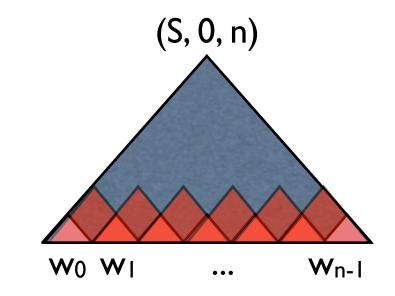
Advanced Dynamic Programming in CL: Theory, Algorithms, and Applications



Liang Huang University of Pennsylvania

• Who invented Dynamic Programming? and when was it invented?

- Who invented Dynamic Programming? and when was it invented?
- R. Bellman (1940s-50s)
- A.Viterbi (1967)
- E. Dijkstra (1959)
- Hart, Nilsson, and Raphael (1968)
 - Dijkstra => A* Algorithm
- D. Knuth (1977)
 - Dijkstra on Grammar (Hypergraph)

Richard Bellman

Andrew Viterbi Dynamic Programming

Liang Huang (Penn)

- Who invented Dynamic Programming? and when was it invented?
- R. Bellman (1940s-50s)
- A.Viterbi (1967)
- E. Dijkstra (1959)
- Hart, Nilsson, and Raphael (1968)
 - Dijkstra => A* Algorithm
- D. Knuth (1977)
 - Dijkstra on Grammar (Hypergraph)

A.Turing

Richard Bellman

Andrew Viterbi Dynamic Programming

Dynamic Programming

- Dynamic Programming is everywhere in NLP
 - Viterbi Algorithm for Hidden Markov Models
 - CKY Algorithm for Parsing and Machine Translation
 - Forward-Backward and Inside-Outside Algorithms
- Also everywhere in AI/ML
 - Reinforcement Learning, Planning (POMDP)
 - Al Search: Uniform-cost, A*, etc.
- This tutorial: a unified theoretical view of DP
 - Focusing on Optimization Problems

Liang Huang (Penn)

Review: DP Basics

- DP = Divide-and-Conquer + Two Principles:
 - [required] Optimal Subproblem Property
 - [recommended] Sharing of Common Subproblems

 e_1

 $NP_{2.6}$

 $NP_{2,3}$

 $PP_{3.6}$

VBD_{1.2}

- Structure of the Search Space
 - Incremental
 - Graph
 - Knapsack, Edit Dist., Sequence Alignment
 - Branching
 - Hypergraph

Matrix-Chain, Polygon Triangulation, Optimal BST
 Liang Huang (Penn)
 4
 Dynamic Programming

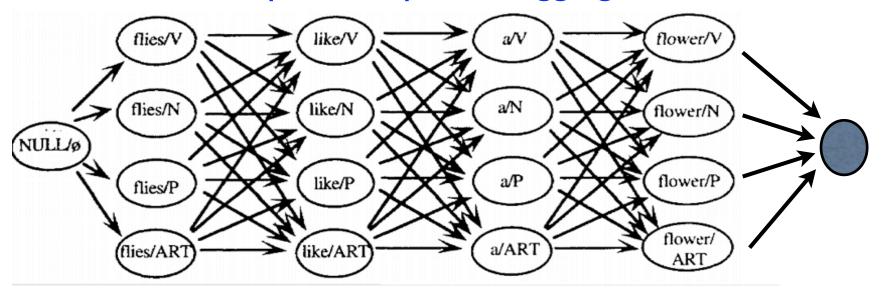
Two Dimensional Survey

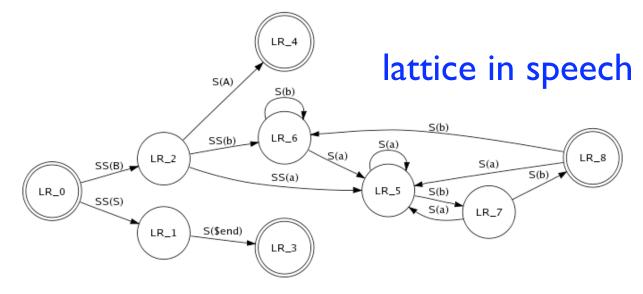
traversing order

search space		topological (acyclic)	best-first (superior)
	graphs with semirings	Viterbi	Dijkstra
	hypergraphs with weight functions	Generalized Viterbi	Knuth

Graphs in NLP

part-of-speech tagging

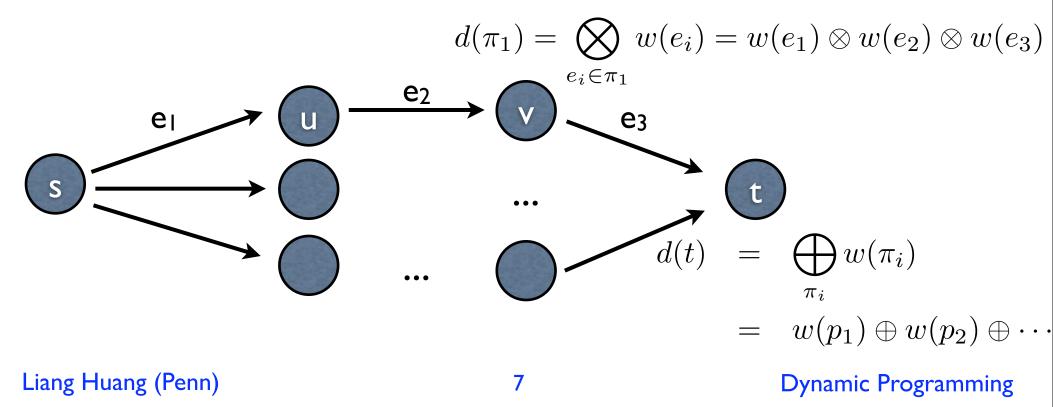




Liang Huang (Penn)

Semirings on Graphs

- in a weighted graph, we need two operators:
 - extension (multiplicative) and summary (additive)
 - the weight of a path is the product of edge weights
 - the weight of a vertex is the summary of path weights



A **monoid** is a triple $(A, \otimes, \overline{1})$ where

1. \otimes is a closed associative binary operator on the set A,

2. $\overline{1}$ is the identity element for \otimes , i.e., for all $a \in A, a \otimes \overline{1} = \overline{1} \otimes a = a$.

A monoid is **commutative** if \otimes is commutative.

A **monoid** is a triple $(A, \otimes, \overline{1})$ where

1. \otimes is a closed associative binary operator on the set A,

2. $\overline{1}$ is the identity element for \otimes , i.e., for all $a \in A, a \otimes \overline{1} = \overline{1} \otimes a = a$.

A monoid is **commutative** if \otimes is commutative.

([0, 1], +, 0) ([0, 1], ×, 1) ([0, 1], max, 0)

A **monoid** is a triple $(A, \otimes, \overline{1})$ where

1. \otimes is a closed associative binary operator on the set A,

2. $\overline{1}$ is the identity element for \otimes , i.e., for all $a \in A, a \otimes \overline{1} = \overline{1} \otimes a = a$.

A monoid is **commutative** if \otimes is commutative.

A semiring is a 5-tuple $R = (A, \oplus, \otimes, \overline{0}, \overline{1})$ such that

- 1. $(A, \oplus, \overline{0})$ is a commutative monoid.
- 2. $(A, \otimes, \overline{1})$ is a monoid.
- 3. \otimes distributes over \oplus : for all a, b, c in A,

 $(a \oplus b) \otimes c = (a \otimes c) \oplus (b \otimes c),$ $c \otimes (a \oplus b) = (c \otimes a) \oplus (c \otimes b).$

4. $\overline{0}$ is an **annihilator** for \otimes : for all a in A, $\overline{0} \otimes a = a \otimes \overline{0} = \overline{0}$. Liang Huang (Penn) 8 Dynamics 20 Dyn

([0, 1], +, 0) ([0, 1], ×, 1) ([0, 1], max, 0)

A **monoid** is a triple $(A, \otimes, \overline{1})$ where

1. \otimes is a closed associative binary operator on the set A,

2. $\overline{1}$ is the identity element for \otimes , i.e., for all $a \in A, a \otimes \overline{1} = \overline{1} \otimes a = a$.

A monoid is **commutative** if \otimes is commutative.

A semiring is a 5-tuple $R = (A, \oplus, \otimes, \overline{0}, \overline{1})$ such that

- 1. $(A, \oplus, \overline{0})$ is a commutative monoid.
- 2. $(A, \otimes, \overline{1})$ is a monoid.
- 3. \otimes distributes over \oplus : for all a, b, c in A,

([0, 1], max, ×, 0, 1) ([0, 1], +, ×, 0, 1)

([0, 1], +, 0)

([0, 1], ×, 1)

 $([0, 1], \max, 0)$

$$(a \oplus b) \otimes c = (a \otimes c) \oplus (b \otimes c),$$

 $c \otimes (a \oplus b) = (c \otimes a) \oplus (c \otimes b).$

4. $\overline{0}$ is an **annihilator** for \otimes : for all a in A, $\overline{0} \otimes a = a \otimes \overline{0} = \overline{0}$.

Liang Huang (Penn)

A **monoid** is a triple $(A, \otimes, \overline{1})$ where

1. \otimes is a closed associative binary operator on the set A,

2. $\overline{1}$ is the identity element for \otimes , i.e., for all $a \in A, a \otimes \overline{1} = \overline{1} \otimes a = a$.

A monoid is **commutative** if \otimes is commutative.

A semiring is a 5-tuple $R = (A, \oplus, \otimes, \overline{0}, \overline{1})$ such that

- 1. $(A, \oplus, \overline{0})$ is a commutative monoid.
- 2. $(A, \otimes, \overline{1})$ is a monoid.

Liang Huang (Penn)

3. \otimes distributes over \oplus : for all a, b, c in A,

 $(a \oplus b) \otimes c = (a \otimes c) \oplus (b \otimes c),$ $c \otimes (a \oplus b) = (c \otimes a) \oplus (c \otimes b).$

4. $\overline{0}$ is an **annihilator** for \otimes : for all a in A, $\overline{0} \otimes a = a \otimes \overline{0} = \overline{0}$.

([0, I], ×, I) ([0, I], max, 0)

([0, 1], +, 0)

 $([0, 1], \max, \times, 0, 1) \checkmark$ $([0, 1], +, \times, 0, 1) \times$

Semiring	Set	\oplus	\otimes	$\overline{0}$	1	intuition/application
Boolean	$\{0,1\}$	V	\wedge	0	1	logical deduction, recognition
Viterbi	[0,1]	max	×	0	1	prob. of the best derivation
Inside	$\mathbb{R}^+ \cup \{+\infty\}$	+	×	0	1	prob. of a string
Real	$\mathbb{R}\cup\{+\infty\}$	min	+	$+\infty$	0	shortest-distance
Tropical	$\mathbb{R}^+ \cup \{+\infty\}$	min	+	$+\infty$	0	with non-negative weights
Counting	\mathbb{N}	+	×	0	1	number of paths

idempotent

A semiring $(A, \oplus, \otimes, \overline{0}, \overline{1})$ is **idempotent** if for all a in $A, a \oplus a = a$.

idempotent

A semiring $(A, \oplus, \otimes, \overline{0}, \overline{1})$ is **idempotent** if for all a in $A, a \oplus a = a$.

comparison

 $(a \leq b) \Leftrightarrow (a \oplus b = a)$ defines a partial ordering.

• examples: boolean, viterbi, tropical, real, ... $(\{0,1\}, \lor, \land, 0, 1)$ $(\mathbb{R}^+ \cup \{+\infty\}, \min, +, +\infty, 0)$

 $([0,1], \max, \otimes, 0, 1)$ $(\mathbb{R} \cup \{+\infty\}, \min, +, +\infty, 0)$

idempotent

A semiring $(A, \oplus, \otimes, \overline{0}, \overline{1})$ is **idempotent** if for all a in $A, a \oplus a = a$.

comparison

 $(a \leq b) \Leftrightarrow (a \oplus b = a)$ defines a partial ordering.

