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0.1 Density of States Functions

We show how our dynamic programming method is used to compute the density
of states, illustrating with a single helix. The information we need in dynamic pro-
gramming is i, a particular level of our sequence, k, the number of consecutive coils
starting at level i (going upward), and l the number of consecutive coils starting at
level i−1 (going upward). The triple (i, k, l) is called a state of our helix. For exam-
ple, Figure 4 of the manuscript shows the state (4, 2, 0) of a 5 unit chain. A density
of states function (DSF) is calculated for every state (i, k, l) by updating DSFs from
the previous level i − 1. The DSF, f (i, k, l), is updated differently depending on k
and l. If k > 0 and l = 0, then level i is the start of consecutive coils and we update
the chain’s conformational count. If k > 0 and l > 0 then level i is somewhere in
the middle of a string of coils and we don’t update the density of states since we
only update the chain’s conformational count at the beginning of a tail or strand
coil when we have information of a complete coil. Otherwise, level i is a helix (i.e.
k = 0) and we update the number of hydrogen bonds and hydrophobic contacts in
the chain. Figure 1 shows examples of states with these different cases.

A DSF g can be illustrated as a table like the following:

0 1 2
0 71 18 3

Here the the top row represents the possible number of hydrophobic contacts and
the left most column represents the number of hydrogen bonds. Here we have
g(0, 0) = 71, g(0, 1) = 18, g(0, 2) = 3, and g(Nhb,Nφ) = 0 for all other Nhb,Nφ
pairs. This is the DSF for a single coil unit c. There is no hydrogen bonds and the
maximum number of hydrophobic interactions is 2. For the simplicity of presenta-
tion, we rst dene some operators on DSFs that will be used later to describe the
update rules.

Definition 1. The sum of two DSFs g and g′, noted g⊕ g′, is another DSF dened
as the point-wise addition:

(g⊕ g′)(h,H) = g(h,H) + g′(h,H)

The ⊕ operator is used to combine the DSFs of two sub-cases in our algorithm.
For example, here is another DSF g′ which accounts for a single helix unit because
the only possible conguration is to form a helical turn where there is exactly one
hydrogen bond and one hydrophobic interaction:
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Figure 1: Conformation counts are updated only at the start of consecutive coils.
This is the case when k > 0 and l = 0 as in state (2, 3, 0). The case where k > 0 and
l > 0 occurs when level i is in the middle of consecutive coils, as in state (2, 3, 4).
The state (2, 0, 0) results in the addition of 3 hydrogen bonds and hydrophobic
contacts, and the state (2, 0, 1) results in the additon of a single hydrogen bond and
hydrophobic contact.
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Then their sum g′′ = g⊕ g′ is:

0 1 2
0 71 18 3
1 0 1 0

which accounts for the total density of states of the two sequences h and c.
Similarly, we dene convolution for computing the DSF of a longer sequence

from the DSFs of two subsequences.

Definition 2. The convolution of two DSFs g and g′, noted g ⊗ g′, is another DSF
dened as follows:

(g ⊗ g′)(h,H) =
h∑

i=0

H∑

k=0
g(h − i,H − k) · g′(i, k)

These operations are used, for example, to compute the DSF for the state
(3, 0, 0) from the preceding states (2, 0, 1) and (2, 0, 0) (see Figure 2). A state
(i, k, l) always has two preceding states (i− 1, l, l− 1) and (i− 1, l, 0) corresponding
to whether level i − 2 is c or h respectively. Here k is replaced by l because we are
at level i−1. The result of taking the convolution of the sum of the preceding states
by a DSF in Figure 2 is to update the number of hydrogen bonds and hydrophobic
contacts.
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Figure 2: The calculuation of the DSF, f (3, 0, 0), involves the sum of the DSF
for preceding states (2, 0, 0) and (2, 0, 1). Also there is the addition of three new
hydrogen bonds and hydrophobic contacts achieved by convoluting with the DSF
shown on the right of the equation.

0.2 An Example

We illustrate the inductive process of dynamic programming by calculating the
density of states function for the four 2 level 1-helix sequences:

h c h c

h, h, c, c
.

Let f (i, k, l) be the density of states function for state (i, k, l).

Step 1: Compute f (1, k, l) (base-case)

f (1, 0, 0) is the DSF for having h in level 1 (i.e. having zero consecutive c at
level 1). f (1, 1, 0) is the DSF for having c in level 1 and h in level 2 . Finally,
f (1, 2, 0) is the DSF for having c in level 1 and in level 2 . All other level one DSF
are zero.

h ←→ f (1, 0, 0) = 1
1 1
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c ←→ f (1, 1, 0) =
0 1 2

0 71 18 3
1 0 1 0

c

c
←→ f (1, 2, 0) = 0 1 2 3 4

0 9246 5512 2154 192 1

Step 2: Compute f (2, k, l) (inductive-case)
Dynamic programming computes the f (i, k, l) bottom up so we use our knowl-

edge of the DSF for level i = 1 to compute the DSF for level i = 2 . The state
(2, 0, 0) has non-zero preceding state (1, 0, 0) (the second preceding state (1, 0, 1)
is zero by convention).

