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Convolutional Neural Network for NLP

Kalchbrenner et al. (2014) and Kim (2014) apply CNNs to 
sentence modeling

•   alleviates data sparsity by word embedding 

•   sequential order (sentence) instead of spatial order (image)

Should use more linguistic and structural information!
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Try different convolution filters 
and repeat the same process
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What is Hawaii 's state flower ?
Sequential Convolution: Location

12

Gold standard: Entity

Example: Question Type Classification (TREC)
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Sequential Convolution
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Sequential convolution:

•   Traditional convolution operates in surface order

•  Cons: No structural information is captured

  No long distance relationships



Dependency-based Convolution

Structural Convolution:

•   operates the convolution filters on dependency tree

•   more “important” words are convolved more often

•   long distance relationships is naturally obtained
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Sequential convolution:

•   Traditional convolution operates in surface order

•  Cons: No structural information is captured

  No long distance relationships
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Try different Bigram convolution filters 
and repeat the same process
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Trigram Convolution on Trees
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follow the same steps as before…
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ROOT* ROOT**

more important words are convolved more often!
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Convolution on Tree

Fully connected NN
with softmax output

40

1 32 64 5
What       is       Hawaii       ’s       state       flower   

ROOT

bigram

trigram



Convolution on Siblings
Besides convolution on ancestor path, we also can 
capture conjunction information from siblings
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Experiments
Tasks:

  Sentimental analysis
  Question classification

Datasets:

Tasks Dataset # Classes Size Testset

Sentimental 
Analysis

MR 2 10662 10-CV

SST1 5 11855 2210

Question 
Classification

TREC 6 5952 500

TREC-2 50 5952 500
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Sentimental Analysis Data Examples

Sentimental analysis from Rotten Tomatoes (MR & SST-1)

straightforward statements:  
simplistic, silly and tedious

subtle statements: 
the film tunes into a grief that could lead a 
man across centuries

sentences with adversative: 
not for everyone, but for those with whom it 
will connect, it's a nice departure from 
standard moviegoing fare
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Positive



Sentimental Analysis Experiments Results
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Category Model MR SST-1

This work
ancestor 80.4 47.7

ancestor+sibling 81.7 48.3
ancestor+sibling+sequential 81.9 49.5

CNNs
CNNs-non-static (Kim ’14) — baseline 81.5 48.0

CNNs-multichannel (Kim ’14) 81.1 47.4
Deep CNNs (Kalchbrenner+ ’14) - 48.5

Recursive NNs
Recursive Autoencoder (Socher+ ’11) 77.7 43.2

Recursive Neural Tensor (Socher+ ’13) - 45.7
Deep Recursive NNs (Irsoy+ ’14) - 49.8

Recurrent NNs LSTM on tree (Zhu+ ’15) 81.9 48.0
Other Paragraph-Vec (Le+ ’14) - 48.7



Question Classification Examples
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Sentence Top-level 
(TREC)

Fine-grained 
(TREC-2)

How did serfdom develop in and then leave Russia? DESC manner

What is Hawaii 's state flower ? ENTY plant

What sprawling U.S. state boasts the most airports ? LOC state

When was Algeria colonized ? NUM date

What person 's head is on a dime ? HUM ind

What does the technical term ISDN mean ? ABBR exp



Question Classification Experiments Results
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Category Model TREC TREC2

This work

ancestor 95.4 88.4

ancestor+sibling 95.6 89.0

ancestor+sibling+sequential 95.4 88.8

CNNs

CNNs-non-static (Kim ’14) — baseline 93.6 86.4

CNNs-multichannel (Kim ’14) 92.2 86.0

Deep CNNs (Kalchbrenner+ ’14) 93.0 -

Hand-coded SVMs (Silva+ ’11)* 95.0 90.8

we achieved the highest published accuracy on TREC.



Error Analysis :-)
Cases which we do better than Baseline:

http://cogcomp.cs.illinois.edu/Data/QA/QC/definition.html 47

Gold/Ours: Enty   Baseline: Loc     Gold/Ours: Enty   Baseline: Desc     

Gold/Ours: Desc   Baseline: Enty     Gold/Ours: Mild Neg   Baseline: Mild Pos     

http://cogcomp.cs.illinois.edu/Data/QA/QC/definition.html


Error Analysis :-(
Cases which we make mistakes:

http://cogcomp.cs.illinois.edu/Data/QA/QC/definition.html 48

Gold: Num   Ours: Enty   Baseline: Num    

Cases which we and baseline make mistakes:

Gold: Num   Ours: Enty  Baseline: Desc    

http://cogcomp.cs.illinois.edu/Data/QA/QC/definition.html


Conclusions
Pros:

Dependency-based convolution captures long-
distance information.

It outperforms sequential CNN in all four datasets.

highest published accuracy on TREC.

Cons:
Our model’s accuracy depends on parser quality.
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Deep Learning can and should be 
combined with linguistic intuitions.


