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Abstract: Despite much study, biomolecule folding cooperativity is not well understood. There are
quantitative models for helix-coil transitions and for coil-to-globule transitions, but no accurate models yet
treat both chain collapse and secondary structure formation together. We develop here a dynamic
programming approach to statistical mechanical partition functions of foldamer chain molecules. We call it
the ascending levels model. We apply it to helix-coil and helix-bundle folding and cooperativity. For 14- to
50-mer Baldwin peptides, the model gives good predictions for the heat capacity and helicity versus
temperature and urea. The model also gives good fits for the denaturation of Oas’s three-helix bundle B
domain of protein A (F13W*) and synthetic protein R3C by temperature and guanidine. The model predicts
the conformational distributions. It shows that these proteins fold with transitions that are two-state, although
the transitions in the Baldwin helices are nearly higher order. The model shows that the recently developed
three-helix bundle polypeptoids of Lee et al. fold anti-cooperatively, with a predicted value of ∆HvH/∆Hcal )
0.72. The model also predicts that two-helix bundles are unstable in proteins but stable in peptoids. Our
dynamic programming approach provides a general way to explore cooperativity in complex foldable
polymers.

1. Modeling Cooperativity in Helix-Bundle Molecules

Typical proteins fold cooperatively. They undergo sharp
equilibrium transitions from denatured to native states as a
function of temperature or denaturing solvents. What is the
physical basis for the cooperativity? Various factors have been
explored. First, protein cooperativity has been explored through
polymer helix-coil transition experiments and theory, beginning
in the late 1950s.1-7 Helix formation is driven by local
interactions (i.e., by the helical propensities among near
neighbors in the chain sequence). The Zimm-Bragg theory,
for example, predicts the conformational populations based on
two parameters:σ, the statistical weight for nucleating a helical
region of the chain, ands, the statistical weight (or equilibrium
constant) for propagating one unit of helix. However, by itself,
helix-coil theory is not sufficient to explain protein folding
cooperativity because many proteins that fold cooperatively have
no helices at all.

Second, protein folding also involves chain collapse, and
therefore other models treat folding as a solvent-induced
polymer collapse process.8-17 Collapse models correctly predict
that protein stabilities should go through a maximum with
temperature18 reflecting their basis in the hydrophobic interac-
tions between the nonpolar amino acids and water. Such models
also predict denaturation by solvents19 and pH and salts.20

However, collapse theories, too, are limited. They do not treat
specific protein architectures, such as the helices or sheets.

Recently, Chan and colleagues have shown that even the most
cooperative models, based on nonphysical potentials, such as
Goj models, do not predict cooperativities as high as those that
are observed in protein folding experiments.16,17,21It remains a
major challenge to understand the physical origins of cooper-
ativity in protein folding, and it remains a major challenge in
polymer statistical mechanics to treat both local and nonlocal
(solvation-driven) interactions within a single framework.
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One of the problems is experimental: how can we systemati-
cally study cooperativity? Helix-coil and coil-globule collapse
processes can be studied in homopolymers, controlled by just
a few variables, the chain length and simple interaction
parameters. But proteins are complex; there are no simple
“knobs” that vary the cooperativity. Each protein has a different
fold, a different packing, a different amount of secondary
structure of different types, a different amount of hydrogen
bonding, and different hydrophobic cores. What systematic
experiments can explore cooperativity and stability in protein
folding?

We believe a new opportunity is afforded by helix-bundle
proteins. First, they provide the proper challenge: helix-bundle
folding involves both collapse and helix formation. Second, they
can be studied systematically through simple independent
variables such as the lengths and numbers of helices, in addition
to simple solvation and helical-propensity parameters, for simple
sequences. Hecht et al.22 and DeGrado et al.23 and others have
shown that synthetic helix bundles can be designed simply by
putting hydrophobic residues on the inside, polar monomers on
the outside, and connecting them with simple turns and loops.
Third, there is a growing body of helpful experimental data on
helix-bundle stabilities, coming from two directions. First, to
understand the speed limits in folding kinetics, there are new
detailed denaturation studies of “ultrafast folders”,24-30 which
happen to be predominantly small helix-bundle proteins. Second,
folding has been studied in nonbiological helix bundles, made
from simple-sequencepolypeptoids, which are N-substituted
glycines.31-34 The numbers and lengths of helices have been
varied systematically in these peptoid helix bundles, and their
denaturation has been studied using temperature and denatur-
ants.35 Hence, chain molecule helix bundles are providing a new
arena for understanding how local and nonlocal interactions can
conspire within a single chain molecule to cause it to fold and
collapse cooperatively.

Here, we develop a theory that treats both helix formation
and the collapse process within a single framework. We account
for the hydrogen bond formation within helices and the
hydrophobic interactions within helices and among helices. We
devise a dynamic programming (DP) method that computes the
density of states of all the conformations and thus computes

the partition functions of such molecules. We use this model to
explore folding cooperativities both in simple single helices and
in helix-bundle proteins.

