTShare, we measure and
evaluate the following performance metrics:

• Acceptance Rate: The rate at which requests are ac-
cepted into the network. It is calculated by dividing
the number of accepted requests by the total number of
requests submitted to the network.

• Visited IoT Devices: The percentage/fraction of IoT
devices in the system that are visited before a request’s
requirements are satisfied and the request is accepted. It
is averaged over all accepted requests.

• Blockchains Size: The number of transactions added
per block. It is averaged over all blocks added to the
blockchains.

• Recovery Rate: The fraction of accepted requests that are
recovered successfully from device failures. It is calcu-
lated by counting the number of successfully recovered
requests and dividing it by the total number of failed
requests.

• Mining Frequency: It is the fraction of mining times a
miner has been selected to serve as a miner. Each miner
has its own ’Mining Frequency’ value. It is calculated as
the number of times a miner has been selected as a miner
divided by the total number of miner selections or mining
periods. This reflects the robustness ofIoTShare to the
51% Attack problem [15].

C. Performance Analysis

Our performance analysis ofIoTShare is classified into two
categories, scalability, fault-tolerance, and robustness, each of
which is discussed in a separate section.

1) Scalability: We study the performance behavior of
IoTShare to assess its ability to scale with the network size
(number of IoT devices) by investigating the impact of the
network size on three metrics: Acceptance Rate, Visited IoT

0 200 400 600 800 1000
Number of IoT Devices

0

20

40

60

80

100

V
is

it
e

d
 I

o
T

 D
e

v
ic

e
s
 (

%
) Network Load = 0.2

Network Load = 0.3
Network Load = 0.5
Network Load = 0.6

(a) Request size = 5

0 200 400 600 800 1000
Number of IoT Devices

0

20

40

60

80

100

V
is

it
e

d
 I

o
T

 D
e

v
ic

e
s
 (

%
) Network Load = 0.2

Network Load = 0.3
Network Load = 0.5
Network Load = 0.6

(b) Request size = 10

0 200 400 600 800 1000
Number of IoT Devices

0

20

40

60

80

100

V
is

it
e

d
 I

o
T

 D
e

v
ic

e
s
 (

%
) Network Load = 0.2

Network Load = 0.3
Network Load = 0.5
Network Load = 0.6

(c) Request size = 20

Fig. 6. Fraction of devices visited prior to request mapping.

Devices, and Blockchains Size. In Figure 5, we present the
acceptance rate while varying the number of IoT devices under
different network loads. Each graph represents a different
request size, 5, 10 and 20 from top to bottom, where again
the request size is the number of IoT devices requested. As
expected, we observe from the figures that the acceptance
rate decreases as the network load and/or the request size
increases. This is because as the network load and/or request
size increases, more nodes in the network become committed
to requests, making it harder to find nodes that satisfy the
new requests’ requirements. We also note that as the network
size grows, the acceptance rate increases, merely because more
nodes in the network implies higher chances of meeting new
requests’ requirements and hence higher acceptance rates.

In Figure 6, we present the number of nodes (in percentage)
that are visited prior to fulfilling a request under different
network loads. Each graph corresponds to a different request
sizes, 5, 10 and 20 from top to bottom. We observe that
as the network grows larger, lesser percentage of the nodes
need to be visited to fulfill a request. This is because as the
number of nodes increases, the likelihood of finding nodes
that meet the request increases as well, which decreases the
percentage of nodes that need to be visited before satisfying
a request. The figure also shows that the network load does
not affect the percentage of nodes visited prior to fulfilling
a request. The reasoning behind this is that both committed
and non-committed nodes have to be visited to check for their
availability to serve in and accept the request, so a higher
percentage of committed nodes does not impact the number
of nodes that need to be visited to fulfill a request. We also
observe that as the request size grows larger, more nodes need
to be visited to fulfill a request. This is because as the request
size gets bigger, there are more nodes that need to be picked
to satisfy a request, which in turn increases the overall number
of visited nodes.

