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ABSTRACT
Ad hoc wireless networks are more vulnerable to malicious attacks
than traditional wired networks due to the silent nature of these at-
tacks and the inability of the conventional intrusion detection sys-
tems (IDS) to detect them. These attacks operate under the thresh-
old boundaries during an intrusion attempt and can only be identi-
fied by profiling the complete system activity in relation to a nor-
mal behavior. In this paper we discuss a control-theoretic Hidden
Markov Model (HMM) strategy for intrusion detection using dis-
tributed observations across multiple nodes. This model consists
of a distributed HMM engine that executes in a randomly selected
monitor node and functions as a part of the feedback control engine.
This drives the defensive response based on hysteresis to reduce the
frequency of false positives, thereby avoiding inappropriate ad hoc
responses.

Categories and Subject Descriptors: G.3 [Probability and statis-
tics]: Multivariate statistics, Stochastic processes

General Terms: Security, Algorithms.

Keywords: IDS, Intrusion Detection, Hidden Markov Models, Wire-
less Ad-Hoc Networks.

1. INTRODUCTION
Intrusion detection system (IDS) protects data integrity and man-

ages the system availability during intrusion. In a mobile ad hoc
network (MANET) with self-regulating properties [1] it deals with
challenges related to resource-constrained, fully-mobile, self con-
figuring, multi-hop wireless networks with varying resources and
limited bandwidth. Distributed and cooperative nature of ad hoc
network nodes enables a malicious node to exploit the weakest
node by hi j acki ng or l aunchi ng an at t ack t hr ough i t . T hi s i nher-
ent vul nerability can di sabl e t he whol e net work cl uster and fur-
ther compromise the security by impersonating, message contami-
nation, hijacking, passive listening, or acting as a malicious router.
Some of the common attacks that exploit these limitations are route
messages and route information tampering, selective forwarding,
sybil attack, sinkhole attack, wormhole attack, spoofing, packet
flooding, packet-dropping, location exposure, sleep deprivation (bat-
tery exhaustion), and radio jamming (MAC layer attack). Adding to
the problem, constantly changing topologies and volatile physical
environments make it difficult to discriminate between an intrusion
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and a normal operation. Various routing techniques have been re-
searched in this area that tries to resist attacks [2]. Intrusion is a pat-
tern of an observed sequence. Its detection is similar to an immune
system that identifies and eliminates anomalies by measuring devi-
ations from the normal processes using distributed identifiers over
the system with identifiable and adaptable relationship. This can be
supported using a model where each state has probabilistic distri-
bution of producing identifiable observations and transition matrix
to other states.

Hidden Markov model (HMM) [3] is one such model that corre-
lates observations (parameters changes, fault frequency, etc.) [4] to
predict hidden states that factor in the system design. Observation
points are optimized using an acceptable set of system-wide intru-
sion checkpoints (IC) while hidden states are created using explicit
knowledge of probabilistic relationships with these observations.
For modeling a large number of temporal sequences, HMM acts
as an excellent alternative, as it has been widely used for pattern
matching in speech recognition and image identification. Some of
the previous work on IDS using HMM includes an HMM-based
predictive model capable of discriminating between normal and
abnormal behaviors of network traffic [5], a framework for han-
dling multiple sensors implemented by representing each of the
sensors monitoring a host with an HMM [6], HMM-based detec-
tion of complex Internet attacks consisting of several steps that
occur over an extended period of time [7], HMM based anom-
aly decisions at system call level using sequences of system calls
trace as observable [8], and HMM-based algorithms for building
behavior classifiers capable of detecting intrusion attempts on com-
puter systems [9]. Other work in this area includes a statistical ap-
proach [10] which monitors the system call trace of a program’s ex-
ecution for compliance to the precomputed model, and alert-based
policy mechanism [11] that associates an alert with multiple events
frequently occurring together.