• examples: boolean, viterbi, tropical, real, ... $(\{0,1\}, \lor, \land, 0, 1)$ $(\mathbb{R}^+ \cup \{+\infty\}, \min, +, +\infty, 0)$

 $([0,1], \max, \otimes, 0, 1)$ $(\mathbb{R} \cup \{+\infty\}, \min, +, +\infty, 0)$

- total-order for optimization problems
 A semiring is totally-ordered if ⊕ defines a total ordering.
- examples: all of the above

Liang Huang (Penn)

Monotonicity

monotonicity

Let $K = (A, \oplus, \otimes, \overline{0}, \overline{1})$ be a semiring, and \leq a partial ordering over A. We say K is **monotonic** if for all $a, b, c \in A$

$$(a \le b) \Rightarrow (a \otimes c \le b \otimes c) \qquad (a \le b) \Rightarrow (c \otimes a \le c \otimes b)$$

monotonicity

Let $K = (A, \oplus, \otimes, \overline{0}, \overline{1})$ be a semiring, and \leq a partial ordering over A. We say K is **monotonic** if for all $a, b, c \in A$

$$(a \le b) \Rightarrow (a \otimes c \le b \otimes c) \qquad (a \le b) \Rightarrow (c \otimes a \le c \otimes b)$$

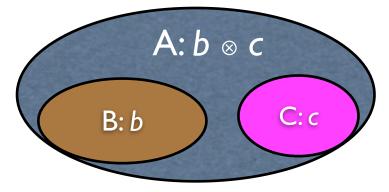
• optimal substructure in dynamic programming

monotonicity

Let $K = (A, \oplus, \otimes, \overline{0}, \overline{1})$ be a semiring, and \leq a partial ordering over A. We say K is **monotonic** if for all $a, b, c \in A$

$$(a \le b) \Rightarrow (a \otimes c \le b \otimes c) \qquad (a \le b) \Rightarrow (c \otimes a \le c \otimes b)$$

• optimal substructure in dynamic programming

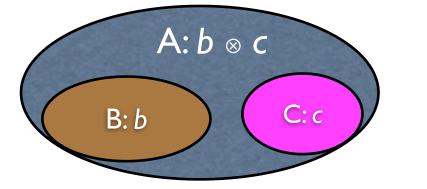


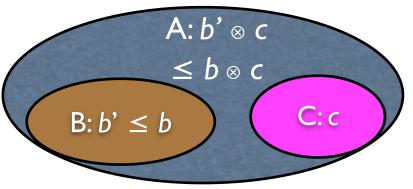
monotonicity

Let $K = (A, \oplus, \otimes, \overline{0}, \overline{1})$ be a semiring, and \leq a partial ordering over A. We say K is **monotonic** if for all $a, b, c \in A$

$$(a \le b) \Rightarrow (a \otimes c \le b \otimes c) \qquad (a \le b) \Rightarrow (c \otimes a \le c \otimes b)$$

• optimal substructure in dynamic programming



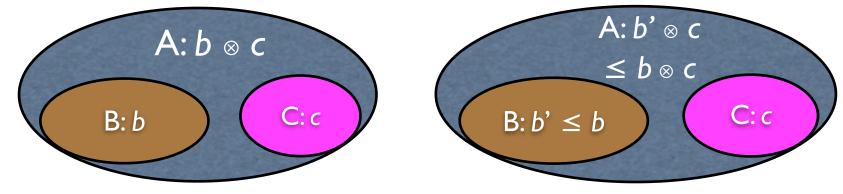


monotonicity

Let $K = (A, \oplus, \otimes, \overline{0}, \overline{1})$ be a semiring, and \leq a partial ordering over A. We say K is **monotonic** if for all $a, b, c \in A$

$$(a \le b) \Rightarrow (a \otimes c \le b \otimes c) \qquad (a \le b) \Rightarrow (c \otimes a \le c \otimes b)$$

optimal substructure in dynamic programming



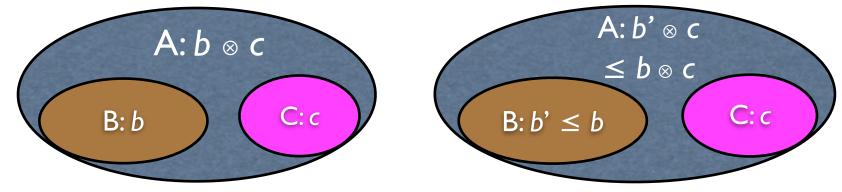
idempotent => monotone (from distributivity)

monotonicity

Let $K = (A, \oplus, \otimes, \overline{0}, \overline{1})$ be a semiring, and \leq a partial ordering over A. We say K is **monotonic** if for all $a, b, c \in A$

$$(a \le b) \Rightarrow (a \otimes c \le b \otimes c) \qquad (a \le b) \Rightarrow (c \otimes a \le c \otimes b)$$

optimal substructure in dynamic programming



idempotent => monotone (from distributivity)

• $(a+b)\otimes c = (a\otimes c)+(b\otimes c);$ if $a\leq b$, $(a\otimes c)=(a\otimes c)+(b\otimes c)$

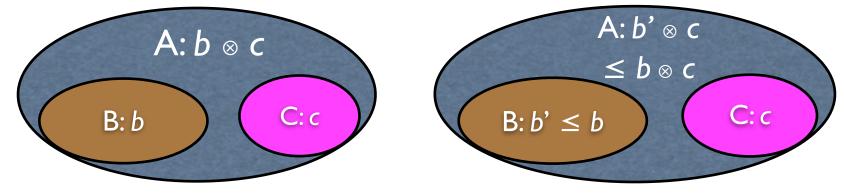
Liang Huang (Penn)

monotonicity

Let $K = (A, \oplus, \otimes, \overline{0}, \overline{1})$ be a semiring, and \leq a partial ordering over A. We say K is **monotonic** if for all $a, b, c \in A$

$$(a \le b) \Rightarrow (a \otimes c \le b \otimes c) \qquad (a \le b) \Rightarrow (c \otimes a \le c \otimes b)$$

optimal substructure in dynamic programming



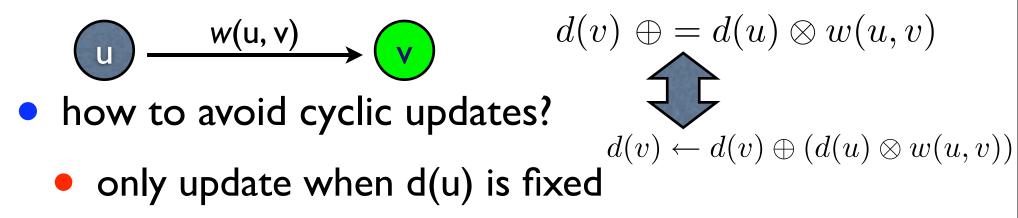
idempotent => monotone (from distributivity)

• $(a+b)\otimes c = (a\otimes c)+(b\otimes c);$ if $a\leq b$, $(a\otimes c)=(a\otimes c)+(b\otimes c)$

• by def. of comparison, $a \otimes c \leq b \otimes c$ Liang Huang (Penn) II

DP on Graphs

- optimization problems on graphs
 => generic shortest-path problem
- weighted directed graph G=(V, E) with a function w that assigns each edge a weight from a semiring
- compute the best weight of the target vertex t
- generic update along edge (u, v)



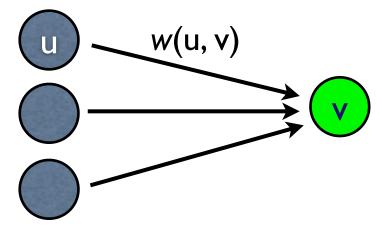
Two Dimensional Survey

traversing order

		topological (acyclic)	best-first (superior)
search space	graphs with semirings (e.g., FSMs)	Viterbi	Dijkstra
	hypergraphs with weight functions (e.g., CFGs)	Generalized Viterbi	Knuth

Viterbi Algorithm for DAGs

- I. topological sort
- 2. visit each vertex v in sorted order and do updates
 - for each incoming edge (u, v) in E
 - use d(u) to update d(v): $d(v) \oplus = d(u) \otimes w(u, v)$
 - key observation: d(u) is fixed to optimal at this time

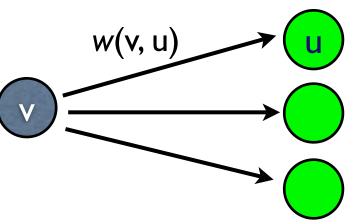


time complexity: O(V + E)

Liang Huang (Penn)

Variant I: forward-update

- I. topological sort
- 2. visit each vertex v in sorted order and do updates
 - for each outgoing edge (v, u) in E
 - use d(v) to update d(u): $d(u) \oplus = d(v) \otimes w(v, u)$
 - key observation: d(v) is fixed to optimal at this time



time complexity: O(V + E)

Liang Huang (Penn)

• [Number of Paths in a DAG]

- [Number of Paths in a DAG]
 - just use the counting semiring (N, +, ×, 0, I)
 - note: this is not an optimization problem!

16

- [Number of Paths in a DAG]
 - just use the counting semiring (N, +, ×, 0, I)
 - note: this is not an optimization problem!
- [Longest Path in a DAG]

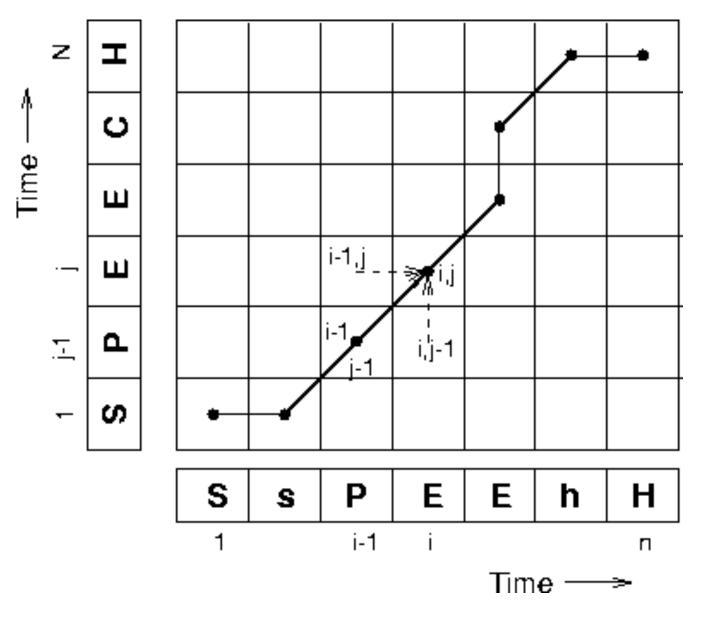
- [Number of Paths in a DAG]
 - just use the counting semiring (N, +, ×, 0, I)
 - note: this is not an optimization problem!
- [Longest Path in a DAG]
 - just use the semiring $(\mathbb{R} \cup \{-\infty\}, \max, +, -\infty, 0)$

- [Number of Paths in a DAG]
 - just use the counting semiring (N, +, ×, 0, I)
 - note: this is not an optimization problem!
- [Longest Path in a DAG]
 - just use the semiring $(\mathbb{R} \cup \{-\infty\}, \max, +, -\infty, 0)$
- [Part-of-Speech Tagging with a Hidden Markov Model]

- [Number of Paths in a DAG]
 - just use the counting semiring (N, +, ×, 0, I)
 - note: this is not an optimization problem!
- [Longest Path in a DAG]
 - just use the semiring $(\mathbb{R} \cup \{-\infty\}, \max, +, -\infty, 0)$



Example: Speech Alignment

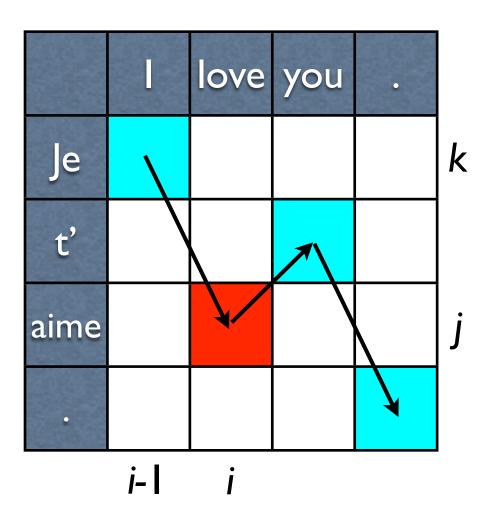


time complexity: $O(n^2)$

also used in: edit distance biological sequence alignment

Liang Huang (Penn)