In Figure 7(a), we present the blockchains size/overhead
incurred per mining period, i.e., per added block, as a function
of the request size under different network loads. The figure



10

2 4 6 8 10 12 14 16 18 20
Request Size

0

1

2

3

4

5

B
lo

c
k
c
h

a
in

s
 S

iz
e

network load = 0.2
network load = 0.3
network load = 0.5
network load = 0.6

(a) Per mining period

2 4 6 8 10 12 14 16 18 20
Request Size

0

0.005

0.01

0.015

0.02

B
lo

c
k
c
h

a
in

s
 S

iz
e

network load = 0.2
network load = 0.3
network load = 0.5
network load = 0.6

(b) Per mining period per request

Fig. 7. Blockchains size overhead (a) per mining period and (b) per mining
period per arrived request

0 200 400 600 800 1000
Number of IoT Devices

0

20

40

60

80

100

R
e
c
o
v
e
ry

 R
a
te

 (
%

)

Device Failure Rate = 0.2
Device Failure Rate = 0.3
Device Failure Rate = 0.5
Device Failure Rate = 0.6

(a) Request size = 5

0 200 400 600 800 1000
Number of IoT Devices

0

20

40

60

80

100

R
e
c
o
v
e
ry

 R
a
te

 (
%

)

Device Failure Rate = 0.2
Device Failure Rate = 0.3
Device Failure Rate = 0.5
Device Failure Rate = 0.6

(b) Request size = 10

0 200 400 600 800 1000
Number of IoT Devices

0

20

40

60

80

100

R
e
c
o
v
e
ry

 R
a
te

 (
%

)

Device Failure Rate = 0.2
Device Failure Rate = 0.3
Device Failure Rate = 0.5
Device Failure Rate = 0.6

(c) Request size = 20

Fig. 8. Failure recovery rate performance: network load = 0.5

shows that the request size does not have an effect on the
blockchains size. When the request size increases, it means
that more nodes, on average, are getting selected per request,
but without incurring much blockchains overhead. We also
note that as the network load increases, the overhead decreases
slightly. As the network load increases, more requests are com-
ing into the network, dropping the rate of accepted requests,
which in turn causes the average number of transactions per
time slot to drop slightly. In Figure 7(b), we present the
blockchains size incurred per arrived request (we divide the
blockchains size by the number of arrived requests per mining
period). We also notice that the network load and request size
have minimal effect on the blockchains overhead in terms of
required blockchains size. To summarize,IoTShare scales
very well in terms of blockchains overhead under different
network loads and request sizes.

2) Fault tolerance: We now study the robustness of
IoTShare against node failures. For this, we consider that
nodes can fail before or after accepting a request, and assess
how well IoTShare recovers from such failures by measuring
the recovery rate of the protocol under different failure rates,
request sizes, and network loads. The recovery rate metric is
already defined in Section IV-B.

Figures 8 and 9 show the behavior of the recovery rate
as a function of the number of IoT devices under different
network loads (0.2, 0.3, 0.5 and 0.6), request sizes (5, 10 and

0 200 400 600 800 1000
Number of IoT Devices

20

40

60

80

100

R
e
c
o
v
e
ry

 R
a
te

 (
%

)

Network Load = 0.2
Network Load = 0.3
Network Load = 0.5
Network Load = 0.6

(a) Request size = 5

0 200 400 600 800 1000
Number of IoT Devices

0

20

40

60

80

100

R
e
c
o
v
e
ry

 R
a
te

 (
%

)

Network Load = 0.2
Network Load = 0.3
Network Load = 0.5
Network Load = 0.6

(b) Request size = 10

0 200 400 600 800 1000
Number of IoT Devices

0

20

40

60

80

100

R
e
c
o
v
e
ry

 R
a
te

 (
%

)