This paper investigates the problem of intrusion detection while
reducing the number of false positives in a power friendly man-
ner. It extends the traditional HMM-based IDS approach by us-
ing a control-theoretic, distributed HMM to make it suitable for ad
hoc networks with limited power and processing capabilities. The
control theoretic component is the proportional integral differential
(PID) control engine that drives the defensive response based on
feature hysteresis to reduce the frequency of false positives. These
controllers do not require advanced mathematics to characterize the
model underlying the checkpoint measurements and can be easily
be implemented as silicon hooks coupled to the monitored intru-
sion checkpoints with an adjustable response. Distributed HMM
processing distributes the computational load of training and state
estimation by choosing a Monitor Nodes among member nodes of
the ad hoc node cluster using a voting mechanism (Sec. 4.3).

Section 2 presents the Intrusion Checkpoint Control Stage (ICCS)
that is the observability stage with an objective to produce stable
emissions using continuous estimations. It adapts the checkpoint
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trigger based on the weighted sum of proportional, average and
derivative sensor measurements over derivative and integral time
window. This stage is also responsible for detecting temporary
changes due to legal activity and concept drift signifying changing
long-term user behaviors to avoid falsely predicting an attack situa-
tion. Observation can be rejected as a noise, or classified to a valid
state based on the trending, similarity between un-classified states
tending toward certain classification, and feedback from state ma-
chine based on other independent observations. Section 3 discusses
the Intrusion State Detection Stage (ISDS) that receives the observ-
ability data from multiple checkpoints and predicts the transition to
one of the hidden states (normal, intrusion) based on trained statis-
tical model (Section 3.1). Estimated intrusion decision is fed back
to ICCS which helps re-estimating the usage trends while avoiding
any false positive preemptive responses. Section 4 discusses the
Monitor Node Selection that optimizes the computational load of
HMM processing between nodes.
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Figure 1: ICCS is responsible for providing the stable observ-
ability data to the intrusion state detection stage. This data is
profiled for variances due to changing user behavior and tem-
porary changes in system environment (also referred to as dis-
turbances).

2. INTRUSION CHECKPOINT CONTROL
STAGE (ICCS)

In this section we define checkpoint control components of the
IDS that cooperate with each other to enact an observation. In
ad hoc networks, an IDS is deployed at the nodes to detect the
signs of intrusion locally and independent of other nodes, instead
of routers, gateways or firewalls. The IDS architecture consists
of multiple stages with information feedback mechanism between
stages. ICCS represents the feedback control component for an in-
dividual intrusion checkpoint. It consists of measurement port, PID
controller, observation profiler, concept drift detector (CDD), and
feedback path to the process input.
(1) Measurement Port consists of fast-acting software and silicon
hooks that are capable of identifying, counting, thresholding, time-
stamping, eventing, and clearing an activity. Examples of such
hooks are performance counters, flip counters (or transaction coun-
ters), header sniffers, fault alerts (page faults etc.), bandwidth us-
age monitors, session activity, system call usage between various
processes and applications, file-system usage, and swap-in/swap-
out usage. Measured data is analyzed as it is collected or afterwards
to provide real-time alert notification for suspected intrusive behav-
iors. These fast-acting hooks are clustered to enact an observation.
Measurements can be sampled at regular intervals or cause an alert
based on a user-settable threshold and can be classified as:

(a) Resource activity trend that is the measure of a resource ac-
tivity monitored over a larger sampling period and has char-
acteristics that repeat over that sampling period.

(b) Event interval that is a measure of an interval between two
successive activities.

(c) Event trend that is the measure of events monitored over a
large sampling period with an objective to calculate the event
behavior with a built-in repeatability.

(2) Observation Profiler monitors various inputs for maintain-
ing & re-estimating activity profile that ascertains rough (partially
perfect) boundary between normal and abnormal activity. It is char-
acterized in terms of a statistical metric and model, where a metric
represents a quantitative measure accumulated over a period. Mea-
surements obtained from the audit records in this statistical model
analyzes any deviation from a standard profile. Observation profiler
receives multiple feedback from PID control output, event trigger
and ISDS (Sec. 3), and performs recursive estimations to gener-
ate successive probabilistic profile data estimates with closed-form
solution. Activity profile data consists of probability distribution
function (pdf) parameters represented by λj = (σj , μj , ηj), where
σj , μj , and ηj represents variance, mean, and activity drift fac-
tor, respectively. Successive observations are evaluated against this
profile which results in its new profiles and drift detection. An ob-
servation (emission) can also be a set of co-related measurements
but represented by a single probability distribution function. Each
of these measurements carries different weights as in multivariate
probability distribution. Such relationship is incorporated into the
profile for the completeness of the observation and reduces the di-
mensionality for effective runtime handling.