h

h
←→ f (2, 0, 0) =

(
f (1, 0, 0) ⊕ f (1, 0, 1)

)
⊗ T(3,3)1

Here T(3,3) is the energy translation between levels 1 and 2. We are adding three
hydrogen bonds and three hydrophobic bonds when we add a helical turn to a pre-
existing helical turn. There is no conformational entropy contribution when adding
a helical turn, hence the identity DSF 1. We have,

f (2, 0, 0) = 1
1 1 ⊗ 3

3 1 =
4

4 1
Similarly we have,

h

c
←→ f (2, 0, 1) =

(
f (1, 1, 0) ⊕ f (1, 1, 1)

)
⊗ T(1,1)1

=
0 1 2

0 71 18 3 ⊗
1

1 1

=
1 2 3

1 71 18 3
and,

c

h
←→ f (2, 1, 0) =

(
f (1, 0, 0) ⊕ f (1, 0, 1)

)
⊗ T(0,0)tail(1)

=
1

1 1 ⊗
0 1 2

0 71 18 3

=
1 2 3

1 71 18 3
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and,

c

c
←→ f (2, 1, 2) =

(
f (1, 2, 0) ⊕ f (1, 2, 3)

)
⊗ T(0,0)1

=
0 1 2 3 4

0 9246 5512 2154 192 1 ⊗
0

0 1

=
0 1 2 3 4

0 9246 5512 2154 192 1

Here, tail(1) is the DSF for a length 1 tail.

Step 3: We nd f , the total DSF by adding together all top level functions.

f = f (2, 0, 0) ⊕ f (2, 0, 1) ⊕ f (2, 1, 2) ⊕ f (2, 1, 0)

=

0 1 2 3 4
0 9246 5512 2154 192 1
1 142 36 6
4 1

0.3 Testing the Density of States for the Three-Helix Bundle

Our helix bundle model is subject to constraints 1 ∼ 8 from section 2. To un-
derstand the effect of these constraints on conformation counts we compared our
density of states prediction with an exact density of states calculation without con-
straints 4 ∼ 7. Exact enumeration was carried out by exhaustively enumerating
all possible conformations. Figure 3 shows that our model does a good job of
estimating conformation counts even with constraints 4 ∼ 7 in place. We chose en-
ergies εhb = 0.6 kcal/mol, εφ = 0.47 kcal/mol, consistent with experimental 3-helix
bundle data (see section 4.2). Exact enumeration was performed starting from the
native 3-helix conformation and as a result, near native conformations are counted
rst followed by more open conformations. Conformational counts for energies
less than −5 kcal/mol were very stable after 200 cpu hours and the self avoiding
walk spent its time completing very open, low energy, conformations. The good t
between theory and experiment suggests that constraints 4 ∼ 7 in our model don’t
affect near native density of states.

0.4 van’t Hoff and Calorimetric Enthalpy

By denition, the calorimetric enthalpy, ∆Hcal, is obtained by integrating the area
under the excess heat capacity curve from a temperature well below the unfolding

v



0 5 10 15
-energy (kcal/mol)

0

10

20

30

40

ln
 c

on
fo

rm
at

io
n 

co
un

t

exact 21
theory 21

*exact enumeration after 500 CPU hours

completeincomplete*

Figure 3: Theoretical density of states for 21 monomer 3-helix bundle versus exact
enumeration. Exact enumeration is for a self avoiding walk in a cubic lattice with
restrictions 1 ∼ 3 and 8 of section 2. Exact enumeration is incomplete for energies
greater than −5 kcal/mol.

transition midpoint, T0, to a temperature well above it, T1:1

∆Hcal =

∫ T1

T0

CP(T )dT =
∫ T1

T0

∂〈H(T )〉
∂T

dT = 〈H(T1)〉 − 〈H(T0)〉 = 〈H〉D − 〈H〉N .
(1)

Here the symbol 〈. . . 〉 denotes Boltzmann averaging over the entire ensemble and

〈H〉N = lim
T0→0
〈H(T )〉

and
〈H〉D = lim

T1→∞
〈H(T )〉.

Equation 1 says the calorimetric enthalpy is equal to the difference between the
average enthalpy of the denatured state 〈H〉D and the average enthalpy of the na-
tive state 〈H〉N . By taking the limit as T0 goes to zero and T1 goes to innity, we
are capturing the entire transition process and not involving any empirical base-
line subtraction. The result is a possible overestimation of calorimetric enthalpy
compared to experimental values where T0 and T1 take nite values.
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Figure 4: (a) Peptoid, or N-substituted glycine oligomer. (b) Peptide, for compari-
son.7

Several different denitions of van’t Hoff enthalpy is currently used in the pro-
tein folding literature. However, when the thermodynamic cooperativity of a pro-
tein is high, the different denitions provide essentially the same restriction on
enthalpy distribution.2 Here we use the denition,

∆HvH = 2Tmax
√
kCP,max (2)

where Tmax is the temperature at which the heat capacity attains its peak value,
CP,max, and k is the Boltzmann constant. The heat capacity is proportional to the
variance (square of standard deviation σH) of the enthalpy,