For the single helix-coil process, our approach is more
physical than classical helix-coil models such as those of Zimm
and Bragg2 or Lifson and Roig36 because our approach treats
the full polymer physics by actually counting chain conforma-
tions in space, including excluded volume approximately, and
not just counting one-dimensional distributions of “h” and “c”
symbols. We find that this allows us to dispense with the
parameterσ previously required in helix-coil theories.

Second, however, we find that an additional interhelical
cooperativity term is required to account for the high cooper-
ativities in multiple-helix bundles, perhaps consistent with the
findings of Chan and his group that simple two-body-based Goj
models are not sufficient to capture folding cooperativity.16,17,21

Using these three quantities (a hydrogen bond free energy, a
hydrophobic interaction free energy, and a cooperative interac-
tion energy), our model gives good agreement with a body of
experimental data on helix-coil and helix-bundle stabilities.

2. The Ascending Levels Model

Our chains are configured on a cubic lattice. We consider
one-, two-, or three-helix bundles (by one-helix bundle, we mean
just a single helix). In this lattice model, there are slices or layers
of the lattice that are perpendicular to the axes of the aligned
helices in the native structure. We represent a helix bundle as
a linear stacking of levels (i.e., there is a first level, a second
level, etc.; Figure 2). For example, a three-helix bundle involves
threecolumns, within which varying amounts of helix or coil
are configured. Within that column, in a coil region, the chain
vector starts at one node on the cubic lattice and ends on any
neighboring node. In a helix segment, which entails three bonds,
the beginning and ending points are nodes on the cubic lattice,
but the intermediate beads are located on lattice edges, not on
nodes (Figure 2). For this reason, we refer to a helical turn as
being off-lattice. We believe that this model, despite its
simplifications, captures the essentials of helix-bundle physics.
A long tradition in polymer statistical mechanics has shown
that geometric accuracy of chain detail is less important for
capturing the density of states than an ability to capture the
proper relative sizes of regions within the phase space. We
believe the present model does this.

Figure 3 shows how a protein conformation is constructed
as a combination of (1) individual columns, inside of which
each three-residue piece of chain is labeled as either c or h, (2)
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Figure 1. Three-helix bundle protein: the B domain of protein A.
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loopsconnecting the columns, and (3)tails that are connected
to a column at one end and free at the other end. Here are the
construction rules we use. We calln consecutive coil units at
the beginning or the end of the helix bundle alength-n tail
(Figure 2). We calln consecutive coil units sandwiched between
two helical units on the same strand alength-n strand coil.

1. Each helix unit or coilunit consists of three monomers.
The chain trace of a helix unit follows theoff-lattice path
described above, whereas the chain trace of a coil unit follows
the edges of a cubic lattice.

2. Each of the one, two, or three strands of the chain has an
identical number of 3-mer units.

3. Two helix units at the same level on different strands make
an interhelical (i.e., hydrophobic) contact. In the case of the
first and third strands, an interhelical contact is along the
diagonal of the lattice.

4. Looking at a three-helix bundle from above, the helices
of each strand are stacked above one another.

5. Two helices on a strand separated byn coil units are
distancen apart.

6. Aside from the fully open chain, each strand of a helix
bundle must contain at least one helix unit.

7. We allow at mostcm consecutive coil units in a helix
bundle.

8. Excluded volume constraint for three-helix bundles: To
be physically viable, length-1 strand coils on the middle strand
must have three consecutive coil units beside it on an adjacent
strand.

2.1. The Interaction Energies in the Model.We consider
three types of interactions: hydrogen bonds, hydrophobic
interactions, and an interhelical cooperative interaction when
one helix interacts with another helix. A hydrogen bond in the
model occurs when consecutive helix units have an intrahelical
contact of unit distance along thez axis, at every third residue.
A hydrophobic interaction occurs when two monomers that are
not neighbors in the chain sequence are spatial neighbors. Every
hydrogen bond is regarded as having the same energy as every
other, and every hydrophobic contact is similarly identical to
every other hydrophobic contact.

We compute the energy,E, of a chain configuration as

whereεhb, εφ, andεc are the energies (in units of kilocalories
per mole), respectively, for a hydrogen bond, a hydrophobic
interaction, and a cooperative interaction. The count of each
such type of interaction isNhb, Nφ, andNc, respectively. Our
helix bundle is a homopolymer, and hence a hydrophobic
interaction results whenever two nonconsecutive monomers are
on adjacent lattice sites or form an interhelical contact.
Hydrophobic contacts can arise as interactions between coil units
and the rest of the chain. Intrahelical contacts are taken to
involve both a hydrogen bond and a hydrophobic interaction.
A cooperative interaction arises in a two-helix bundle or a three-
helix bundle if there is an interhelical contact between two
strands at the same level. In a sense, cooperative interaction
entails more than just the individual helical monomers; it also
requires that the monomers are in helical arrangements with
neighbors. Hence, our cooperativity term could be arguably
called a multibody term.