Example: Word Alignment

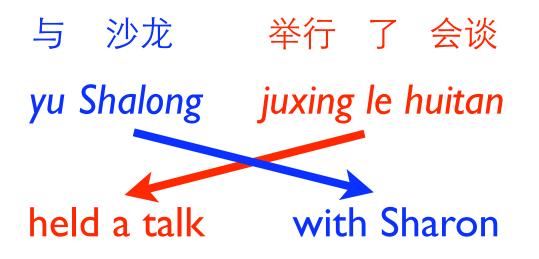


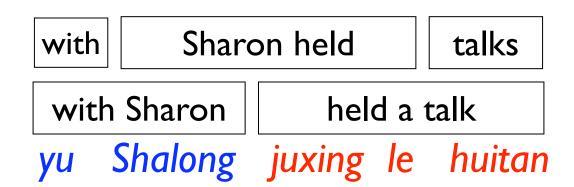
- key difference
 - reorderings in translation!
 - sequence/speech alignment is always monotonic
- complexity under HMM
 - word alignment is $O(n^3)$
 - for every (i, j)
 - enumerate all (i-1, k)
 - sequence alignment O(n²)

下雨天地面积水 xia yu tian di mian ji shui

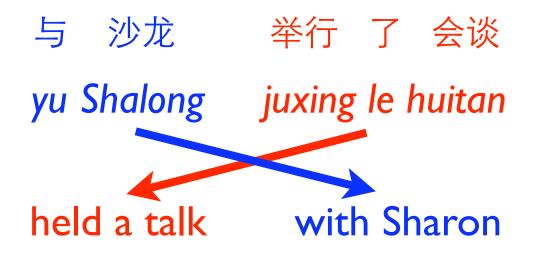
graph search

Liang Huang (Penn)



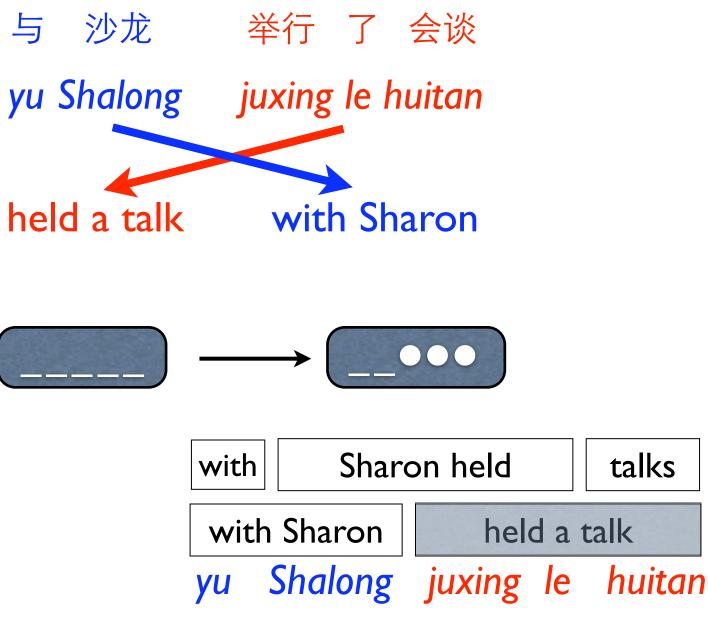


Huang and Chiang

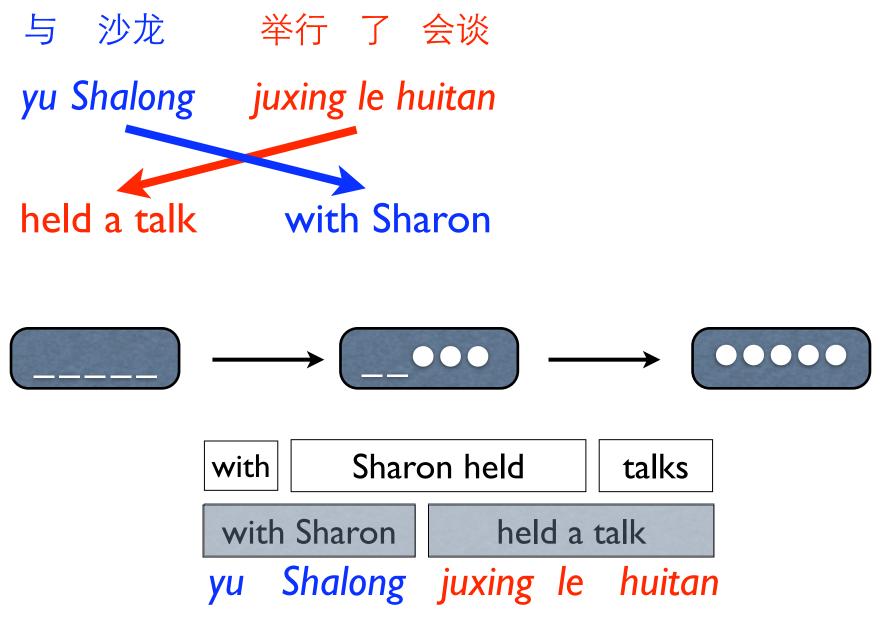


with	Sharon held			talks
with Sharon		held a talk		
yu	Shalong	juxing	le	huitan

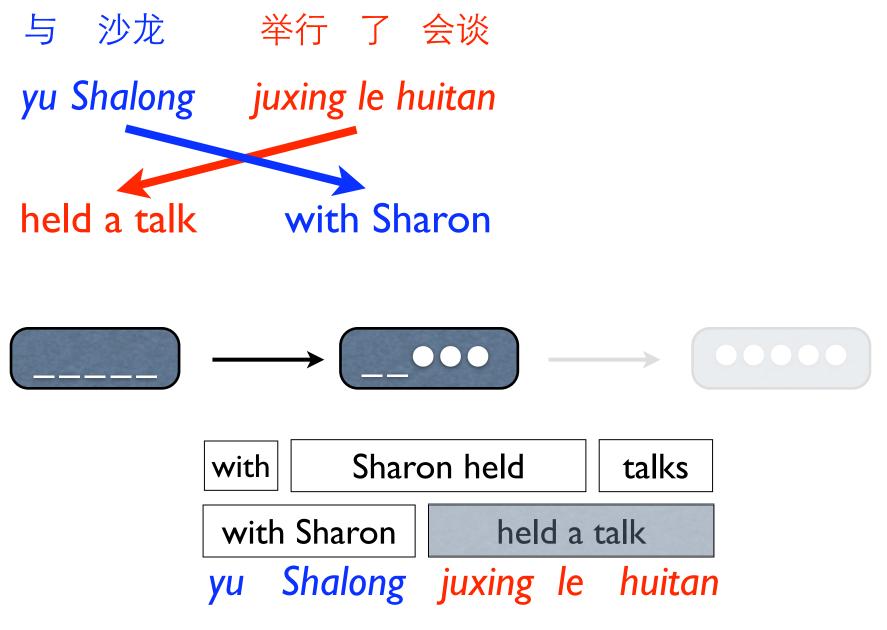
Huang and Chiang



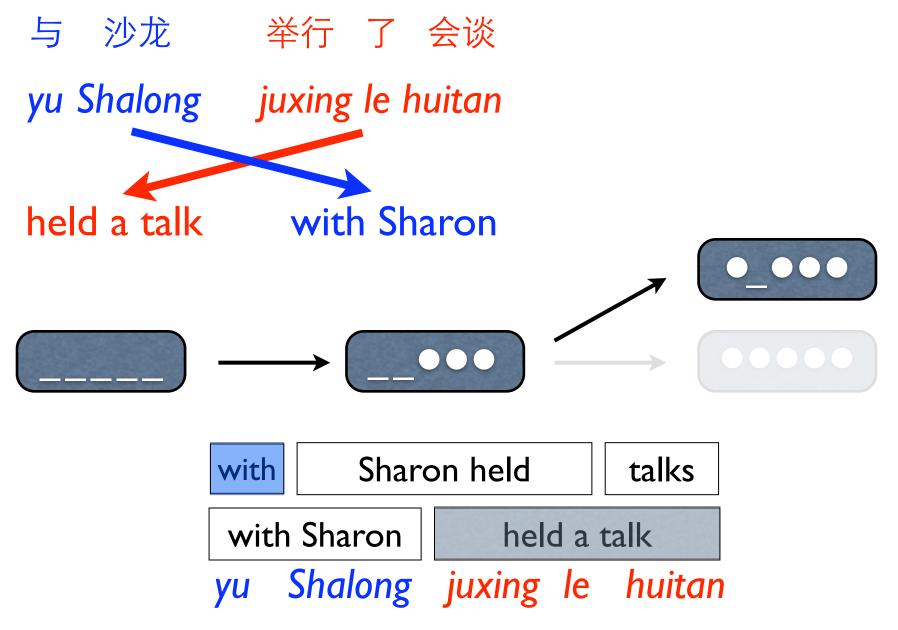
Huang and Chiang



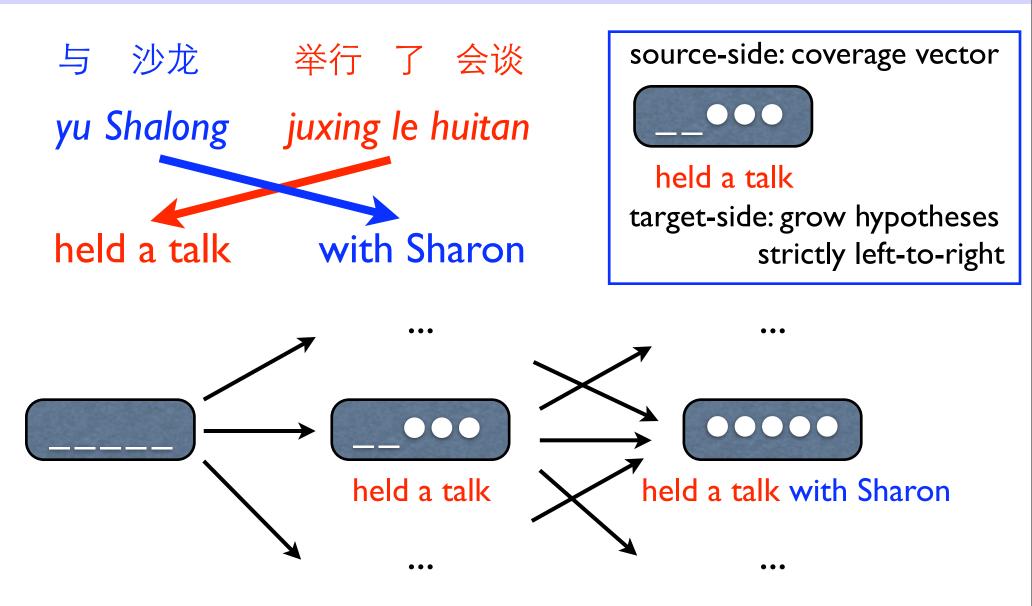
Huang and Chiang



Huang and Chiang



Huang and Chiang



space: $O(2^n)$, time: $O(2^n n^2)$ -- cf. traveling salesman problem

Huang and Chiang

Traveling Salesman Problem & MT

- a classical NP-hard problem
 - goal: visit each city once and only once
- exponential-time dynamic programming
 - state: cities visited so far (bit-vector)
 - search in this O(2ⁿ) transformed graph
- MT: each city is a source-language word
 - restrictions in reordering can reduce complexity => distortion limit
 - => syntax-based MT

Huang and Chiang

(Held and Karp, 1962; Knight, 1999)

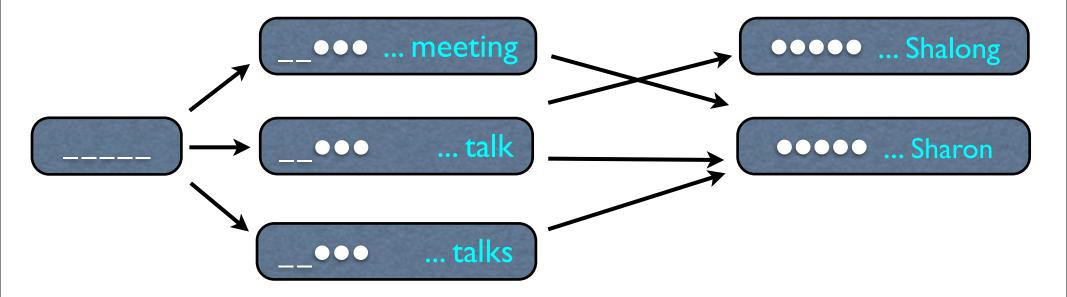
Traveling Salesman Problem & MT

- a classical NP-hard problem
 - goal: visit each city once and only once
- exponential-time dynamic programming
 - state: cities visited so far (bit-vector)
 - search in this O(2ⁿ) transformed graph
- MT: each city is a source-language word
 - restrictions in reordering can reduce complexity => distortion limit
 - => syntax-based MT