CP =
〈H2(T )〉 − 〈H(T )〉2

kT 2 =
σ2
H

kT 2 . (3)

It follows from equations 2 and 3 that the van’t Hoff enthalpy is equal to two times
the standard deviation of enthalpy at Tmax:

∆HvH = 2(σH)max. (4)

0.5 Peptoid Model

A peptoid is a N-substituted glycine polymer in which the side-chains are ap-
pended to the backbone nitrogen (see Figure 4). The polypeptoids relevant to this
study, 15 Chi FQ, 30 Chi CN FQ and 45 Chi CN FQ are synthesized, sequence-
specic, 15mer, 30mer and 45mer polymers consisting of 15mer units chained
together by disulde and oxime linkages. Each peptoid bundle has a uores-
cent probe, FP, and quencher probe, Q. The 15mer chiral sequence, 15 Chi FQ
has highly stable α-helix secondary structure despite its lack of hydrogen bond
donors.4,5 CD data indicates that acetonitrile does not break the helical secondary
structure induced by the chirality of the side-chains. The acetonitrile only melts
the long-range hydrophobic contacts of the peptoid.7 Because of the stability of
the helix formation, under ACN denaturation, the most unfolded state of a 2-helix
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Figure 5: As a rst approximation we model peptoid 1,2,3-helix bundles as having
secondary structure intact in the unfolded state. Helix bundles either make a max-
imal number of inter-helical contacts or none at all. If no inter-helical contacts are
made then the strands are allowed to move parallel one another.

bundle consists of the two helical cylinders tethered together. The increase in con-
formational entropy due to the breaking of inter-helical contacts is the driving force
for denaturation.

Our model of a peptoid helix bundles follows the lattice and sequence model
described above for protein helix bundles with certain modications. As a rst
approximation, we do not allow helices the possibility of melting their secondary
structure. Such a model is justied since ACN denaturation is believed to only
effect tertiary interactions. A fully folded 1-helix bundle consists of 5 consecutive
helix units (Figure 5). A fully folded 2-helix bundle consists of two sets of 5
consecutive helix units, tethered together by a single coil unit. The two strands can
either form a maximal number of inter-helical contacts (folded state) or none at
all. If the two strands make no inter-helical contacts then they must be parallel and
travel opposite directions along the z axis as shown in Figure 5. A 3-helix peptoid
consists of three sets of 5 consecutive helix units each tethered together by a single
coil unit. Like, the 2-helix bundle, a 3-helix bundle may either have the maximal
number of inter-helical contacts (folded state) or none at all. If the three strands
make no inter-helical contacts then consecutive strands must be parallel and travel
opposite directions along the z axis as shown in Figure 5.

As a renement of the model, we allow the melting of intra-helical contacts.
Our peptoid model is now similar to our protein model except for one modication.
Whereas a 5 level, 2-helix bundle can form 10 consecutive helix units (as a 1-
helix bundle), peptoids don’t have this possibility because of the linkage unit in the
middle of the chain which cannot form a helical turn. Similarly, in proteins, a 5
level, 3-helix bundle can form 15 consecutive helix units (as a 1-helix bundle), but
peptoids have linkage units dividing the chain into thirds.
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To make a FRET efficiency plot we dened the uorescent probe, FP, and
quencher, Q, of peptoids to be specic monomers in our peptoid model and mea-
sured their distance apart in the lattice for each conformation. For example, if FP
and Q are on adjoining sites of our lattice then they would be distance r = 1 unit
apart. In our model 1 lattice unit corresponds to 6 Angstroms. 2D-NMR and X-ray
crystallographic studies of pentameric peptoids show that helices contain 3 residues
per turn and have a pitch of roughly 6 Angstroms .7 The distance r between the
donor and quencher was related to the uorescence Γ by the equation:

Γ(r) =
316

r6 + 316 . (5)

To match the experimental data we needed to make several ad hoc adjustments
when computing the distance between donor and quencher. We took account of
the dependence of helical pitch on ACN concentration by making the distance con-
version from lattice units to Angstroms be a linearly increasing function of ACN
concentration. Also we calibrated the distance between FP and Q for the folded
states of our 2-helix and 3-helix to match the distance between donor and quencher
of the 1-helix bundle (approximately 23 Angstroms) so the FRET efficiency of all
peptoid bundles would be the same at O M ACN.

For each peptoid we computed the energy, E,

E = εhb · Nhb + εφ · Nφ + εc · Nc.

The rst part of the energy consists of the stacking interaction energy of the chi-
ral side chains, which we call εhb, times the number of stacking interactions, Nhb.
The other terms of the energy are the same as for proteins in equation 1. As be-
fore, εhb and εφ are linear functions of ACN concentration of the form a + b · [D]
for some xed parameters a and b. Because ACN is a hydrophobic solvent that
shouldn’t effect the stacking interaction energy of the chiral side chains, we made
εhb independent of ACN concentration.

Using dynamic programming we found the density of states and the average
distance between FP and Q. We computed the FRET efficiency corresponding to
the average distance between FP and Q for each energy level using equation 5.
The average FRET efficiency is the weighted sum of the FRET efficiency for each
energy level.
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