For treating thermal denaturation, we take the interaction
energies,ε, to be constant, independent of temperature. In
addition, we are interested in effects of chemical denaturants.
For chemical denaturants at low concentrations, we assume that
the hydrogen bond and hydrophobic interaction energies depend
linearly on denaturant, and hence we takeεhb ) a - b‚[D] and
εφ ) c - d‚[D] where a is the hydrogen bond energy at zero
denaturant concentration,c is the hydrophobic interaction at zero
denaturant, [D] is the denaturant concentration, andb andd are
the slopes of the denaturant dependence for the formation of
one hydrogen bond or one hydrophobic contact in solution.

Our dynamic programming method, discussed below, gives
the density of states, the count of all the different conformations
of the chain. From the density of states,g(E), we get the
Boltzmann weighted population for each energyE:

whereâ ) 1/kT is the reciprocal of the Boltzmann constant

Figure 2. Ascending levels model: (a) an example of a helical unit on
strand 1 in a three-dimensional lattice. (b) A six-level (19-residue) single
helix. The strand contains a length onestrand coiland a length twotail.
Double arrows in gray denote both hydrogen bonds and hydrophobic
interactions, while dashed lines in deep blue denote hydrophobic interactions
only.

Figure 3. Ascending levels model for a three-helix bundle: the helices in
the bundle are represented in terms of levels or layers on the lattice. Here,
a four-level three-helix bundle is shown on a cubic lattice together with its
associated h/c sequence. Also shown is a slice through the XY plane,
indicating how the three strands are situated in a given layer on the lattice.
The dotted brown line indicates interhelical interactions.

E ) Nhb‚εhb + Nφ‚εφ + Nc‚εc (1)

p(E) ) g(E)‚exp(-âE)
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times temperature. The sum of all such populations is the
partition function:

From the partition function, we can derive experimentally
accessible quantities such as heat capacity,cP, and fraction
native,fN:

and

The only hydrogen bonds and interhelical contacts that we
consider are those that are native. We compute the degree of
nativeness of a given chain conformation as the number of
hydrogen bond and two-helix interactions,ν ) Nhb + Nc, divided
by the number of these interactions in the native state,νmax )
(Nhb + Nc)max. Near-native structures haveν/νmax ≈ 1. In the
case where the native state is a single helix, the fraction of native
molecules reduces to fractional helicity sinceν/νmax, which is
the number of hydrogen bonds over the total possible number
of hydrogen bonds in the native state, is a measure of helicity.

3. The Dynamic Programming Approach to Partition
Functions

Here, we give a brief discussion of our dynamic programming
approach37,38to computing chain partition functions; full details
are given in the Supporting Information. This approach is
general and can be applied, in principle, to different types of
chain folds and to different kinds of models, on-lattice or off-
lattice. The approach works best for chain folds with a linear
ordering (i.e., a top and bottom) and with only certain kinds of
nonlocal interactions. In this article, we focus on helix-bundle
folds, using a cubic lattice model of the chain.

The basic idea of dynamic programming is to divide a big
problem into smaller subproblems and to share overlapping
subproblems in one stage of the calculation to the next, to reduce
the search. We illustrate on a single helix. The density of states
function (DSF) of all possible sequences of h and c can be
computed simultaneously, eliminating redundant computations.
Our application of dynamic programming is similar to a proof
by induction on the level,i, of the chain. We start with a base
DSF, havingi ) 1, by computing the density of states for a
chain ofk consecutive c,k ) 0, 1, 2, ..., forming the bottom
tail of the helix. These are precomputed by exact enumeration
and stored as a matrix array. Next, we use induction for the
DSF for leveli from the DSF for leveli - 1. Figure 4 shows
this induction going fromi ) 3 to i ) 4. Suppose we know the
DSF of all sequences up to three levels with an h on the third
level. Having an h at level 3 allows us to treat conformations
above and below level 3 independently. The level-4 DSF is
derived from our level-3 DSF by taking the convolution (defined

in the Supporting Information) with the DSF of a precomputed
length-2 tail. This gives us the density of states for all
conformations indicated in Figure 4.

4. Results

4.1. Validating the Model against Exact Enumerations.
Even with our simple model, the size of the search space grows
exponentially with the chain length. For one-helix and three-
helix bundles withn levels, there are approximately 2n and 8n

possible conformations, respectively. Hence, enumerating a 21-
mer single-helix ensemble takes more than 500 cpu hours. The
advantage of our dynamic programming method is that com-
putational complexity grows only asO(ncm) for a single helix,
asO(n2cm) for a two-helix bundle, and asO(n3cm) for a three-
helix bundle. As a result, even the computation of a 93-mer,
10-level, three-helix bundle takes only minutes to compute with
the dynamic programming approach.