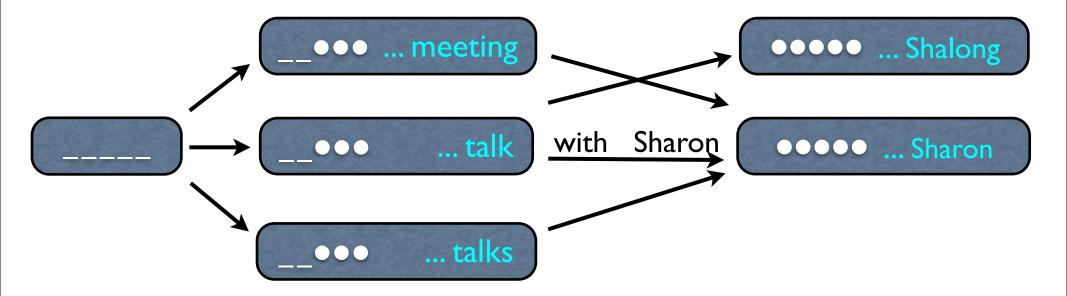
Huang and Chiang

(Held and Karp, 1962; Knight, 1999)

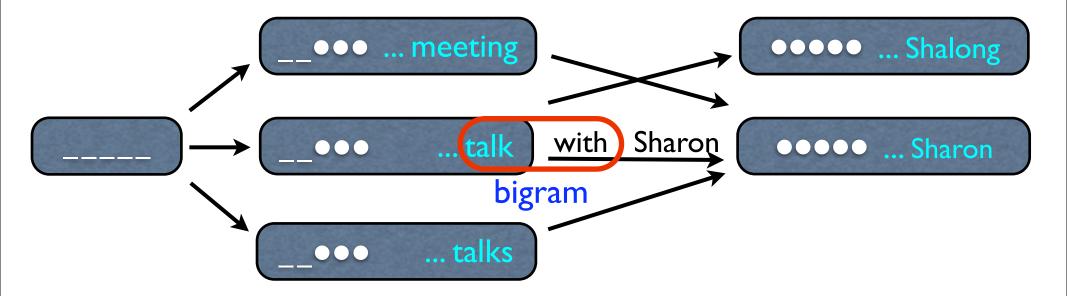
- "refined" graph: annotated with language model words
- still dynamic programming, just larger search space



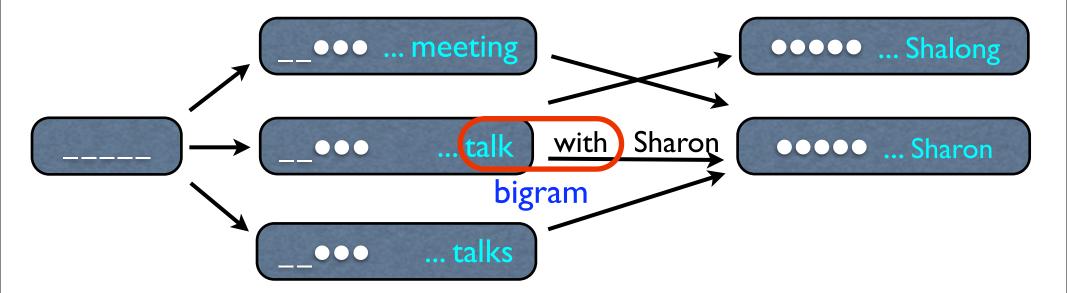
- "refined" graph: annotated with language model words
- still dynamic programming, just larger search space



- "refined" graph: annotated with language model words
- still dynamic programming, just larger search space



- "refined" graph: annotated with language model words
- still dynamic programming, just larger search space



space:
$$O(2^n)$$
, time: $O(2^n n^2)$
=> space: $O(2^n V^{m-1})$, time: $O(2^n V^{m-1} n^2)$

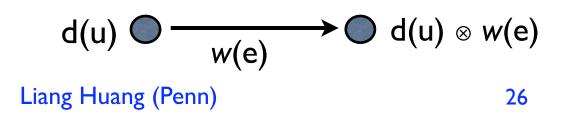
for *m*-gram language models

Huang and Chiang

Two Dimensional Survey

traversing order

		topological (acyclic)	best-first (superior)
search space	graphs with semirings (e.g., FSMs)	Viterbi	Dijkstra
	hypergraphs with weight functions (e.g., CFGs)	Generalized Viterbi	Knuth



- Dijkstra does not require acyclicity
 - instead of topological order, we use **best-first** order
- but this requires *superiority* of the semiring

Let $K = (A, \oplus, \otimes, \overline{0}, \overline{1})$ be a semiring, and \leq a partial ordering over A. We say K is **superior** if for all $a, b \in A$

$$a \leq a \otimes b, \qquad b \leq a \otimes b.$$

• intuition: combination always gets worse

$$d(u) \bigcirc \longrightarrow \bigoplus d(u) \otimes w(e)$$

$$iang Huang (Penn) \qquad 26$$

- Dijkstra does not require acyclicity
 - instead of topological order, we use **best-first** order
- but this requires *superiority* of the semiring

Let $K = (A, \oplus, \otimes, \overline{0}, \overline{1})$ be a semiring, and \leq a partial ordering over A. We say K is **superior** if for all $a, b \in A$

$$a \le a \otimes b, \qquad b \le a \otimes b.$$

- intuition: combination always gets worse
- contrast: monotonicity: combination preserves order $(a \le b) \Rightarrow (a \otimes c \le b \otimes c)$

$$d(u) \bigcirc \xrightarrow{w(e)} od(u) \otimes w(e)$$

Liang Huang (Penn)

- Dijkstra does not require acyclicity
 - instead of topological order, we use **best-first** order
- but this requires *superiority* of the semiring

Let $K = (A, \oplus, \otimes, \overline{0}, \overline{1})$ be a semiring, and \leq a partial ordering over A. We say K is **superior** if for all $a, b \in A$

$$a \le a \otimes b, \qquad b \le a \otimes b.$$

- intuition: combination always gets worse
- contrast: monotonicity: combination preserves order $(a \le b) \Rightarrow (a \otimes c \le b \otimes c)$ $(\{0,1\}, \lor, \land, 0, 1)$ $([0,1], \max, \times, 0, 1)$

$$d(u) \bigcirc \longrightarrow \bigoplus d(u) \otimes w(e)$$

Liang Huang (Penn)

Dynamic Programming

 $(\mathbb{R}^+ \cup \{+\infty\}, \min, +, +\infty, 0)$

 $(\mathbb{R} \cup \{+\infty\}, \min, +, +\infty, 0)$

- Dijkstra does not require acyclicity
 - instead of topological order, we use **best-first** order
- but this requires *superiority* of the semiring

Let $K = (A, \oplus, \otimes, \overline{0}, \overline{1})$ be a semiring, and \leq a partial ordering over A. We say K is **superior** if for all $a, b \in A$

$$a \le a \otimes b, \qquad b \le a \otimes b.$$

- intuition: combination always gets worse
- contrast: monotonicity: combination preserves order $(a \le b) \Rightarrow (a \otimes c \le b \otimes c)$ $(\{0,1\}, \lor, \land, 0, 1) \checkmark$

$$d(u) \bigcirc \longrightarrow \bigoplus d(u) \otimes w(e)$$

Liang Huang (Penn)

Dynamic Programming

 $([0,1], \max, \times, 0, 1)$

 $(\mathbb{R}^+ \cup \{+\infty\}, \min, +, +\infty, 0) \checkmark$

 $(\mathbb{R} \cup \{+\infty\}, \min, +, +\infty, 0) \times$

- keep a cut (S :V S) where S vertices are fixed
 - maintain a priority queue Q of V S vertices
- each iteration choose the best vertex v from Q
 - move v to S, and use d(v) to forward-update others

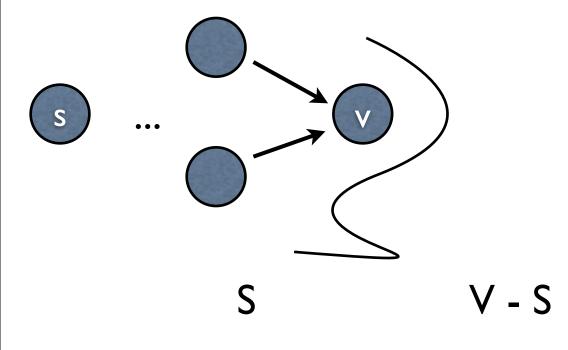
 $d(u) \oplus = d(v) \otimes w(v, u)$

time complexity: O((V+E) lgV) (binary heap) O(V lgV + E) (fib. heap)

S

V - S

- keep a cut (S : V S) where S vertices are fixed
 - maintain a priority queue Q of V S vertices
- each iteration choose the best vertex v from Q
 - move v to S, and use d(v) to forward-update others

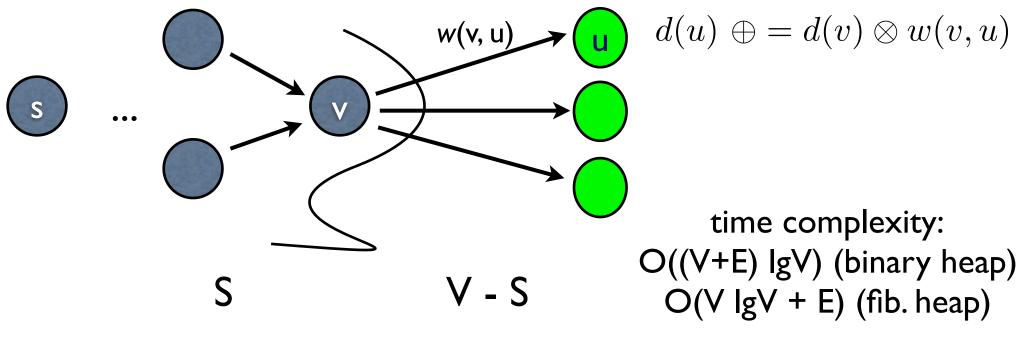


 $d(u) \oplus = d(v) \otimes w(v, u)$

time complexity: O((V+E) lgV) (binary heap) O(V lgV + E) (fib. heap)

Liang Huang (Penn)

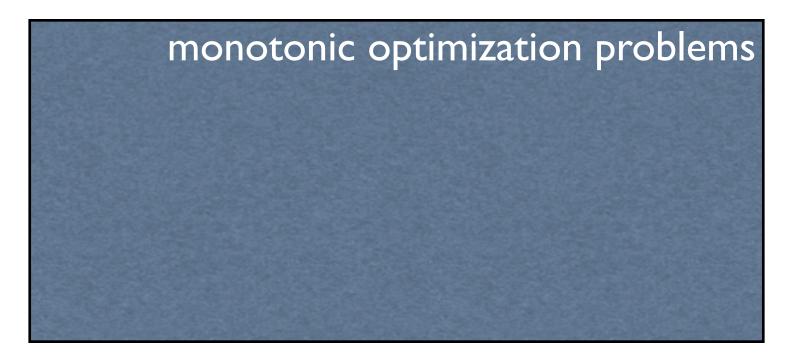
- keep a cut (S : V S) where S vertices are fixed
 - maintain a priority queue Q of V S vertices
- each iteration choose the best vertex v from Q
 - move v to S, and use d(v) to forward-update others



Liang Huang (Penn)

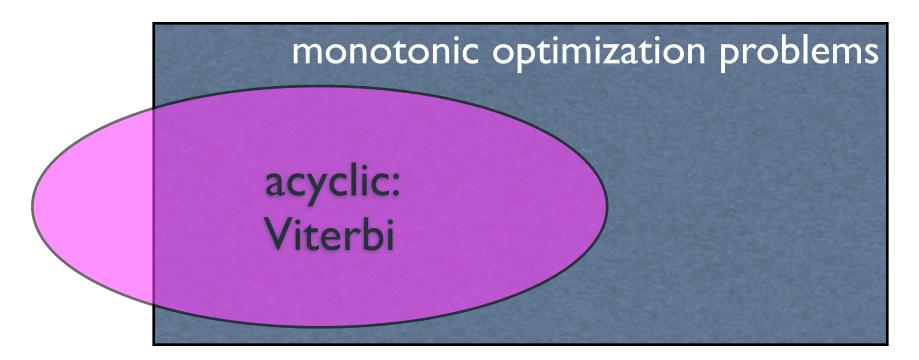
Viterbi vs. Dijkstra

- structural vs. algebraic constraints
- Dijkstra only applicable to optimization problems