Network Load = 0.2
Network Load = 0.3
Network Load = 0.5
Network Load = 0.6

(c) Request size = 20

Fig. 9. Failure recovery rate performance: device failure rate = 0.2

20), and node failure rates (probability of device failure is
set to 0.2, 0.3, 0.5, and 0.6). We make the following three
observations. First, observe that as the number of IoT devices
in the system increases, the recovery rate increases, regardless
of the network load, the request size, and the node failure rate.
This is because the higher the number of nodes, the greater
the likelihood of finding nodes that satisfy the failed nodes’
requirements, thus increasing the overall recovery rate. For
reasonable network sizes (e.g., 1000), the recovery rate ranges
from 50 to 80%, depending on the network load, node failure
and request size. Second, note that the device failure rate and
the network load has little effect on the recovery rate. The
reasoning behind this is that, for e.g., as the device failure
rate increases,IoTShare is still able to recover from failures
that happen to different nodes in the network. Since the load
is constant, the likelihood of finding a node that satisfies the
failed network requirement is the same. Third, note that as
the request size increases, the recovery rate declines slightly,
and this is regardless of the node failure rate and/or the
network load. As the request size gets bigger, more nodes are
committed, and hence, it becomes difficult to find replacement
for failed nodes, but the effect is minimal as we only see a
slight drop in the recovery rate. This is due to the fact that there
are still unoccupied nodes throughout the network that can be
picked as a replacement for the failed nodes. To summarize,
our results show thatIoTShare is robust against faulty nodes,
by being able to achieve high recovery rates under reasonable
network and request sizes.

3) Robustness: We now assessIoTShare’s robustness
against the 51% attack inherent to the blockchains’ mining
mechanism [15]. For this, we measure and show in Figure 10
the mining frequency of each miner under four different
network loads, where the mining frequency is calculated as
the number of times a miner has been selected as a miner
divided by the total number of miner selections or mining
periods. In this experiment, the number of miners is set to
200; i.e., only 200 IoT devices among all devices may serve
as miners. The figure shows that, regardless of the network



11

0 20 40 60 80 100 120 140 160 180 200
Miner ID

0

2

4

6

8

10
M

in
in

g
 F

re
q
u
e
n
c
y
 (

%
)

(a) Network Load = 0.2

0 20 40 60 80 100 120 140 160 180 200
Miner ID

0

2

4

6

8

10

M
in

in
g
 F

re
q
u
e
n
c
y
 (

%
)

(b) Network Load = 0.3

0 20 40 60 80 100 120 140 160 180 200
Miner ID

0

2

4

6

8

10

M
in

in
g
 F

re
q
u
e
n
c
y
 (

%
)

(c) Network Load = 0.5

0 20 40 60 80 100 120 140 160 180 200
Miner ID

0

2

4

6

8

10

M
in

in
g
 F

re
q
u
e
n
c
y
 (

%
)

(d) Network Load = 0.6

Fig. 10. Miner selection frequency: number of miners = 200 (IDs: 1 to 200).

load, no single miner is selected more than 7% (except in the
case of network load of 0.6, some received 9%), and more
importantly, no miner is selected overwhelmingly more than
the other miners. This shows thatIoTShare’s blockchains-
enabled mechanism is robust to the 51% attack.

V. SECURITY CONSIDERATIONS

IoTShare adopts mechanisms to address some security
challenges in addition to enabling and easing the mapping,
reservation, and sharing of IoT resources on-demand and
in a distributed manner. In this section, we talk about key
security threats and attacks and discuss whether and how
IoTShare addresses them.

a) Sybil attacks: One of such attacks is Sybil at-
tacks [21], which blockchains-based protocols in general suffer
from. In IoTShare, these attacks can come from consumers
and/or providers that maliciously fake their roles. Malicious
consumers may generate lots of fake requests to bog down
the network, and provider nodes can initiate Sybil attacks by
promising to serve in requests but without delivering service.
There are three approachesIoTShare adopts to mitigate
the impact of Sybil attacks. The first one is by relying
on PoS approach when deciding on and selecting providers
to serve on requests. Providers with high stake values are
not encouraged to and have no interest in launching such
attacks.IoTShare requires a minimum stake threshold for
users to service as providers. The second approach is through
reputation scoring, which can help in filtering out malicious
users in the long term, thereby getting rid of users that have
no good intention to serve. The third approach is to have
IoTShare check for balance and make sure that the con-
sumer’s wallet has sufficient fund prior to allocating resources
to its request, thereby discouraging users from playing fake
consumer roles.

b) Bribe attacks: Bribe attacks are another type of at-
tacks that can be launched by monitor nodes whose main job
is to monitor committed providers and give reputation scores
via voting based on the quality of providers’ delivered service.