Our dynamic programming method provides only an ap-
proximation of the partition function since DP treats local parts
of the helix bundle independently. How do we test that the
model partition function is accurate? The deepest test is to
compute the density of states from the model and to compare
it to theexactdensity of states, determined by full enumeration
by computer. When performing full enumeration, we remove
constraints 2-8 from section 2 since these constraints are
artificial in the sense that they were imposed to enable DP. Of
course, full enumeration is only viable for chains that are
sufficiently short. Below, we show that the density of states is
highly accurate, both for a single helix and for a three-helix
bundle, when tested against such exact short-chain enumerations.

Figure 5 compares the dynamic programming model result
for a single helix compared to exact enumerations. In the
Supporting Information, Figure 3 shows the corresponding test

(37) Bellman, R.Dynamic Programming; Princeton University Press: Princeton,
NJ, 1957.

(38) Cormen, T. H.; Leiserson, C. E.; Rivest, R. L.; Stein, C.Introduction to
Algorithms, 2nd ed.; MIT Press: Cambridge, MA, 2001.

Q ) ∑
E

p(E)

cP )
d

dT[1

Q
∑
E

Ep(E)]
fN )

1

Q
∑
E

ν

νmax

p(E)

Figure 4. If level 3 is an h, then we convolute (defined in the Supporting
Information) the density of states of all sequences having an h in level 3
with the DSF of a precomputed length two tail. We assume chain
conformations above and below level 3 do not interact. The symbol * is a
wild card, representing either h or c. The sequences shown represent states
(4, 2, 0) discussed in the Supporting Information.

Figure 5. Density of states comparison: dynamic programming model vs
exact enumerations for 21-monomer single-helix chains. Exact enumeration
is for a self-avoiding walk in a cubic lattice with restrictions 1-3 of section
2. Exact enumerations were incomplete (because they exceeded our
computer resources) for energies greater than-4 kcal/mol.
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for the three-helix bundle. These figures show that the confor-
mation counts are accurate.

The reason for the computational advantage of our method
is that the dynamic programming method accurately captures
local excluded volume but neglects global excluded volume
effects. Our tests here indicate that this approximation works
well. The most serious challenge we found was that three-helix
bundles with short strand coils in the second strand flanked by
helices in the first and third strands are overconstrained and
impossible in our lattice model. To eliminate these sequences,
we required that strand coils of length one have three consecu-
tive coils at the same level on either strand one or strand three.
An example of a nonviable and a viable sequence are given in
Figure 6. This is constraint 8 in section 2.

4.2. The Helix-Coil Transition: Comparison with Experi-
ments.As a first test, any model of helix bundles must be able
to correctly describe one-helix bundles (i.e., the simple helix-
coil transition). The helix-coil transition has been widely studied
in theBaldwin peptide, Ac-Y(AEAAKA) 8F-NH2.39 Figure 7
compares our model predictions to the experimental heat
capacity and fractional helicity of those peptides. We find a
good fit if the hydrogen bond energy isεhb ) 0.786 kcal/mol
and the hydrophobic interaction energy isεφ ) 0.218 kcal/mol.

We also explored chemical denaturation in the Baldwin helix.
Baldwin et al. studied single helices of lengthsn ) 14, 20, 26,
32, and 50 by urea denaturation (Figure 8).40 (We convert CD
data to fractional helicity using

and

where 0e x e 3 is a constant used to correct for nonhydrogen
bonded carbonyls that do not contribute to [θ]H.41 We found
the best fit using the valuex ) 1/5. Baseline helix and coil
valuesH0, HU, C0, andCU were obtained from the best fit values
for the exchange model in Table 1 of Baldwin et al.40) We used
the following energy parameters for modeling all the Baldwin
peptide helix-coil experiments:εh ) 0.786- 0.011‚[Urea] and
εφ ) 0.218- 0.014‚[Urea].

4.2.1. Thermodynamic Parameters for the Helix-Coil
Transition. Baldwin et al. have shown that lns is linearly
proportional to the concentration of urea:

where m is the slope,T is absolute temperature,k ) 1.98
cal‚mol-1‚K-1 is the Boltzmann constant, andso is the propaga-
tion parameter at zero denaturant.40 The propagation parameter

in the Zimm-Bragg model is defined as the equilibrium constant
for the addition of one more hydrogen bond to the end of an
already existing sequence of hydrogen bonds.7 The propagation
parameter can be expressed in terms of thermal quantities as

where ∆So and ∆Ho are the standard entropy and enthalpy,
respectively, for the formation of an added hydrogen bond. In
our model,∆So < 0 when a hydrogen bond is formed following
consecutive hydrogen bonds. There are four possible lattice sites
available to a coil monomer but only a single lattice site
available to a helix. The change in conformational entropy when
a hydrogen bond is formed is given by

The hydrogen bond enthalpy,∆Ho (in units of kilocalories per
mole; see section 4.2) is

Combining eqs 3, 4, and 5, we conclude thatso ) 1.06 and
m ) 0.011 kcal/(mol‚M‚residue) at 0°C. This is within a
reasonable range of the experimental values ofso ) 1.35 and
m ) 0.023 kcal/(mol‚M‚residue) at the same temperature. By
multiplying them value by 50, the number of residues of the
Baldwin one-helix bundle, we get theory and experimentalm
values for the helix ofm ) 0.55 and 1.15 kcal/mol‚M,
respectively (see the bottom of Table 1).