(3) Concept Drift Detector detects and analyzes the concept
drifting [12] in the profile where training data set alone is not suffi-
cient, and the model (profile) needs to be updated continually. For
Example, An instantaneous deviation from a normal profile can be
construed as an intrusion due to a momentary change in the system
environment. Such deviations may be legal as also seen during in-
stallation of new patches in an operating systems. When there is
a time-evolving concept drift, using old data unselectively helps if
the new concept and old concept still have consistencies and the
amount of old data chosen arbitrarily just happen to be right [13].
This requires an efficient approach to data mining that helps select
a combination of new and old (historical) data to make an accu-
rate re-profiling and further classification. The mechanism used is
the measurement of Kullback-Leibler (KL) divergence [14], or rel-
ative entropy measures the kernel distance between two probability
distributions of generative models. KL divergence is also the gain
in Shannon information involved in going from the a priori to the
posteriori expressed as:

αt = KL(b(v|θ′
t), b(v|θt)) (1)

where αt is KL divergence measure, θ′
t is new Gaussian compo-

nent, and θt is old Gaussian component at time t.
We can evaluate divergence by a Monte Carlo simulation using

the law of large numbers [15] that draws an observation vi from
the estimated Gaussian component θ′

t, computes the log-ratio and
averages this over M samples as

αt ≈ 1

M

M�
i=1

log

�
b(vi|θ′

t)

b(vi|θt)

�
. (2)

KL divergence data calculated in the temporal domain are used
to evaluate the speed of the drift, also called drift factor 0 ≤ η ≤ 1.
These data are then used to assign weights to the historical parame-
ters that are then used for re-profiling.
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(4) Feedback Path is responsible for feeding back the current
state information to the profile estimator. The current state infor-
mation is calculated by running the ISDS module using the current
model parameters. This information is then used by the profiler to
filter out any noise and re-estimate the activity profile data. If a trig-
ger activity is not followed by a state transition, then a corrective
action is performed to minimize the false positives in the future.

(5) PID Controller generates an output that initiates a corrective
response applied to a process in order to drive a measurable process
variable toward a reference value (set point). It is assumed that any
intrusion activity will cause variations in the checkpoint activity,
thereby causing a large error. Errors occur when a disturbance (in-
trusion) or a load on the process (changes in environment) changes
the process variable. The controller’s mission is to eliminate the
error automatically. Discrete form of PID control is represented as:

u(nT ) = Kpe(nT ) + KiT

nT�
i=(nT−w)

e(i) (3)

+Kd
e(nT ) − e(nT − 1)

T
+ u0

where e(t) is the error represented by difference between measured
value and set-point, w is the integral sampling window, nT is the
n-th sampling period, and Kp, Ki, and Kd are the proportional,
integral, and derivative gains, respectively.

Stability is ensured using the proportional term, the integral term
permits the rejection of a step disturbance and the derivative term
is used to provide damping or shaping of the response. The desired
closed-loop dynamics are obtained by adjusting these parameters
iteratively by tuning and without specific knowledge of an intru-
sion detection model. Control parameters are continuously tuned to
ensure the stability of the control loop in a control-theoretic sense,
over a wide range of variations in the checkpoint measurements.
While control parameters are evaluated frequently, they are updated
only when improvement in stability is anticipated. These updates
can be periodic over a large period of time.