Monitor nodes can collude and falsify voting and reputation
score decisions. Such attacks can also be mitigated through
PoS and by imposing minimum stake in order for users to
serve as monitors, thus discouraging them from colluding with
the aim to fake the system.

c) Long-Range attacks: A third type of attacks inherent
to the PoS approach thatIoTShare tackles is Long-Range
attacks. These attacks occur when an attacker goes back and
forks the original chain to create a branch with different
blocks, with the newly created branch overtaking the main
blockchain by becoming longer than the main chain. PoS
protocols are more vulnerable than PoW protocols, because the
former type does not require computational effort to generate
previous added blocks until the branch outpaces the main
chain [22]. Generally, these attacks are classified in threemain
categories, Simple, Posterior Corruption, and Stake Bleeding,
with varying complexity and assumptions (e.g., ability to
forge timestamps vs. not, ability to collude with other min-
ers/monitors vs. not) [22]. Simple attacks exploit trust-based
PoS implementation in which timestamps are not checked
by nodes at every block addition, and hence, each node can
validate the new blocks. The other two categories execute more
complex attacks. There have been countermeasure techniques
proposed in the literature to address long-range attacks, includ-
ing longest chain rule, key-evolving cryptography [23] and
plenitude rule [24] among others, andIoTShare can use a
combination of these to protect against such attacks. More
information on these attacks as well as on other PoS attack
types can be found in [22].

d) Nothing-At-Stake attacks: Like most PoS protocols,
IoTShare relies on longest chain policy to resolve forking,
which makes sure that one fork/branch eventually overtakes
the other branches. However, this policy may suffer from
the nothing-at-stake attacks, which refer to the scenario
when nothing stops/discourages nodes from mining conflict-
ing blocks (to be added to multiple different forks) as this
does not risk their stake. This attack leads to delaying the
time for reaching a consensus as well as increasing the
number of branches in the blockchain and potentially allow-
ing double-spending. InIoTShare, we propose to combine
Ouroboros [25] and Slasher [26] to mitigate this attack.
Ouroboros incorporates a rewarding strategy to discourage
nodes from mining and adding blocks to multiple different
branches, whereas Slasher proposes that each miner makes a
deposit prior to each mined block, and the deposit is locked
for some period of time. The deposit is lost if a node signs
and adds blocks to different branches with the same length.

VI. OPEN RESEARCHCHALLENGES

IoTShare is a fully distributed protocol designed to be
specifically suitable for smart cities, by easing and enabling
the creation and deployment of multiple networks-on-demand
instances on top of IoT devices to support various smart city
applications and services, including surveillance applications,
traffic control applications, emergency relief managementap-
plications, law enforcement applications, and many others. Our
greater vision forIoTShare is to move from simulation based



12

deployment and assessment to a real platform implementation
and evaluation. In order to reach this goal, few challenges
remain to be addressed.

a) Compatibility: It is assumed that this technology
could be deployed on all devices without concerning ourselves
with the possibility that different devices may need different
types of API/programming language/code to be able to be
integrated into the system. One possible solution is to use a
universal API middle man translator (broker) that all systems
could talk to using a web REST API. So, one research task
would be to look into how to best use REST API.

b) Power Conservation: Power/energy preservation has
not been accounted for in this research.IoTShare as of
right now involves a lot of data transfers and communications
among the IoT devices (e.g. using gossip). Since IoT devices
typically have limited energy resources, power consumption
cloud be a limiting factor. A future research item would be to
focus on optimizing data transfers/IoT utilization with energy
consumption awareness in mind.

c) Incentive Mechanisms: IoTShare assumes that IoT
devices will be encouraged to join the network and be part of
networks-on-demand instances. Although the bounty/reward
given to a device as a reward to its service can serve as an
incentive, we believe more carefully thought out schemes need
to be investigated. For instance, resource availability would
be a great barrier for these devices to join and participate,
and if and when provided with solutions that can alleviate
the need for such resources, these devices will be more
inclined to join. One potential technology that can serve this
purpose is edge cloud computing, which is already shown
to allow for device resource (computation, storage, network,
etc.) offloading, providing therefore great incentives to join as
they no longer need to use their local resources, at least fully.
However, more needs to be done when it comes to integrating
IoTShare with edge cloud technology.