The second Zimm-Bragg quantity is the nucleation param-
eter, σ.7 Because one hydrogen bond and one helical turn in
our model involve three monomers,σ is the conformational
entropy penalty for freezing two steps in the start of a helical
turn. Hence, we have

compared with a previously determined value of 0.003.42

4.3. Agreement with Experimental Data: Testing the
Three-Helix Model. Now we shift our attention from single
helices to three-helix bundles. We study the 58-residue B domain
of protein A (BdpA) (Figure 1), a three-helix bundle, for which
Oas et al. have collected extensive data. We study F13W*,
which is a fluorescent mutant of BdpA, versus GuHCl at 37°C
as well as the equilibrium denaturation of F13W*, versus
temperature at 2.2 M GuHCl.29 Because these helices have an
amino acid composition different from that of the Baldwin
peptide, we require different average energy parameters. Figure
9 compares the experiments with our model using the parameters
εhb ) 0.6,εφ ) 0.47- 0.05‚[GuHCl], and a two-helix term,εc

) 0.69‚εφ. These parameter values give a ratio of hydrogen bond
energy to hydrophobic interaction energy (at 0 M GuHCl) of

(39) Scholtz, J.; Marqusee, S.; Baldwin, R.; York, E.; Stewart, J.; Santoro, M.;
Bolen, D.Proc. Natl Acad. Sci. U.S.A.1991, 88, 2854-2858.

(40) Scholtz, J.; Barrick, D.; York, E. J.; Stewart, J. M.; Baldwin, R. L.Proc.
Natl. Acad. Sci. U.S.A.1995, 92, 185-189.

(41) Scholtz, J.; Qian, H.; York, E.; Stewart, J.; Baldwin, R.Biopolymers1991,
31, 1463-1470.

(42) Scholtz, J.; Qian, H.; York, E.; Stewart, J.; Baldwin, R.Biopolymers1991,
88, 1463-1470.

Figure 6. (a) Example of a sequence whose density of states is zero for
all energy levels. The h c hstrand coil in the middle strand is too constrained
by the presence of a helix in either strand 1 or 3. (b) A related physically
viable sequence in which the adjacent levels on strand 3 are all c.

[θ]H ) H0‚(1 - x
n) + HU‚[Urea]

[θ]C ) C0 + CU‚[Urea]

ln s ) ln so -
m‚[urea]

kT
(2)

s ) exp(∆So

k
- ∆Ho

kT ) (3)

∆So

k
) ln

1
4

) -1.39 (4)

∆Ho

kT
)

-(0.786- 0.011‚[urea])
kT

(5)

σ ) (14)2
) 0.0625 (6)
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0.6/0.47) 1.277, which is close to the atomically detailed model
results of Irba¨ck et al.,43 giving 2.8/2.2) 1.273. We found that
the experimentally observed sharpness of this transition required
a cooperative interaction energy that is roughly two-thirds the
strength of the hydrophobic contact interaction,εφ. The dotted
curve in Figure 9 shows the model prediction in the absence of
the cooperative interaction energy, for comparison.

We also tested our model onR3C, a synthetically designed
71-residue three-helix bundle, related toR3D.44 Figure 10 shows
that our model captures thermal denaturation ofR3C for different
GuHCl concentrations using energy parametersεhb ) 0.6,εφ )
0.51- 0.06‚[GuHCl], andεc ) 0.19‚εφ. These values indicate
that the proteinR3C has less intrinsic cooperativity than BdpA,
even despite the greater chain length of the former. Table 1
compares various model thermal parameters with experiments
for the various foldamers we tested.

Not surprisingly, our two-helix energy parameter appears to
be sequence-dependent. One explanation of this is that we are
comparing cooperative energies between a natural and synthetic
protein. Theεhb andεφ values for the two three-helix bundles
are similar.

4.4. The Conformational Populations. The value of a
statistical mechanical theory, such as the present one, is in
predicting not only average quantities, which are experimentally
observable, but also the conformational distributions. In par-
ticular, we can study the nature of the cooperativity of the
transition: if there are two distinct states populated at the
midpoint of the transition, we have a two-state transition, such
as a first-order phase transition in macroscopic systems. If there
is a single broad state populated at the midpoint, we have a
higher-order transition. Experiments show that the folding of
small globular proteins is two-state.10,45 We know of no
experiments that yet bear on whether the helix-coil transition

(43) Irbäck, A.; Sjunnesson, F.; Wallin, S.Proc. Natl. Acad. Sci. U.S.A.2000,
97, 13614-13618.

(44) Bryson, J.; Desjarlais, J.; Handel, T.; DeGrado, W.Protein Sci.1998, 7,
1404-1414.