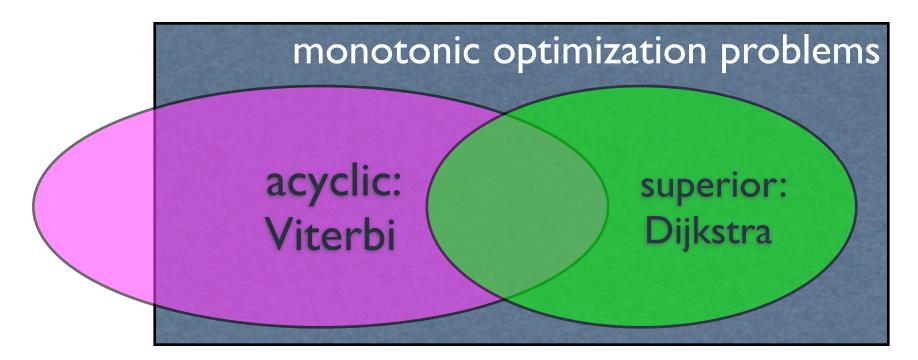


Viterbi vs. Dijkstra

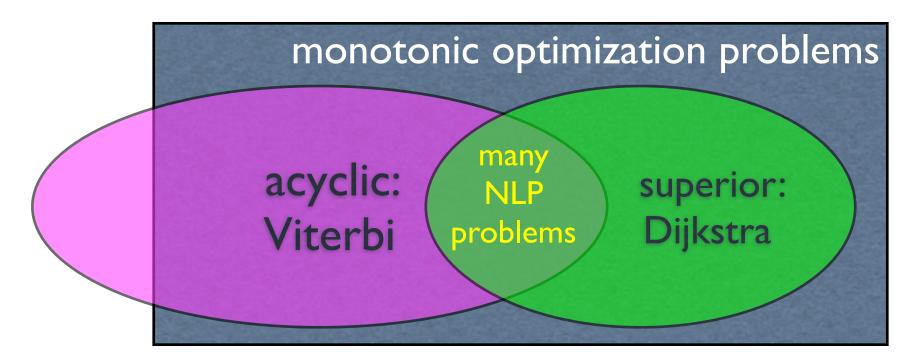
- structural vs. algebraic constraints
- Dijkstra only applicable to optimization problems



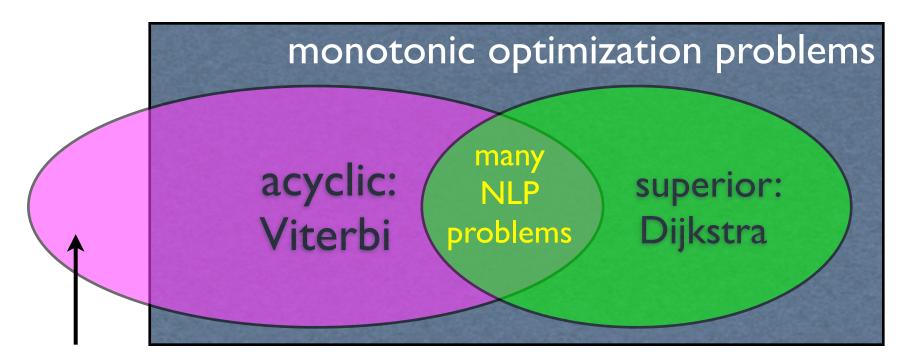
- structural vs. algebraic constraints
- Dijkstra only applicable to optimization problems



- structural vs. algebraic constraints
- Dijkstra only applicable to optimization problems



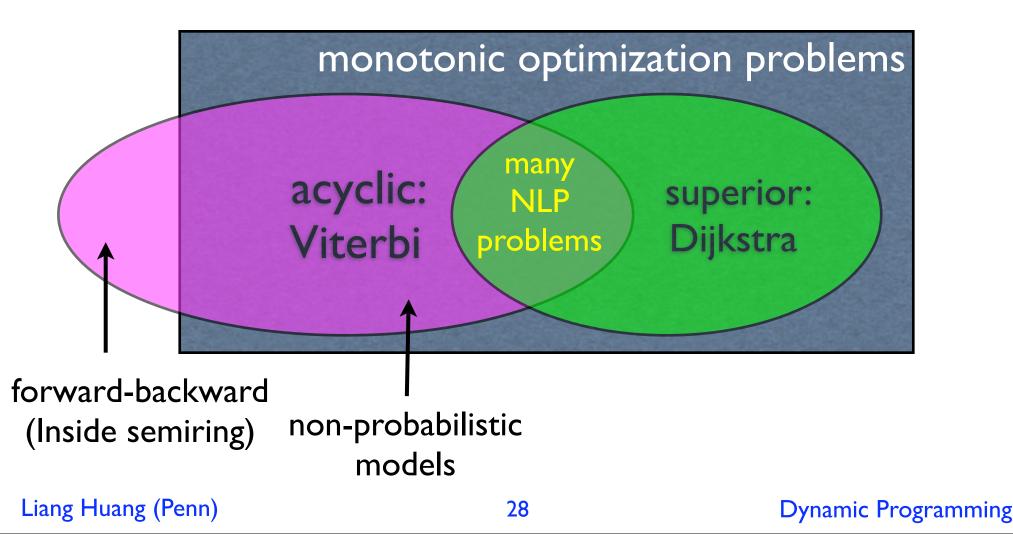
- structural vs. algebraic constraints
- Dijkstra only applicable to optimization problems



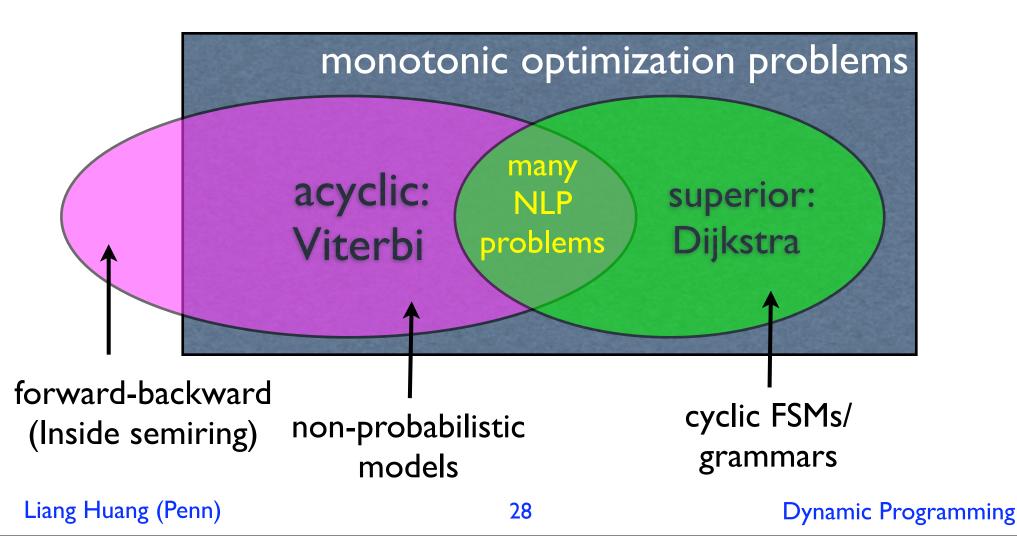
forward-backward (Inside semiring)

Liang Huang (Penn)

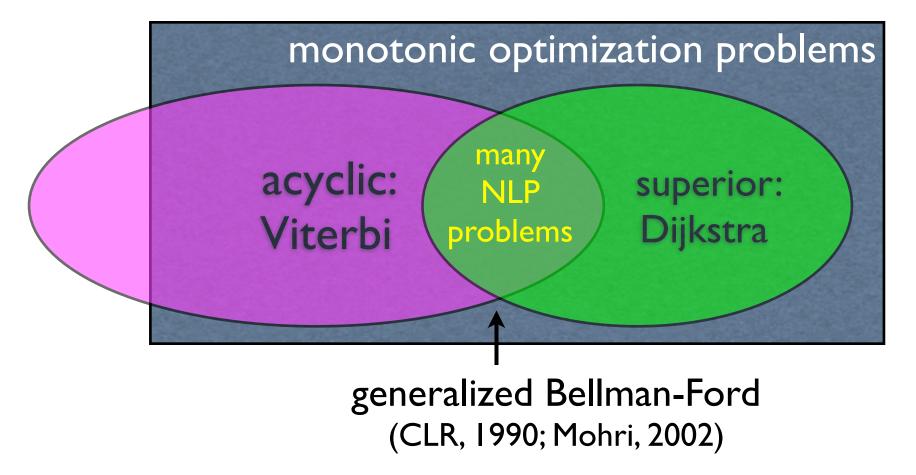
- structural vs. algebraic constraints
- Dijkstra only applicable to optimization problems



- structural vs. algebraic constraints
- Dijkstra only applicable to optimization problems

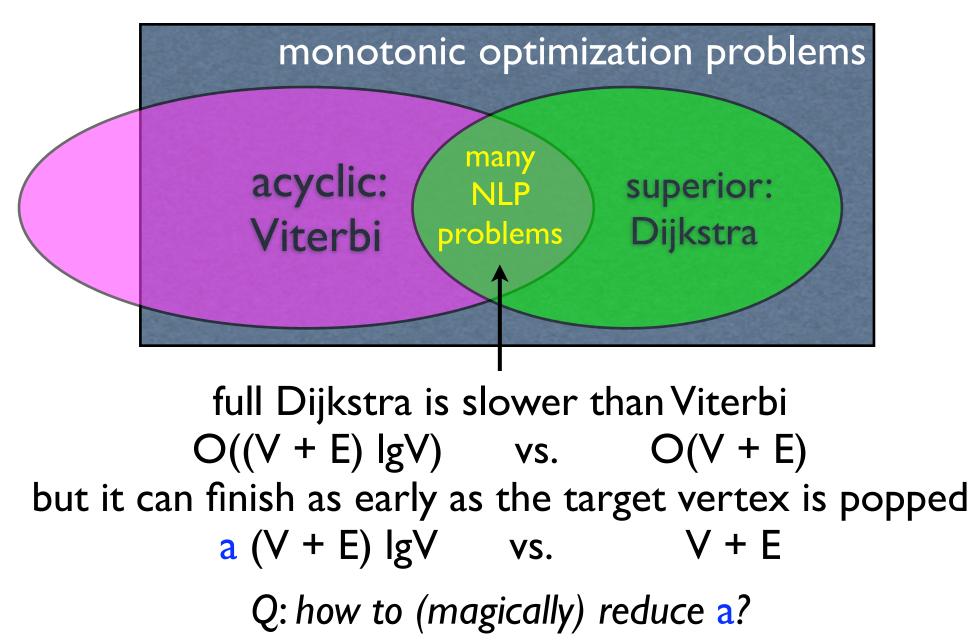


What if both fail?



or, first do strongly-connected components (SCC) which gives a DAG; use Viterbi globally on this SCC-DAG; use Bellman-Ford locally within each SCC

What if both work?