d) Blockchains Storage Limitation: While IoTShare al-
lows and supports the use of a lighter version of blockchains,
more can be done in this regard. Not all IoT devices have the
storage capabilities to store very large blockchains data,and
hence, a future research task could be to look into optimizing
blockchains structure and creating an architecture that would
allow IoT devices to keep the integrity of the blockchains
while also limiting storage overhead.

e) Patching/System Updates Concerns: One task that
could be looked at in great depth is to design efficient
mechanisms that would be used to push updates to the
network and to endpoints in the network. For instance, once
IoTShare is deployed, should we use a central code version
that is monitored by the owners of the network to allow for
system updates/patches to be deployed, or should we leave
updates to be independent so each provider could deploy any
code into the network as long as it is able to communicate with
the rest of the network? These questions need be investigated.

f) Monitoring Power: In IoTShare, monitors are the
nodes that decide whether a provider delivers its agreed
upon service or not. But if the monitors (intentionally or
unintentionally) decide to reject providers’ work, then the
system as a whole would fail. A future research task would be

to investigate efficient mechanisms that can be used to choose
monitors and to ensure that monitors do their job correctly.

g) Monitoring System Meta Data: One of the monitors’
job is to ensure that providers perform their task as agreed
upon, but not much emphasis is put into how that is done.
It is assumed that the monitors would have access to some
of the meta data/health checks of the end points/providers.
A future research task would then be to design efficient
schemes/architectures that address these challenges.

h) Market Analysis: IoTShare relies on a sup-
ply/demand system, in that when there are a lot of requests
(resulting in increasing the demand for IoT devices to serve
as providers), the bounty associated with these requests needs
to be adjusted so that devices could be found to fulfil the
requests. A future task is to look into mechanisms that can
be used to adjust the bounty values to ensure that the system
does not break. At which point would the consumers start
building/buying their own hardware instead of trying to reserve
it from the network? Should there be some kind of bounty
capping mechanism to ensure that we do not reach that point?
These questions need also be investigated.

VII. C ONCLUSION

In this paper, we presentedIoTShare, a blockchains-
based, distributed IoT resource sharing on-demand protocol.
IoTShare uses blockchains technology to enable distributed
mapping and management of networks on-demand on top of
IoT devices.IoTShare can be used in smart cities to allow
the deployment of networks-on-demand instances on top of
IoT devices located within a city. These networks-on-demand
instances can enable and support a variety of applications
to offer services that can, for example, help with surveil-
lance, emergency management, traffic control, and many other
city related matters. We showed through simulations that
IoTShare scales efficiently under different system parameters,
resilient to faulty nodes, and is robust against the 51% attack.

REFERENCES

[1] L. Atzori, A. Iera, and G. Morabito, “The internet of things: A survey,”
Computer networks, vol. 54, no. 15, pp. 2787–2805, 2010.

[2] B. Hamdaoui, M. Alkalbani, T. Znati, and A. Rayes, “Unleashing the
power of participatory iot with blockchains for increased safety and
situation awareness of smart cities,”IEEE Network, pp. 1–8, 2019.

[3] B. Hamdaoui and K. G. Shin, “Characterization and analysis of multi-
hop wireless mimo network throughput,” inProceedings of the 8th ACM
international symposium on Mobile ad hoc networking and computing.
ACM, 2007, pp. 120–129.

[4] Y. Zhang, J. Zheng, and H.-H. Chen,Cognitive radio networks: archi-
tectures, protocols, and standards. CRC press, 2016.

[5] M. Rebato, F. Boccardi, M. Mezzavilla, S. Rangan, and M. Zorzi,
“Hybrid spectrum access for mmwave networks,” in2016 mediterranean
ad hoc networking workshop (Med-Hoc-Net). IEEE, 2016, pp. 1–7.