Figure 7. Our model captures heat capacity (a) and melting curve (b) of a 50-monomer helix-coil transition.

Figure 8. Present model captures well urea denaturation for helical peptides
with repeating sequence Ala-Glu-Ala-Ala-Lys-Ala and chain lengths varying
from 14 to 50 residues.

Table 1. Summary of Thermodynamic Parameters

helix
bundle

temp
(°C) m m expt

∆GH2O

(so)
∆GH2O

(so) expt

F13W* 25 2.30 1.46( 0.02 8.17 5.14( 0.45
R3C 25 1.77 2.1 5.61 5.5
peptoid 3H 25 0.64 0.53( 0.07 4.04 3.4( 0.4
peptoid 2H 25 0.42 0.42( 0.03 2.78 2.7( 0.2
peptoid 1H 25 0.21 0.28( 0.03 1.22 1.5( 0.2
Baldwin 1H 0 0.55 1.15 (1.06) (1.35)

Figure 9. Predictions of the three-helix bundle model vs experiments of
Oas et al. for denaturation by (a) temperature and (b) guanidine for F13W*.
Temperature denaturation is carried out at 2.2 M GuHCl, and chemical
denaturation is carried out at 37°C. The dotted curve in each plot shows
the model prediction, with the cooperative interaction energy set to zero.

Figure 10. Thermal denaturation ofR3C for different GuHCl concentra-
tions.

Statistical Mechanics of Helix Bundles A R T I C L E S

J. AM. CHEM. SOC. 9 VOL. 129, NO. 14, 2007 4277



is two-state. We explore these issues with the present model.
Our philosophy is to first determine whether our model is

consistent with all the known relevant data for the experimen-
tally observable averaged quantities (described in the previous
section), and then, if so, to predict the distribution functions
using the same parameter values. This then gives what we
believe are the current best estimates of the underlying distribu-
tions and allows us to interpret the basis for the cooperativity
in the model. On this basis, Figure 11 shows our prediction
that both the Baldwin 50-mer helix and the Oas three-helix
bundle F13W* undergo two-state transitions. However, because
both transitions are broad, it follows that the free energy barrier
between the two states, in each case, is small. Figure 13b shows
that F13W* has a near-zero folding activation energy at the
mid-melting temperature. Our results agree with a recent study
of λ6-85 by Gruebele and co-workers who predicted that∆G†
for F13W* is only 0.45 kcal/mol at 37°C; hence, they refer to
it as a downhill folder.28 Oas et al., however, observed
exponential kinetics that are usually associated with a folding
barrier, indicating some disagreement among experimentalists
about the nature of the folding kinetics. Our studies here are
limited to the equilibrium properties.

Figure 12 gives a more detailed breakdown of the populations
for the Oas three-helix 57-mer, F13W*, as a function of
temperature. We find that the protein B helices denature first
from the ends, not the middle regions, since the former gives
an advantage in conformational entropy. Raising the temperature
from low temperatures melts the native structure, first by melting
the tails of the two end helices, then the bundle falls apart into
strands, each of which is a mix of helix and coil. Finally, the
remaining helices melt out.

The model predicts that no two-helix conformation of the
Oas three-helix bundle molecule is ever stable; the population
of two-helix bundles is less than one percent of the total
population at all temperatures (Figure 12). Figure 13a shows
that the free energy of two-helix bundles is never simultaneously
lower than that of a single helix and three-helix at 10°C.
Moreover, we find that the instability of two-helix bundles is
not limited to this protein. Figure 14 shows that two-helix

conformations are unstable at all chain lengths, at least for chain
sequences for which these parameters are applicable. The three-
helix bundle is more stable than the two-helix bundle because
of the additional helix-helix interactions in the former. The
one-helix bundle is more stable than the two-helix bundle
because the former has more chain entropy and a higher density
of hydrogen bonds (although fewer hydrophobic interactions).
Comparing helix bundles of different length each having six
turns on each strand, we find an increase in stability and
cooperativity with an increase in the number of strands (Figure
15).

4.5. Peptoid Helix Bundles. Proteins are not the only
polymers that can form helix bundles. Recently, Lee et al. have
synthesizedpolypeptoidmolecules that appear to fold into helix
bundle structures. Lee et al. have done systematic studies of
the unfolding of those molecules in mixed solvents acetonitrile
and water (ACN).35 To predict FRET efficiencies, we use
dynamic programming to keep track of the distance between
the two tagged monomers (acting as flourescent probe and
receptor) and average over all conformations. We then use a
relationship between distance and fluorescence to estimate FRET
efficiency (see Supporting Information for details). For peptoid
monomer sequences in ACN, we obtain the best fits with the
parametersεhb ) 1.59 andεφ ) 1.19- 0.08‚[ACN]. The ratio
of εhb to εφ at 0 M ACN is approximately the same (around
1.3) for peptoids as it is for proteins. Surprisingly, different
cooperativity parameters ofεc ) 0.2‚εφ andεc ) -0.3‚εφ for
two-helix and three-helix bundle peptoids, respectively, are
necessary to match Lee’s experimental data. Figure 16 compares
the model predictions to Lee’s experimental unfolding data. We
find one respect in which the peptoid helix bundles differ
significantly from protein helix bundles. Whereas our models
of three-helix proteins require a positive cooperativity parameter,
our model of three-helix peptoids requires a negative cooper-
ativity parameter. The dotted line in Figure 16 predicts peptoid
three-helix bundle denaturation with positive cooperativity,εc