Liang Huang (Penn)

A* Search: Intuition

- Dijkstra is "blind" about how far the target is
 - may get "trapped" by obstacles
 - can we be more intelligent about the future?
 - idea: prioritize by s-v distance + v-t estimate



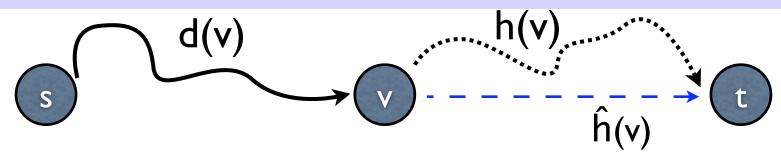
A* Search: Intuition

- Dijkstra is "blind" about how far the target is
 - may get "trapped" by obstacles
 - can we be more intelligent about the future?
 - idea: prioritize by s-v distance + v-t estimate

A* Search: Intuition

- Dijkstra is "blind" about how far the target is
 - may get "trapped" by obstacles
 - can we be more intelligent about the future?
 - idea: prioritize by s-v distance + v-t estimate

A* Heuristic



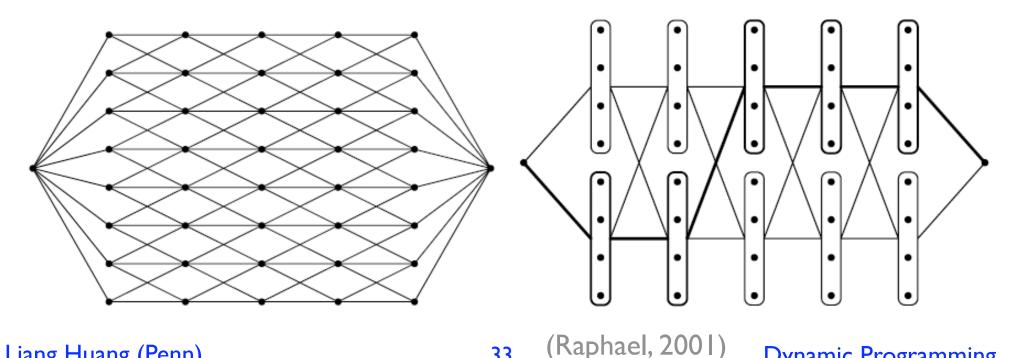
- h(v): the distance from v to target t
 - $\hat{h}(v)$ must be an optimistic estimate of h(v): $\hat{h}(v) \le h(v)$
 - Dijkstra is a special case where $\hat{h}(v) = \overline{I}$ (0 for dist.)
 - now, prioritize the queue by $d(v) \otimes \hat{h}(v)$
- can stop when target gets popped -- why?
 - optimal subpaths should pop earlier than non-optimal

• $d(v) \otimes \hat{h}(v) \le d(v) \otimes h(v) \le d(t) \le non-optimal paths of t$

Liang Huang (Penn)

How to design a heuristic?

- more of an art than science
- basic idea: projection into coarser space
- cluster: $w'(U,V) = \min \{ w(u,v) \mid u \in U, v \in V \}$
- exact cost in coarser graph is estimate of finer graph



Liang Huang (Penn)

33

How to design a heuristic?

- more of an art than science
- basic idea: projection into coarser space
- cluster: $w'(U,V) = \min \{ w(u,v) \mid u \in U, v \in V \}$
- exact cost in coarser graph is estimate of finer graph
 U
 U
 U
 U
 U
 U
 U
 U
 U
 U
 U
 U
 U
 U
 U
 U
 U
 U
 U
 U
 U
 U
 U
 U
 U
 U
 U
 U
 U
 U
 U
 U
 U
 U
 U
 U
 U
 U
 U
 U
 U
 U
 U
 U
 U
 U
 U
 U
 U
 U
 U
 U
 U
 U
 U
 U
 U
 U
 U
 U
 U
 U
 U
 U
 U
 U
 U
 U
 U
 U
 U
 U
 U
 U
 U
 U
 U
 U
 U
 U
 U
 U
 U
 U
 U
 U
 U
 U
 U
 U
 U
 U
 U
 U
 U
 U
 U
 U
 U
 U
 U
 U
 U
 U
 U
 U
 U
 U
 U
 U
 U
 U
 U
 U
 U
 U
 U
 U
 U
 U
 U
 U
 U
 U
 U
 U
 U
 <liU
 U
 U
 U
 U

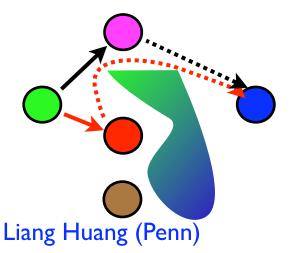
Liang Huang (Penn)

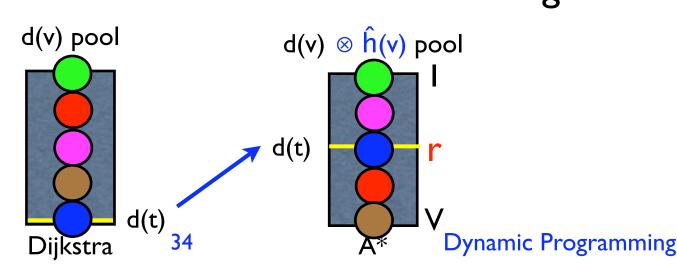
33

(Raphael, 2001)

Viterbi or A*?

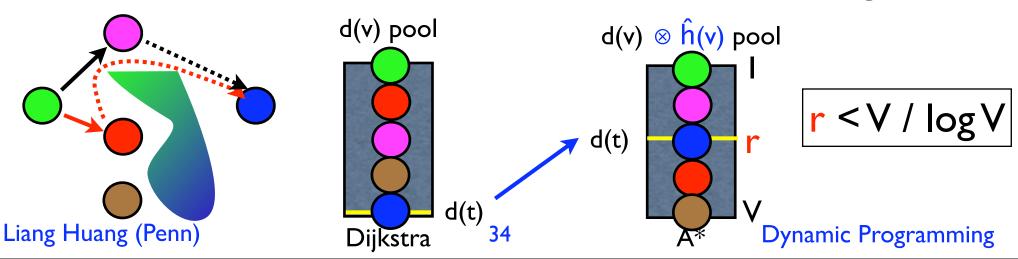
- A* intuition: $d(t) \otimes \hat{h}(t)$ ranks higher among $d(v) \otimes \hat{h}(v)$
 - can finish early if lucky
 - actually, $d(t) \otimes \hat{h}(t) = d(t) \otimes h(t) = d(t) \otimes \overline{I} = d(t)$
- with the price of maintaining priority queue O(logV)
- Q: how early? worth the price?
- if the rank is r, then A^* is better when r/V log V < I





Viterbi or A*?

- A* intuition: $d(t) \otimes \hat{h}(t)$ ranks higher among $d(v) \otimes \hat{h}(v)$
 - can finish early if lucky
 - actually, $d(t) \otimes \hat{h}(t) = d(t) \otimes h(t) = d(t) \otimes \overline{I} = d(t)$
- with the price of maintaining priority queue O(logV)
- Q: how early? worth the price?
- if the rank is r, then A^* is better when r/V log V < I



Two Dimensional Survey

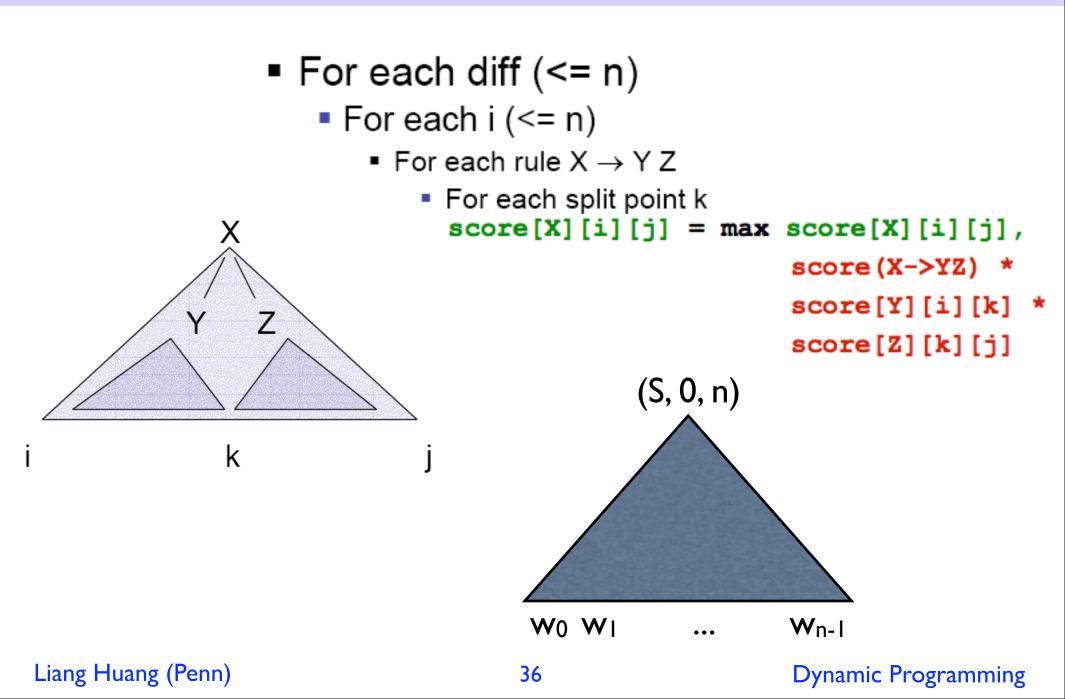
traversing order

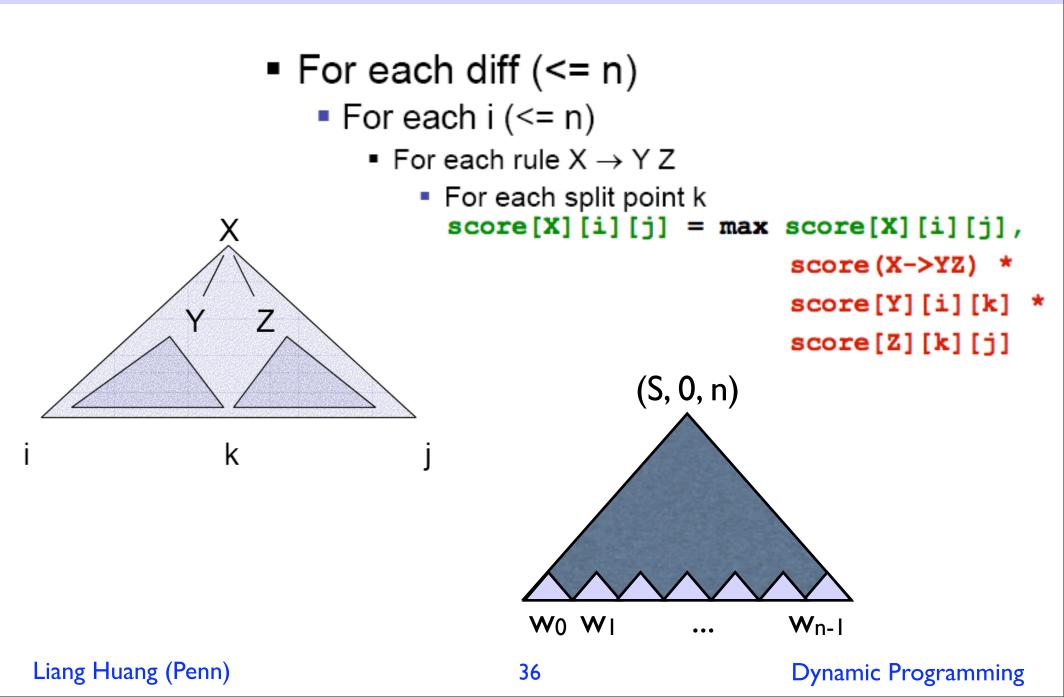
		topological (acyclic)	best-first (superior)
search space	graphs with semirings (e.g., FSMs)	Viterbi	Dijkstra
	hypergraphs with weight functions (e.g., CFGs)	Generalized Viterbi	Knuth