[6] B. Hamdaoui, B. Khalfi, and M. Guizani, “Compressed wideband spec-
trum sensing: Concept, challenges, and enablers,”IEEE Communications
Magazine, vol. 56, no. 4, pp. 136–141, 2018.

[7] H. Sinky, B. Khalfi, B. Hamdaoui, and A. Rayes, “Responsive content-
centric delivery in large urban communication networks: A linknyc use-
case,”IEEE Transactions on Wireless Communications, vol. 17, no. 3,
pp. 1688–1699, 2017.

[8] I. Psaras, W. K. Chai, and G. Pavlou, “Probabilistic in-network caching
for information-centric networks,” inProceedings of the second edition
of the ICN workshop on Information-centric networking. ACM, 2012,
pp. 55–60.



13

[9] R. Abuhadra and B. Hamdaoui, “Proactive in-network caching for
mobile on-demand video streaming,” in2018 IEEE International Con-
ference on Communications (ICC). IEEE, 2018, pp. 1–6.

[10] X. Chen, L. Jiao, W. Li, and X. Fu, “Efficient multi-user computation
offloading for mobile-edge cloud computing,”IEEE/ACM Transactions
on Networking, vol. 24, no. 5, pp. 2795–2808, 2015.

[11] S. Abdelwahab, S. Zhang, A. Greenacre, K. Ovesen, K. Bergman, and
B. Hamdaoui, “When clones flock near the fog,”IEEE Internet of Things
Journal, vol. 5, no. 3, pp. 1914–1923, 2018.

[12] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cashsystem,” 2008.
[13] M. Singh, A. Singh, and S. Kim, “Blockchain: A game changer for

securing iot data,” inInternet of Things (WF-IoT), 2018 IEEE 4th World
Forum on. IEEE, 2018, pp. 51–55.

[14] M. Samaniego and R. Deters, “Blockchain as a service foriot,” in
Internet of Things (iThings) and IEEE Green Computing and Commu-
nications (GreenCom) and IEEE Cyber, Physical and Social Computing
(CPSCom) and IEEE Smart Data (SmartData), 2016 IEEE International
Conference on. IEEE, 2016, pp. 433–436.

[15] I. Bentov, C. Lee, A. Mizrahi, and M. Rosenfeld, “Proof of activity:
Extending bitcoin’s proof of work via proof of stake [extended abstract],”
ACM SIGMETRICS Performance Evaluation Review, vol. 42, no. 3, pp.
34–37, 2014.

[16] D. Miller, “Blockchain and the internet of things in theindustrial sector,”
IT Professional, vol. 20, no. 3, pp. 15–18, 2018.

[17] S. Huh, S. Cho, and S. Kim, “Managing iot devices using blockchain
platform,” in Advanced Communication Technology (ICACT), 2017 19th
International Conference on. IEEE, 2017, pp. 464–467.

[18] M. Samaniego and R. Deters, “Hosting virtual iot resources on edge-
hosts with blockchain,” inComputer and Information Technology (CIT),
2016 IEEE International Conference on. IEEE, 2016, pp. 116–119.

[19] G. O. Karame, E. Androulaki, and S. Capkun, “Double-spending fast
payments in bitcoin,” inProceedings of the 2012 ACM conference on
Computer and communications security. ACM, 2012, pp. 906–917.

[20] R. Chandra, V. Ramasubramanian, and K. Birman, “Anonymous gossip:
Improving multicast reliability in mobile ad-hoc networks,” in Dis-
tributed Computing Systems, 2001. 21st International Conference on.
IEEE, 2001, pp. 275–283.

[21] J. Douceur, “The sybil attack,” inPeer-Peer Systems, 2002 International
Conference on. Springer, 2002, pp. 251–260.

[22] E. Deirmentzoglou, G. Papakyriakopoulos, and C. Patsakis, “A survey
on long-range attacks for proof of stake protocols,”IEEE Access, 2019.

[23] B. David, P. Gaži, A. Kiayias, and A. Russell, “Ouroboros praos:
An adaptively-secure, semi-synchronous proof-of-stake blockchain,” in
Annual International Conference on the Theory and Applications of
Cryptographic Techniques. Springer, 2018, pp. 66–98.