) 0.2‚εφ. The implication is that the three-helix bundle peptoids
may be able to take advantage of hydrogen bonding and
hydrophobic interactions but that these particular peptoid helices
are not as well designed for packing or other cooperative
interactions as are the two proteins we studied. Consistent with
this observation, it has not yet been possible to crystallize
peptoid helix bundles and obtain unique structures.

(45) Dill, K.; Bromberg, S.; Yue, K.; Fiebig, K.; Yee, D.; Thomas, P.; Chan,
H. Protein Sci.1995, 4, 561-602.

Figure 11. Top: Baldwin peptide transition is two-state, but very close to
a continuous transition. At the melting temperature, there is a broad ensemble
of non-native structures. Bottom: Oas three-helix bundle protein transition
is two-state. At the melting temperature, near-native and near-open structures
dominate the population.

Figure 12. Dominant populations for the Oas 57-mer three-helix F13W*.
At the midpointTm ) 55, the two dominant populations are nativelike
conformations (blue) or relatively open conformations (red). Unzipping of
the helices occurs from the ends of the strands.

A R T I C L E S Lucas et al.

4278 J. AM. CHEM. SOC. 9 VOL. 129, NO. 14, 2007



Another key difference the model predicts between peptoids
and proteins: in proteins, two-helix bundles are not stable,
whereas in peptoids they are. Consistent with this model
prediction, Lee et al. constructed two-helix bundles, whereas
there are few two-helix bundles in proteins as far as we are
aware. Interestingly, mostR-fibrous proteins are two-stranded
coiled coils (for example, tropomyosin, myosin, paramyosin,
intermediate filament proteins).46 The reason for the greater

stability of coiled coils compared to two-helix bundles, we
believe, is that coiled coils have systematic side chain interac-
tions resulting from heptad sequence repeats with hydrophobic
residues at the “a” and “d” positions and charged residues at
the “e” and “g” positions. These interactions allow a “knobs-
into-holes” packing between residues in differentR helical
chains and strong interchain ionic interactions.47 In globular
proteins by contrast, such ideal coiled-coil packings are less
common.46(46) Cohen, C.; Parry, D.Proteins: Struct., Funct., Genet.1990, 7, 1-15.

Figure 13. (a) Free energy diagrams of one-, two-, and three-helix bundle components of F13W* at 10°C. No two-helix state is ever as stable as one- or
three-helix conformations. The free energy of a two-helix bundle is never simultaneously lower than that of a single helix and three-helix bundle. (b) The
free energy profiles for F13W* at various temperatures.

Figure 14. Dominant populations for three-helix bundles at different chain
lengths, based on the F13W* energy parameters. Two-helix bundles are
always less than 1% of the population.

Figure 15. Comparing one-, two-, and three-helix bundles. Fraction native
(left) and heat capacity per residue (right). One- and two-helix bundles have
essentially the same cooperativity. Three-helix bundles are more cooperative.

Figure 16. Model predictions for ACN-induced unfolding of peptoid helix
bundles. The two-helix bundle denatures with a positive cooperativity
parameter whereas the three-helix bundle denatures with a negative
cooperativity parameter. The dotted line shows the expected denaturation
plot for the three-helix bundle with a positive cooperativity parameter.

Figure 17. Energy landscape for the three-helix bundle F13W*. The
transition states are single helices and partially folded three-helix bundles.
Notice that the bottleneck state is very far down the landscape.
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4.6. Cooperativity in Protein Folding. Protein folding is
regarded as two-state when calorimetric measurements give a
value of the ratio of van’t Hoff to calorimetric enthalpies to be
∆HvH/∆Hcal ≈ 1. There are some experimental challenges in
subtracting baselines, leading to challenges in determining this
number accurately. Nevertheless, this condition is approximately
satisfied for typical single-domain proteins. Recently, Chan et
al. have shown that existing polymer collapse and folding
models, including the highly specific Goj model, fail to give
∆HvH/∆Hcal ≈ 1.21 The most cooperative folding model is
currently that of Kaya and Chan, which is based on a favorable
coupling between helix formation and the packing of the native
core, in addition to an extra stabilizing energy for the ground
state.48 Their model predicts a∆HvH/∆Hcal ratio of 0.91 for a
55-mer chain sequence. They conclude that few models have
yet been able to account for the high degrees of cooperativity
of the folding of small proteins.