2.1 Intrusion Checkpoint Control
Control-theoretic architecture (Fig. 2) drives the defensive re-

sponse based on hysteresis to reduce the frequency of false pos-
itives, thereby avoiding inappropriate ad hoc responses. Exces-
sive responses related to adjusting component functionality (e.g.,
throttling), alert generation (to predict intrusion state) and analyz-
ing concept drift can slow down the system and negatively impact
the effectiveness of the IDS. Alternately, an appropriate response
can predict the attack pattern and trigger the selective response us-
ing a PID controller that takes a measured value from an intrusion
checkpoint and compares it with a reference value. The difference
is then used to trigger alert (abnormal activity) to the process in
order to bring the process’ measured value back to its desired set-
point. PID controller can adjust the process outputs based on the
history and rate of change of the error signal, which gives more
accurate and stable control. This avoids inaccurate representation
of intrusion activity due to false alarms or miss detections that can
result in either disproportionate and costly defensive measures or
complete security failure. It is therefore essential to build weighted
integral and differential response to the trigger mechanism instead
of reacting to an instantaneous measurement. While integral re-
sponse measures the amount of time the error has continued un-
corrected, differential response anticipates the future errors from
the rate of change of error over a period of time. The reference
(set-points) values are dynamic in nature and set as a part of coarse
grain settings that are estimated over long periods of time. These
re-estimates are required to account for the changing user behavior,
also referred as concept drift.

Checkpoint control loop forms the first stage of multi-stage in-
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Figure 2: PID control loop for intrusion checkpoint. The
Process output (alert) constitutes the observation (emission) in
an HMM. A true-positive response is fed back to the process re-
sponse unit of the PID control to aid runtime re-training. Con-
cept drift analysis aids in re-setting the reference point.

trusion detection system of a sequential IDS where process output
provides the observability of an individual intrusion checkpoint to
aid in the state estimation. Collective observations from multiple
checkpoints are fed into the statistical model (in this case HMM)
responsible for predicting the state transition. Response measures
are delayed to account for delay involved in estimation of intrusion
state based on observations from other checkpoints. System policy
is driven by long-term hysteresis based on the system’s behavior
and the well-known relationship with various checkpoints. While
the set-point (reference) is constant over a long period of time, it
can change due to user behavior of system policy driven by a tem-
porary change in the operating environment.

3. INTRUSION STATE DETECTION STAGE
(ISDS)

ISDS defines the statistical model responsible for predicting the
current intrusion state based on observability data received from
ICCS modules. We choose HMM (Section 3.1) model where states
are hidden and indirectly evaluated based on model parameters.

3.1 Hidden Markov Model
Since anomaly can be treated as a classification problem, sto-

chastic approach like HMM can very well be used in intrusion de-
tection. An HMM is a stochastic model of discrete events and a
variation of the Markov chain consisting of a set of discrete states
and a matrix A = {aij} of state transition probabilities. The
model consist of observed (intrusion checkpoints) states, hidden
(intrusion) states, and HMM (activity) profiles. HMM training us-
ing initial data and continuous re-estimation creates profile that
consists of transition probabilities and observation symbol prob-
abilities. HMM modeling involves:
(1) Measuring observed states that are test-points spread all over
the system representing competing risks derived analytically or log-
ically using intrusion checkpoint indicators based on correlations
among two or more metrics.
(2) Estimating instantaneous observation probability matrix that
indicates the probability of an observation, given a hidden state
p(Si|Oi). This density function can be estimated using explicit
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parametric model (multivariate Gaussian) or implicitly from data
via non-parametric methods.
(3) Estimating hidden states by clustering the homogeneous behav-
ior of single or multiple components together that are indicative of
various intrusion activities that need to be identified. Hidden states
S = {S1, S2, · · · , SN−1, SN} are the set of states that are not
visible but each state randomly generates a mixture of the M ob-
servations (or visible states O). The IDS has the following states:

1. Normal (N) state indicates the profile compliance.

2. Intrusion in progress (IP) indicates an intrusion activity that
is setting itself up. This includes attempt to gain privileged
resources, acceleration in resource usage, etc.

3. Intrusion successful (IS) indicates a successful intrusion. A
successful intrusion will be accompanied with unusual re-
source usage (CPU, memory, IO activity, etc.).

(4) Estimating Hidden (intrusion) state transition probability ma-
trix using prior knowledge or random data and long-term temporal
characteristics.

3.2 ISDS Architecture
ICCS triggered output acts as an emission to a specific HMM

model and allocates a weight according to their confidence. Ob-
servation probability is expressed as a mixture of individual obser-
vation probabilities from multiple checkpoints, measured as frac-
tions of a total, to improve the performance of IDS. The weights
are given to each model based on trivial knowledge and continuous
training. The mixture model can be represented as:

p(x) =
K�

k=1

akh(x|λk) (4)

where p(x) is the modeled probability distribution function, K is
the number of components in the mixture model, and ak is mixture
proportion of component k.