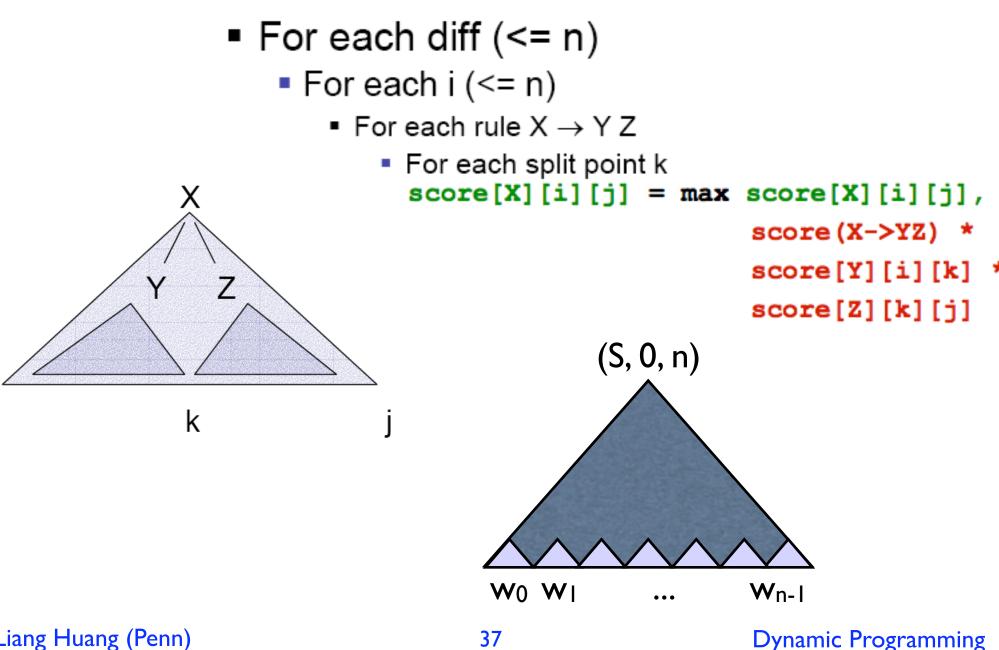
Two Dimensional Survey

traversing order

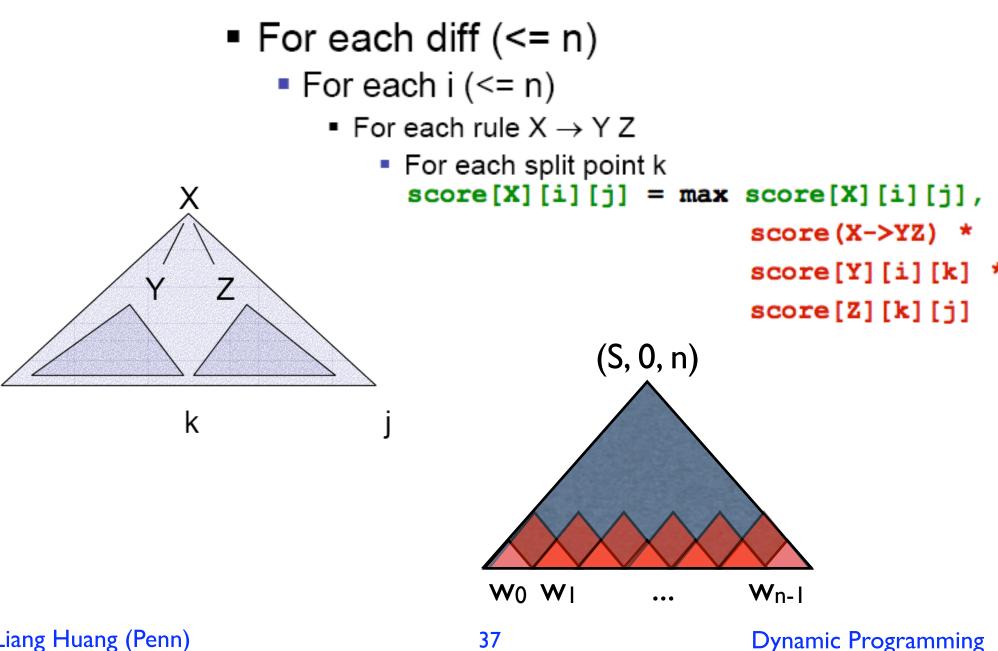
		topological (acyclic)	best-first (superior)
search space	graphs with semirings (e.g., FSMs)	Viterbi	Dijkstra
	hypergraphs with weight functions (e.g., CFGs)	Generalized Viterbi	Knuth







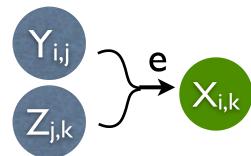
Liang Huang (Penn)



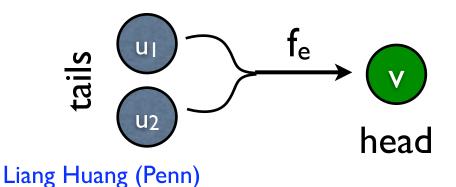
Liang Huang (Penn)

(Directed) Hypergraphs

- a generalization of graphs
 - edge => hyperedge: several vertices to one vertex
 - $e = (T(e), h(e), f_e)$. arity |e| = |T(e)|
 - a totally-ordered weight set R



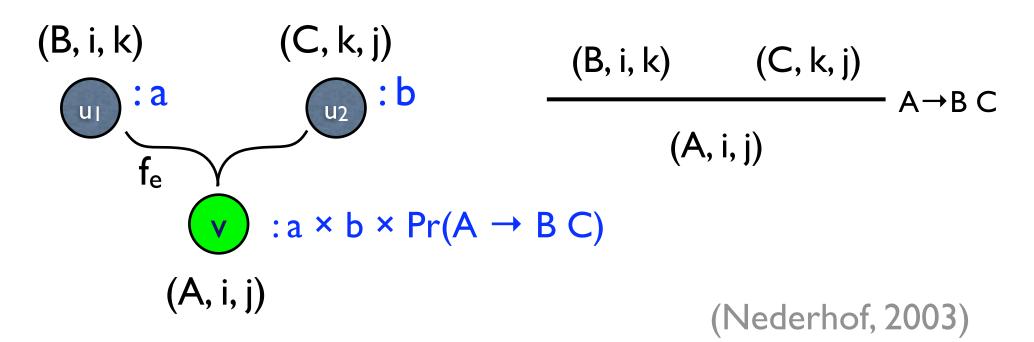
- weight function f_e: R^{|e|} to R
 - generalizes the \otimes operator in semirings



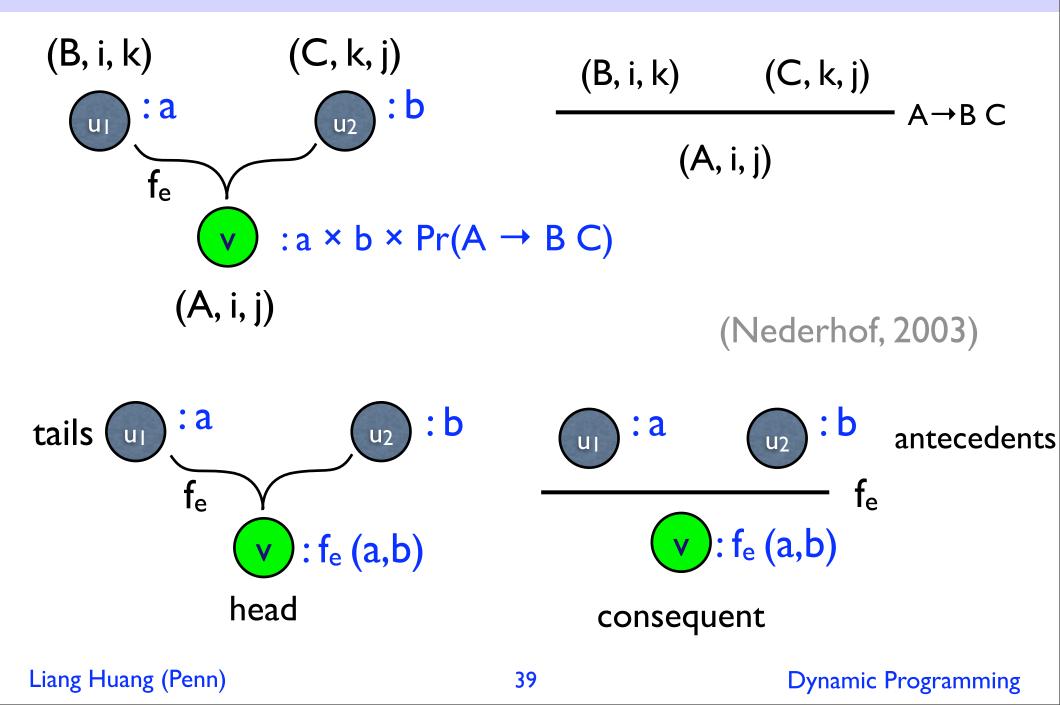
simple case: $f_e(a, b) = a \otimes b \otimes w(e)$

$$d(v) \oplus = f_e(d(u_1), d(u_2))$$

Hypergraphs and Deduction

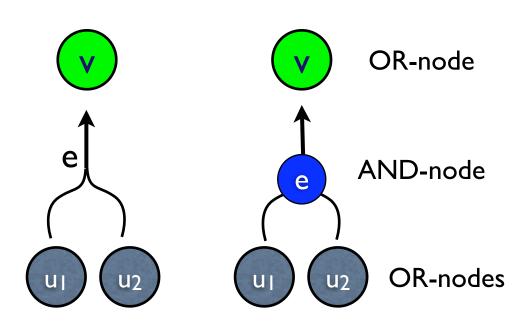


Hypergraphs and Deduction



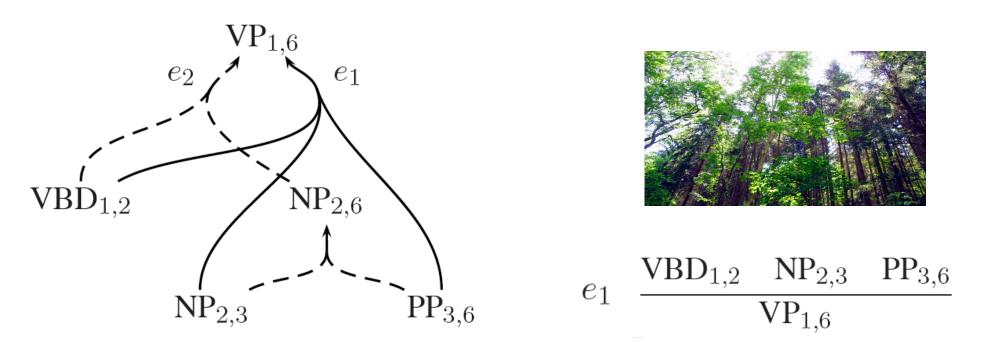
Related Formalisms

hypergraph	AND/OR graph	context-free grammar	deductive system
vertex	OR-node	symbol	item
source-vertex	leaf OR-node	terminal	axiom
target-vertex	root OR-node	start symbol	goal item
hyperedge	AND-node	production	instantiated deduction
$(\{u_1,u_2\},v,f)$		$v \stackrel{f}{ ightarrow} u_1 \; u_2$	$rac{u_1:a u_2:b}{v:f(a,b)}$



Packed Forests

- a compact representation of many parses
 - by sharing common sub-derivations
 - polynomial-space encoding of exponentially large set



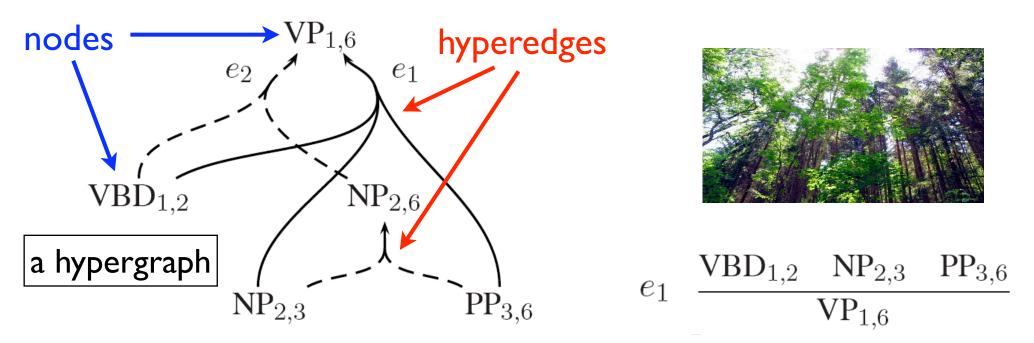
0 I 1 saw 2 him 3 with 4 a 5 mirror 6

(Klein and Manning, 2001; Huang and Chiang, 2005)

Liang Huang (Penn)

Packed Forests

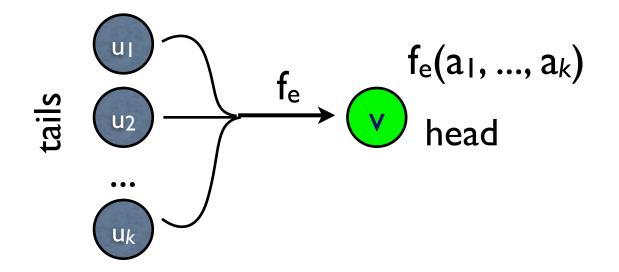
- a compact representation of many parses
 - by sharing common sub-derivations
 - polynomial-space encoding of exponentially large set