[24] C. Badertscher, P. Gaži, A. Kiayias, A. Russell, and V.Zikas, “Ouroboros
genesis: Composable proof-of-stake blockchains with dynamic availabil-
ity,” in Proceedings of the 2018 ACM SIGSAC Conference on Computer
and Communications Security, 2018, pp. 913–930.

[25] A. Kiayias, A. Russell, B. David, and R. Oliynykov, “Ouroboros: A
provably secure proof-of-stake blockchain protocol,” inAnnual Interna-
tional Cryptology Conference. Springer, 2017, pp. 357–388.

[26] V. Buterin, “Slasher: A punitive proof-of-stake algorithm,” Ethereum
Blog URL: https://blog. ethereum. org/2014/01/15/slasher-a-punitive-
proof-of-stake-algorithm, 2014.

Bechir Hamdaoui (S’02-M’05-SM’12) is a Professor in the School of
EECS at Oregon State University. He received M.S. degrees inboth ECE
(2002) and CS (2004), and the Ph.D. degree in ECE (2005) all from the
University of Wisconsin-Madison. His research interests are in the general
areas of computer networks, wireless communication, and computer security.
He won several awards, including the ICC 2017 and IWCMC 2017 Best
Paper Awards, the 2016 EECS Outstanding Research Award, andthe 2009
NSF CAREER Award. He serves/served as an Associate Editor for several
journals, including IEEE Transactions on Mobile Computing, IEEE Transac-
tions on Wireless Communications, IEEE Network, and IEEE Transactions
on Vehicular Technology. He also chaired/co-chaired many IEEE conference
programs/symposia, including the 2017 INFOCOM Demo/Posters program,
the 2016 IEEE GLOBECOM Mobile and Wireless Networks symposium,
and many others. He served as a Distinguished Lecturer for the IEEE
Communication Society for 2016 and 2017. He is a Senior Member of IEEE.

Mohamed Alkalbani received the B.S. and M.S. degrees in ECE from
Oregon State University, in 2016 and 2018, respectively, and is currently
working for HP as a software engineer. His research interests include computer
networks, distributed systems, and blockchain technology.

Ammar Rayes (S’85-M’91-SM’15) is a Distinguished Engineer / Senior
Director at Cisco Services Chief Technology and Strategy Office working on
the Technology Strategy. His research interests include Network Analytics,
IoT, Machine Learning and NMS/OSS. He has authored over 100 publications
in refereed journals and conferences on advances in software & networking
related technologies, 4 Books and over 30 US and International patents. He
is the Founding President and board member of the International Society of
Service Innovation Professionals www.issip.org, AdjunctProfessor at San Jose
State University, Editor-in-Chief of Advances of Internetof Things Journal,
Editorial Board Member of IEEE Blockchain Newsletter, Transactions on
Industrial Networks and Intelligent Systems, Journal of Electronic Research
and Application and the European Alliance for Innovation - Industrial Net-
works and Intelligent Systems. At Cisco, Ammar is the founding chair of
Cisco Services Research and Cisco Services Patent Council.He received
Cisco Chairman’s Choice Award for IoT Excellent Innovation& Execution.
He received his BS and MS Degrees in EE from the University of Illinois
at Urbana and his Ph.D. degree in EE from Washington University in St.
Louis, Missouri, where he received the Outstanding Graduate Student Award
in Telecommunications.

Nizar Zorba (SM’18) is a Professor at the Electrical Engineering depart-
ment at Qatar University, Doha, Qatar. He has authored five international
patents and co-authored over 120 papers in peer-reviewed journals and
international conferences. Dr. Zorba received the B.Sc. degree in electrical
engineering from JUST University, Jordan, in 2002, and the Ph.D. degree in
signal processing for communications from UPC Barcelona, Spain, in 2007.
He is associate/guest editor for the IEEE Communications Letters, IEEE
Access, IEEE Communications Magazine and IEEE Network. Currently, he
is the vice-chair of the IEEE ComSoc Communication Systems Integration
and Modeling Technical Committee (TC CSIM).