This allows to model the intrusion states at varying degree of
granularity while retaining the advantages of each model. Based
on data characteristics (amount of data, frequency), models are
adapted by modifying weights such that complex models are fa-
vored for complex inputs and vice versa.
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Figure 3: Intrusion state detection stage.

HMMx sub-block (Fig. 3) receives the abnormal activity alert
and processes the interrupt to service the hidden-state (intrusion)
estimation. It maintains the HMM data and interacts with the ex-
pectation maximization (EM) block and the state-estimation (SE)
block for re-training and state-prediction flows. This block also
implements reduced-dimensionality by combining multiple inputs

into a single observation with its own probability distribution func-
tion. This observation is then fed into the EM and SE blocks for
state estimation.

In the HMM mixture modeling, intrusion checkpoint events un-
der consideration have membership in one of the distributions we
are using to model the data. This requires an estimation to devise
appropriate parameters for the model functions we choose, with
the connection to the data points being represented as their mem-
bership in the individual model distributions. The EM algorithm
sub-block [16] provides the mechanism to the problem of maxi-
mum likelihood (ML) parameter estimation process that yields a
parameter set used to assign observations points to new states. It es-
timates the ML estimates of parameters in the HMM model as well
as mixture densities (or model weights) and relies on the intermedi-
ate variables (also called latent data) represented by state sequence.
EM alternates between performing an E-step, which computes an
expectation of the likelihood, and an M-step, which computes the
ML estimates of the parameters by maximizing the expected like-
lihood found on the E-step.

SE sub-block models the underlying state and observation se-
quence of HMM mixture to predict state sequences for new intru-
sion states using the Viterbi algorithm. The Viterbi algorithm is a
dynamic algorithm requiring time O(TS2) (T is time steps count
and S is the number of states) where at each time step it computes
the most probable path for each state given that the most proba-
ble path for all previous time steps has been computed. Trained
mixture appears to be a single HMM for all purposes and applied
as a standard HMM algorithm to extract the most probable state
sequence, given a set of observations. Estimates for the transition
and emission probabilities are based on multiple HMM models and
are transparent to the standard HMM models. The state feedback
sub-block feeds-back the estimated state to the observation profiler
in ICCS (Fig. 1), and uses it for profile re-calibration.

As a part of the proactive approach in an active IDS, the response
unit encapsulates various actions that are undertaken upon a sus-
pected intrusion. It modifies the state of the attacked system to
thwart or mitigate the effects of the attack. Such control can take
the form of terminating network connections, increasing the secu-
rity logging, killing errant processes, APR poisoning, using decoys
(false IP address), etc. This action is also important because after
raising the abnormal activity alert, profiler (ICCS) constantly mon-
itors the abnormal activity (PID control output) and expects it to
reduce based on some external actions. This action is equivalent to
the process control function that influences the process variable in
the feedback control system with an objective to reduce the abnor-
mal activity. This requires a complete understanding of active in-
trusion responses which is still an open problem. An over-reactive
response can turn into a denial of service (DoS) attack.

4. INTRUSION DETECTION NODES
In this section we will discuss cooperative IDS that involves par-

ticipation of the member nodes in the global decision process. This
involves distributed processing among local nodes and randomly
elected monitoring nodes. While ICCS is implemented locally us-
ing silicon and software hooks, ISDS operations execute on the
monitoring nodes (Sec. 4.2). Monitoring nodes are at a single-hop
distance and elected randomly at periodic intervals using a fair-
ness and risk cost evaluation. Various factors such as the number
of refusals, membership period, and voting patterns are considered
for making such evaluation. While local nodes contribute the trig-
ger data locally and externally, monitor nodes consume this data
to estimate the intrusion state through the contribution of obser-
vations from all member nodes. Whenever a suspected activity
is detected, it initiates an intrusion detection event that is propa-
gated to the monitor nodes. Monitor nodes in turn request for the
sharable observation data from individual nodes. Based on multi-
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ple observations with node-level dimensionality, an HMM mixture
algorithm is executed to predict the possible intrusion state.