Table 2 shows the values that our model predicts for∆HvH/
∆Hcal. Of the molecules we studied, the Oas three-helix bundle
F13W* at zero denaturant is predicted to be the most coopera-
tive, with ∆HvH/∆Hcal ) 0.84. The synthetic three-helix bundle,
R3C, should be less cooperative, with∆HvH/∆Hcal ) 0.72 at
zero denaturant. Peptoid three-helix bundles, requiring a negative
value of the intrinsic cooperativity parameter, are predicted to
have∆HvH/∆Hcal ) 0.72. However, because they are too stable
for thermal denaturation in water, this prediction about peptoids
is not yet directly testable. For the Baldwin 50-mer helix, our
model predicts a∆HvH/∆Hcal ratio of 0.53 using eq 4 in the
Supporting Information for the van’t Hoff enthalpy. Calculating
the van’t Hoff enthalpy instead at the population midpoint gives
a slightly lower value of 0.49 for∆HvH/∆Hcal. Experimental
values for the Baldwin peptide range between 0.19 and 0.35
depending on their technique for establishing the baseline.39

Our model gives an explanation for the folding cooperativity
in helix-bundle proteins. First, we find that the cooperativity
does not simply reside within the helix-coil transitions of the
individual helices themselves. Individual helices are neither
sufficiently stable nor sufficiently cooperative to account for
the experimental data on helix-bundle proteins. Second, our
predicted cooperativities are also not the consequence of an
amorphous nonspecific collapse process, as might be predicted
from homopolymer collapse theories, because in our present
model (as well as in real helix-bundle proteins, we believe),
compactness of the chain cannot occur in the absence of
substantial secondary structure.

Rather, as an indicator of the origins of cooperativity in the
model, it is most informative to look at the least-populated
conformations when the protein is at the midpoint of its
denatured-to-native transition (Figure 17). We find that the states
that are least populated are those partial folds having individual
helices that overshoot their native lengths or partial folds having
helices that are bundled but are just short stubs that are not the
full native lengths. Such structures are part of the ensemble of
maximum free energy that separates the denatured from native
states. What is the thermodynamically most challenging step?
We find that once two helices have formed near a common
turn, so that the helices can pair together, the rest of the folding
process is downhill.

Figure 17 also shows the location of this free energy
bottleneck on an energy landscape. We believe this is the first
quantitative energy landscape for a real protein that accurately
captures the thermodynamics. Interestingly, it shows that the
bottleneck state is very far down the landscape, very close to
the native structure.

5. Conclusions

We introduce a new dynamic programming method for
calculating the partition functions of chain molecules in which
both local and nonlocal interactions play a role. In particular,
we illustrate the method on chain-molecule helical bundles. We
consider three types of energies: the hydrogen bonds within
helices, the local and nonlocal hydrophobic interactions, and a
cooperative interaction when helices come together into contact.
The dynamic programming approach is vastly more efficient
than full conformational enumeration and yet reproduces the
densities of states quite accurately, for the cases we have tested.

Our ascending levels model gives good predictions for the
thermal denaturation properties of the Baldwin peptide helices,
the B domain of protein A studied by Oas and colleagues, and
the synthetic proteinR3C. In addition, the model predicts the
underlying conformational distributions throughout the melting
processes. It shows that the conformational transitions in the
Baldwin peptide and the Oas three-helix bundle are two-state,
although with very small free energy barriers, and it shows that
the former is “nearly’’ higher-order. Interestingly, we find that
the designed three-helix peptoid of Lee et al. folds with negative
cooperativity. We find that the Oas three-helix bundle unfolds
by fraying from the helical ends, then the bundle unfolds, then
remaining helices become coiled. The model predicts that two-
helix bundles should be unstable in protein backbones and stable
in peptoids. Also, interhelical cooperative interactions are
necessary to capture helix-bundle cooperativity.

(47) Crick, F.Acta Crystallogr.1953, 6, 689-697.
(48) Kaya, H.; Chan, H.Proteins: Struct., Funct., Genet.2003, 52, 510-523.

Table 2. Summary of Calorimetric Cooperativity Data

helix bundle C [GuHCl] Tmax (°C) CP,max ∆HvH ∆Hcal (∆HvH/∆Hcal)

F13W* 0 0 62 961 29.3 59.1 0.50
F13W* 0.69 0 104 2644 54.7 65.5 0.84
F13W* 0.69 2.2 55 2511 46.3 57 0.81
R3C 0 0 89 1887 44.4 73.2 0.61
R3C 0.19 0 100 2619 53.9 75.2 0.72
R3C 0.19 1 76 2500 49.2 70.4 0.70
R3C 0.19 1.5 64 2410 46.7 68.0 0.69
R3C 0.19 2 52 2292 43.9 65.6 0.67
peptoid 3H -0.3 0 707 1020.4 88.4.0 121.8 0.72
peptoid 3H 0.2 0 773 1152.0 100.2 131.3 0.76
Baldwin 1H 0 0 46 730 24.3 45.7 0.53
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