DFS and BFS — Edge List
Representation

N Application: Maze Path Finding

* Find a path from start to finish in a maze:
— Easily represent a maze as a graph

— Compute single source (S) reachability, stopping
when getto F

F

[ISII Application: Maze Path Finding

* Find a path from start to finish in a maze:

— Easily represent a maze as a graph

L

(S

m§!.! Application: Maze Path Finding Example

Extended

STACK
S5e

* Single-Source Reachability

a b ¢ d e Forconsistency (order in
which neighbors are
pushed onto the stack)

f
‘ ‘ 44—‘—>2
1

4 &

H<—‘—>w

—}2

STACK

de

4

H<—‘—>w

—»2

STACK

4d
3e

4

H<—‘—>w

—}2

STACK

5d
3e

4

H<—‘—>w

—}2

STACK

5¢
3e

4

H<—‘—>w

—»2

STACK

5b
4c

10

11

4 ¢

DEAD END!!

f’
Q—
{

STACK

4b
4c

12

4

H<—‘—>w

—}2

STACK

4c
3e

13

4

H<—‘—>w

—}2

STACK

3c
3e

14

4

H<—‘—>w

—}2

STACK

3b
2C

15

7

6

5

H<—‘—>w

16

What happens if we use a Queue?

4 ¢

H<—‘—>w

—}2

QUEUE

S5e

18

4 ¢

H<—‘—>w

—}2

QUEUE

de

19

4 ¢

H<—‘—>w

—»2

QUEUE

4d
3e

20

4 ¢

H<—‘—>w

—»2

QUEUE

3d
2e
4d

21

4 ¢

H<—‘—>w

—}2

QUEUE

5d
3d
2e

22

4 ¢

H<—‘—>w

—}2

QUEUE

le
5d
3d

23

4 ¢

H<—‘—>w

—}2

QUEUE

le
5d

24

—_— N W W

4 +—

H<—‘—>w

—}2

QUEUE

5¢
le

25

ek (\) V) DN OO0 |m

4 ¢

H<—‘—>w

—}2

QUEUE

1d
5c¢

26

N B

ek (\) V) N Oo\|m

4 ¢

H<—‘—>w

—}2

QUEUE

5b
4c
1d

27

14 _J
13 12 11
8‘9‘10?2
7 6 5 4‘1

19 14 10 8
24122 18 13‘5

23 20 15(6 3

21‘16‘11 4 2
17 12 9 7‘1

Depth-First (Stack)

Breadth-First (Queue)

28

DFS like a single person working a maze
BFS like a wave flowing through a maze

DFS can take an unfortunate route and have to backtrack a
long way, and multiple times

DFS can get lucky and find the solution very quickly
BFS may not find it as quickly, but will always find it

Because BFS first checks all paths of length 1, then of length 2,
then of length 3, etc....it"s guaranteed to find a path
containing the least steps from start to goal (if it exists)

What if there’s one infinite path....DFS may go down it...but
BFS will not get stuck in it

e O(V+E) time in both cases

— Key observation: Edge list scanned once for each vertex,
so scans E edges

Initialize set of reachable vertices and add v; to a

While is not empty
Get and remove (pop) last vertex v from
if vertex v is not in reachable,
add it to reachable
For all neighbors, v, of v, if v;is NOT in reachable
add to

 What about space?

— BFS must store all vertices on a Queue at most
once

— DFS uses a Stack and stores all vertices on the
stack at most once

— In both cases, O(V) space worst case

— In practice, BFS may take up more space because
it looks at all paths of a specific length at once.

e.g. if search a deep tree, BFS will store lots of
long potential paths

 Depends on the problem

— |f there are some very deep paths, DFS could spend a
lot of time going down them

— If it’s a very broad/wide tree, BFS could require a lot
of memory on the queue

— |f you need to find a shortest path, BFS guarantees is

— Are solutions near top of the tree?
* BFS may find it more quickly
e e.g. Search a family tree for distant ancestor who was alive a
long time ago
— Are solutions at the leaves
* DFS can find it more quickly

e e.g. Search a family tree for someone who’s still alive

Extended Campus

e Can easily do DFS recursively

e Can avoid “Reachable” in both DFS/BFS by
instead, adding a color field to each node
— white: unvisited
—gray: considered (on queue, stack)
— black: reachable

* Store additional information to use in solving
other important graph problems