4.1 IDS Node
Intrusion detection in mobile local hosts is limited to profiling

it’s local activity using floating ICCS modules. The intent is to re-
duce the system complexity and the possibility of software reuse.
These hooks are presented to accelerate the combined measure-
ments of the clustered components with an ability to send alerts
based on a systems-level policy. It contains the hardware and soft-
ware that act as a glue between transducers and a control program
that is capable of measuring the event interval and event trend with
an ability to generate alerts on deviation from normal behaviors
(represented by system policy). In this specific case, the feedback
control loop is implemented partially in the silicon (ICCS block)
with configurable control parameters (see Fig. 1). To further en-
hance the auto-discoverability, modularity, and re-usability, config-
uration and status registers are mapped into the capability pointer
of the PCI express configuration space. Similar mechanisms exist
today in the very basic form as performance counters (PerfMon),
leaky-bucket counters, etc. These counters need to be coupled with
ICCS modules that contain PID Controller, profilers, threshold de-
tectors, drift detectors, and coarse-grain tuners. ICCS modules are
implemented in isolation from the measured components such that
a single ICCS component can multiplex between multiple measure-
ment modules. While some of the checkpoints are used for local
consumption, others are shared with the monitor nodes to aid in
cooperative state estimation. Examples of such checkpoints are
packet drop rate, route request rate, and route reply rate. These
checkpoints share the trigger data with the monitors nodes and con-
tribute as the node’s contribution to the mixture of HMMs.
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Figure 4: Distributed state estimation using HMM. Similar ob-
servations from each node act as combined observation at the
monitor node according to its weight. Each node contributes
multiple observations to the monitor node. Monitor node then
executes HMM mixture algorithm and returns the estimated
state back to the host.

4.2 IDS Monitor
IDS monitor is required to offload the member nodes from per-

forming the redundant computation by distributing the computa-
tional load and selecting a new monitor periodically. Monitor func-
tion is performed by sharing the individual node’s observations by
either exchanging the data or overhearing the node traffic on all the
members of the cluster (see Fig. 4). Some static information related
to route and location still needs to be transmitted to the monitors.
There can be more then one monitors in the cluster executing inde-
pendent of each other and yields this role to another node upon cost
evaluation. This allows accurate evaluation using multiple samples.
Node monitors implement HMM mixture model using the multiple

observations from all the member nodes as defined by ISDS (see
Fig. 3). Monitor node is responsible for (a) estimating the cur-
rent state of the cluster (state estimation), (b) re-training the model
based on the cluster dynamics (expectation maximization), (c) ini-
tiating a trigger response to allow all member nodes to update any
sharable information (location, routes, trigger data, etc.), (d) listen-
ing to member nodes who may be experiencing abnormal activity,
(e) yielding monitor role to another monitor using a hand-off mech-
anism, and (f) alerting the nodes of a change in intrusion state.

Hence, node monitor completes the feedback loop by initiating
the response action in case the state transitioned to an intrusion
state. It is expected that the response action will help scale back
the abnormal activity to normal activity and therefore reduce the
control feedback error. In case of multiple monitors, each monitor
votes for the estimated state and the majority vote prevails. Cooper-
ative IDS provides with us not only with a lower battery consump-
tion, but also with a hierarchical approach where local abnormal-
ities are substantiated using shared processing among the member
nodes of the ad hoc cluster. This evolves into an IDS tree where
host nodes act as a leaf structures and the monitor nodes act as the
node structure with a cooperative decision process. These decisions
can be accepted/rejected according to host node’s local policy.

4.3 Monitor Selection Policy
Monitor nodes are selected periodically and randomly using a

cost function that favors the long-term relationships, average bat-
tery conditions, estimation trends, and fair loading as a result of
voting by IDS nodes. They use a self-defined Local Fitness Score
(LF j

i ) which represents the fitness score if an IDS Node i acted as
an IDS monitor on the behalf of IDS Node j. Local Fitness score
(Eq. (5)) of remote IDS nodes is calculated based on observed
data of interest to the local IDS node and uses following matrix (a)
RSSj

i - received signal strength of IDS node i to IDS node j. A
low signal strength will help determine if a node is misbehaving
or has simply moved out of range, b) PDi - Average period an
IDS node i acted as Monitor Node, (c) V P j

i represents the voting
pattern of i as seen by node j.

LF j
i = α1GFi + α2RSSj

i + α3PDi + α4V P j
i (5)

V Pi = 1 −
�N

j=0,j �=i |GFj − LF i
j |

N
(6)

where α1+α2+α3+α4 = 1. Two nodes with high Global Fitness
Score (GFi) (Eq. 8) calculated by accumulated average (Eq. 7) &
variance of LF are selected as a monitor nodes for a timed interval,
where one node acts as a Primary IDS Monitor.

GFi =

�N
j=0 LF j

i

N
(7)

GFi = β1GFi + β2(1 −
�N

j=0 |GFi − LF j
i |

N
) (8)

where β1 + β2 = 1. IDS Monitor can relinquish its role prema-
turely in which case the process of selection is repeated with Sec-
ondary Monitor performing the temporary role of IDS Monitor.

5. EXPERIMENTAL RESULT
As an experiment, we set up intrusion checkpoint for received

signal strength (RSS), round trip time (RTT), bandwidth and rate of
packet drop on three mobile clients (laptops) running on 802.11g
wireless controller (Fig. 4). These clients are authenticated us-
ing SSL and are kept stationary for experimental purposes. They
exchange among themselves a two megabyte of training sequence
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periodically that is fragmented at tunable intervals with client-3 al-
ways acting as a monitor. This tunes the PID controller, profiler
and CDD for nominal operating conditions for the given condi-
tion. Additionally, the model consists of a traffic generator, envi-
ronment disrupter (changing signal strength), and an attack module
that simulates different types of attacks (802.11 Data/EAP Replay,
Frame Injection, Password Guessing). Attack parameters consists
of attack-speed [0,Smax] attack-period [0,Tmax] and the attack-
target [1,2,3] chosen at random. Traffic generator simulates real-
time audio/video and TFTP traffic under random disruption. Upon
event trigger by ICCS, all nodes transmit RSS, RTT, bandwidth and
packet drop rate data to the monitor node (node-3) that executes the
HMM mixture model and returns the estimated status. As a part of
the recovery action, attack is scaled back upon a positive intrusion
detection to allow the feedback control loop error converge to set-
point. Fig. 5 shows the ROC characteristics under two attack sce-
narios by varying the sampling period parameter. In a disruptive
environment (simulated by changing signal strength), the results
are substantially better with a positive detection rate of 83-89% for
sample intervals of 33-36 seconds. In the absence of PID controller,
false positive rate increases between 10-13% because of premature
transient responses.
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Figure 5: Receiver operating characteristics (ROC) curve
showing the true positive detection/false positive ratio.

The distributed approach seems to provide a good filtration to the
environmental and transient effects that otherwise result in false
positive alarm. Environmental conditions results in similar ob-
servations from neighboring nodes and reduces the possibility of
mis predictions. Our contribution to the IDS is holistic approach
that deals with networks, system components, applications and the
communication medium in a power efficient manner using distrib-
uted computations and feedback control. We not only reduce the
false-positives but also reduce the computational cost using fair
loading. The process can be further improved using an out-of-band
agent (ARC processor) that is less intrusive to normal applications.

6. CONCLUSION
While intrusion prevention may be the first line of defense, it

is not fool-proof. An exploit may use the weakest link (or node)
to attack a network. This is more so in ad hoc networks, where
wireless interface and MAC protocol make the node more prone
to the attack. Real network traffic is also not perfect since legit-
imate traffic often contains the kinds of patterns typically associ-
ated with attacks which can significantly increase the false alarm
rate. It is therefore essential to reduce the rate of false alarms for
any IDS to be effective. Since the intrusion state cannot be inferred
directly by monitoring any specific parameters, we need to predict
an attack based on mixture of observable data-points, events, and

current states. This leads to a statistical mechanism for intrusion
prediction using HMM where observed data are represented as a
weighted mixture component. Using this mechanism, an observed
deviation from a normal behavior carries a higher probability of
being in a non-normal state (or one of the attack states). Given the
computational complexity of the HMM models, it is not practical
to execute them on all battery-limited host nodes. Therefore, we
enhanced the model by distributing the HMM processing such that
all nodes contribute to the HMM processing in a periodic manner.
We also contributed to the concept of feedback control mechanism
that regulates the defensive response to every perceived abnormal-
ity. As explained earlier, this helps reduce the false alarm rate,
which is one of the major problems in modern IDS. Modern silicon
(CPU, I/O hubs, PCI express devices) contains performance coun-
ters that can be measured at moderate granularity. To avoid soft-
ware overhead, these counters can be mapped to the feedback con-
trol modules. These modules can multiplex multiple measurements
that help in battery and cost savings. While this methodology ef-
fectively solves some issues of IDS, especially IDS for MANET, it
is not a complete solution; mechanisms that can provide more lead-
time in identifying early signs of attacker’s activities to minimize
the damage are still needed. Modern intrusion detection systems
also lack automated response due to high potential for inappropri-
ate response and mis-diagnosis. Damage recovery is another area
for improvement, lack of which will make it difficult to create a
closed-loop control.

7. REFERENCES
[1] S. Ci, M. Guizani, H. H. Chen, and H. Sharif, ”Self-regulating network

utilization in mobile ad-hoc wireless networks,” IEEE Trans. Veh. Technol.,
vol. 55, no. 4, pp. 1302–1310, July 2006.

[2] X. Du, Y. Xiao, S. Guizani, and H. H. Chen, “A secure routing protocol for
heterogeneous sensor networks, in Proc. IEEE Globecom’06, Nov. 2006, San
Francisco, CA.

[3] L.R. Rabiner, “A tutorial on hidden Markov models and selected applications
in speech recognition,” Proceedings of the IEEE, vol. 77, pp. 257–286, Feb.
1989.

[4] R. Khanna and H. Liu, “System approach to intrusion detection using hidden
Markov model,” in Proc. 2006 Int. Conf. Commun. and Mobile Comput.
(IWCMC’06), July 2006, pp. 349-354.

[5] S. S. Joshi and V. V. Phoha, “Investigating hidden Markov models capabilities
in anomaly detection,” in Proc. 43rd Annual Southeast Regional Conf.
(ACM-SE 43), Kennesaw, GA, Mar. 2005, pp. 98–103.

[6] A. Arnes, F. Valeur, G. Vigna, and R. Kemmerer, “Using hidden Markov
models to evaluate the risks of intrusions: System architecture and model
validation,” in Proc. Int. Symp. Recent Advances in Intrusion Detection
(RAID), Hamburg, Germany, Sep. 2006.

[7] D. Ourston, S. Matzner, W. Stump, and B. Hopkins, “Applications of hidden
Markov models to detecting multi-stage network attacks,” in Proc. 36th
Annual Hawaii Int. Conf. (System Sciences, 2003), Hamburg, Germany, Jan.
2003.

[8] W. Wang, X. -H. Guan, and X.-L. Zhang, “Modeling program behaviors by
hidden Markov models for intrusion detection,” in Proc. Int. Conf. Machine
Learning and Cybernetics, 2004, Aug. 2004, pp. 2830–2835.

[9] S. Zanero, “Behavioral Intrusion Detection,” in In ISCIS 2004, 2004.
[10] D. Wagner and D. Dean, “Intrusion detection via static analysis,” in Proc.

IEEE Symposium on Research in Security and Privacy, Oakland, CA, 2001.
[11] S. Manganaris, M. Christensen, D. Serkle, and K. Hermix, “A data mining

analysis of RTID alarms,” 2nd Int. Workshop Recent Advances in Intrusion
Detection, Purdue Univ., West Lafayette, Indiana, USA, Sep. 1999.

[12] G. Widmer and M. Kubat, “Learning in the presence of concept drifting and
hidden contexts,” Machine Learning, vol. 23, pp. 69–101, 1996.

[13] W. Fan, “Systematic data selection to mine concept-drifting data streams,”
ACM SIGKDD, 2004.

[14] S. Kullback and R. A. Leibler, “On information and sufficiency,” Annals of
Mathematical Statistics, vol. 22, pp. 79–86, Mar. 1951.

[15] G. R. Grimmett and D. R. Stirzaker, Probability and random processes.
Oxford, U.K.: Clarendon Press, 2nd edition, 1992.

[16] T. K. Moon, “The expectation-maximization algorithm,” IEEE Signal
Processing Magazine, pp. 47–59, Nov. 1996.

120



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.3
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /PDFX1a:2001
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