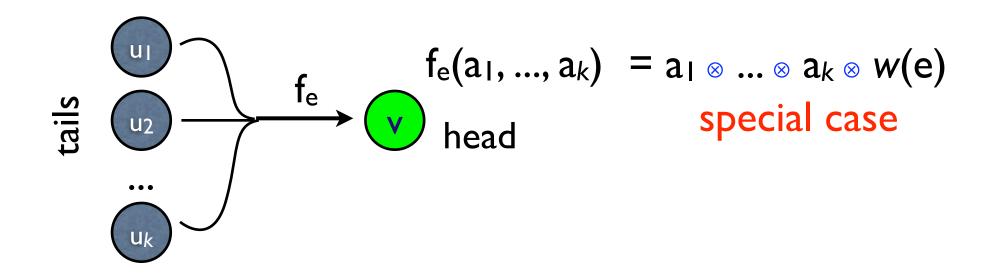
0 I 1 saw 2 him 3 with 4 a 5 mirror 6

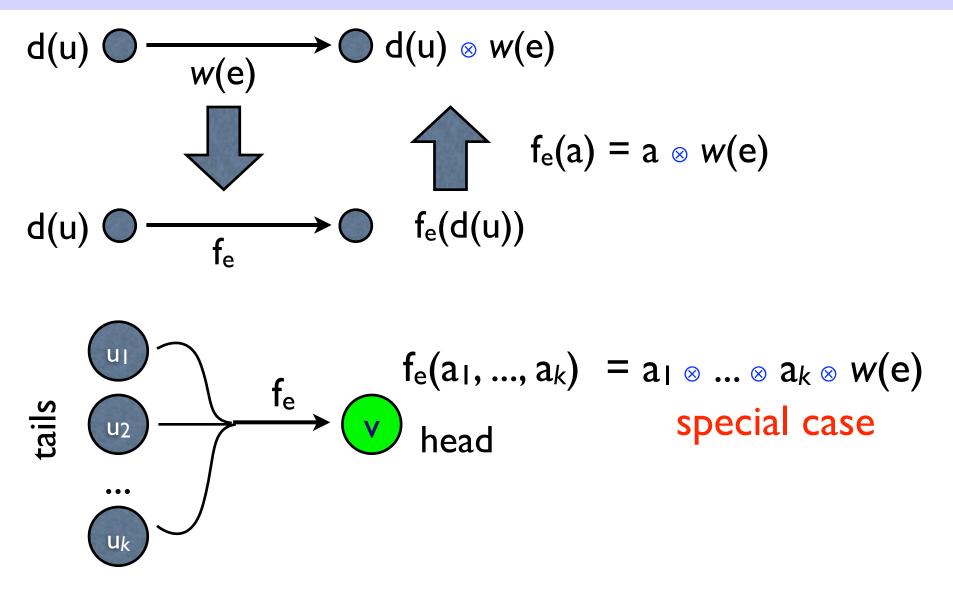
(Klein and Manning, 2001; Huang and Chiang, 2005)

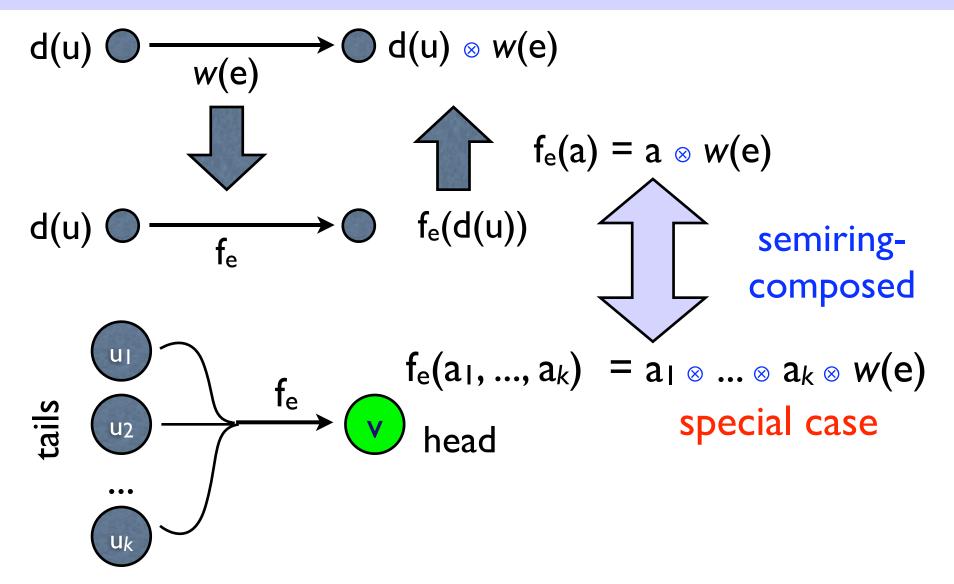
Liang Huang (Penn)

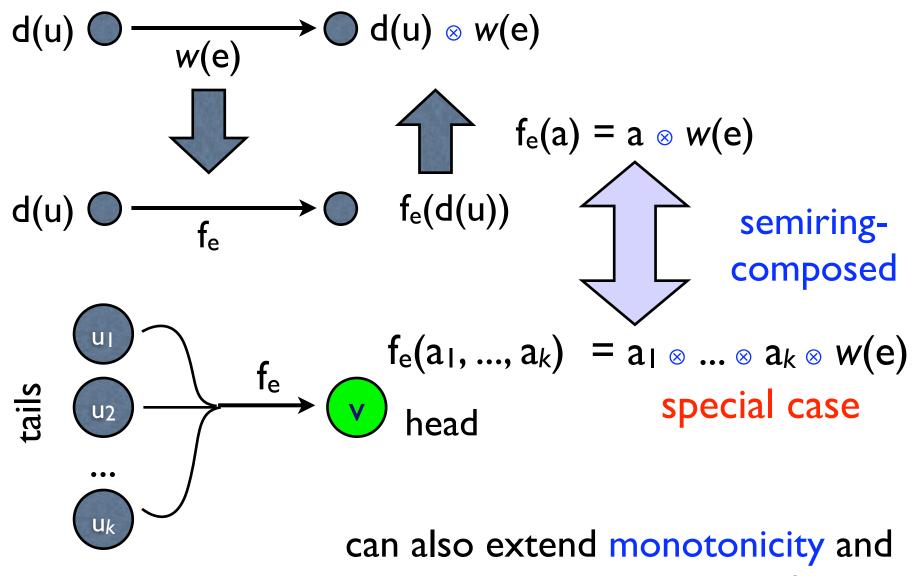


Liang Huang (Penn)









superiority to general weight functions

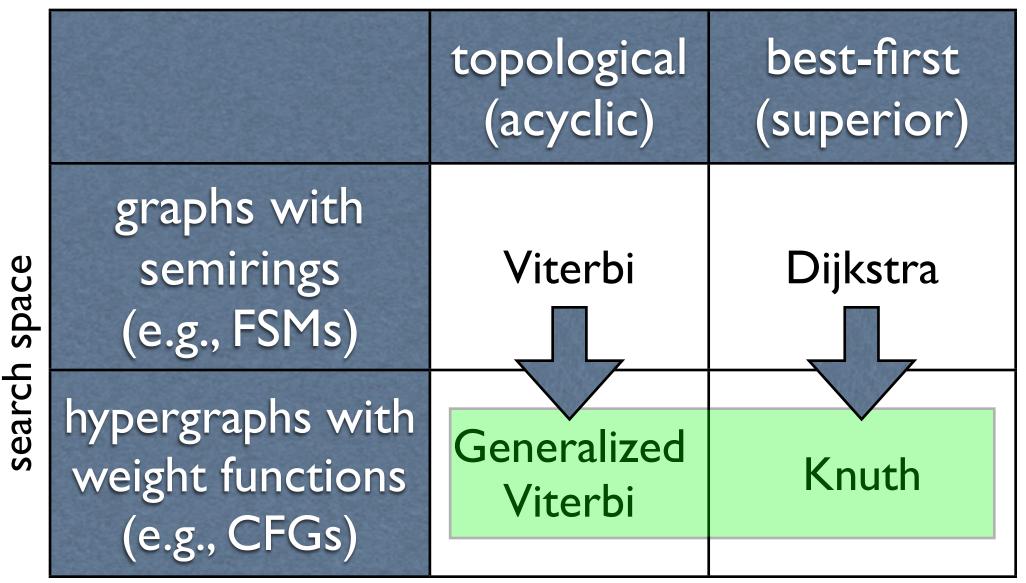
Generalizing Semiring Properties

- monotonicity
 - semiring: $a \le b \Rightarrow a \times c \le b \times c$
 - for all weight function f, for all $a_1 \dots a_k$, for all i, if $a'_i \leq a_i$ then $f(a_1 \dots a'_i \dots a_k) \leq f(a_1 \dots a_i \dots a_k)$
- superiority
 - semiring: $a \le a \times b$, $b \le a \times b$
 - for all f, for all $a_1...a_k$, for all i, $a_i \leq f(a_1, ..., a_k)$
- acyclicity
 - degenerate a hypergraph back into a graph

Liang Huang (Penn)

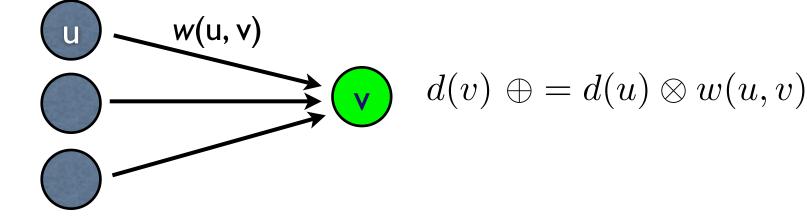
Two Dimensional Survey

traversing order



Viterbi Algorithm for DAGs

- I. topological sort
- 2. visit each vertex v in sorted order and do updates
 - for each incoming edge (u, v) in E
 - use d(u) to update d(v):
 - key observation: d(u) is fixed to optimal at this time

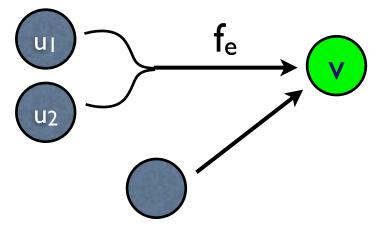


time complexity: O(V + E)

Liang Huang (Penn)

Viterbi Algorithm for DAHs

- I. topological sort
- 2. visit each vertex v in sorted order and do updates
 - for each incoming hyperedge e = ((u₁, .., u_{|e|}), v, f_e)
 - use d(u_i)'s to update d(v)
 - key observation: $d(u_i)$'s are fixed to optimal at this time



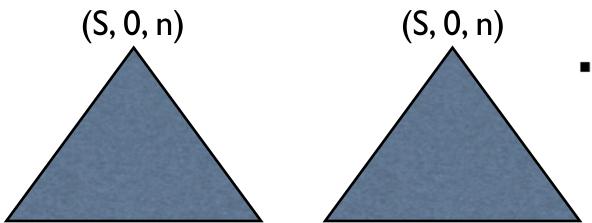
time complexity: O(V + E) (assuming constant arity)

Liang Huang (Penn)

Dynamic Programming

 $d(v) \oplus = f_e(d(u_1), \cdots, d(u_{|e|}))$

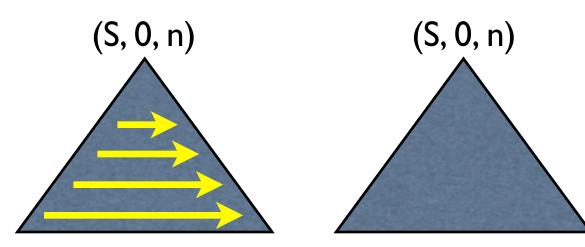
- parsing with CFGs in Chomsky Normal Form (CNF)
- typical instance of the generalized Viterbi for DAHs
- many variants of CKY ~ various topological ordering



- For each diff (<= n)
 - For each i (<= n)</p>
 - For each rule $X \to Y \: Z$
 - For each split point k score[X][i][j] = max

$O(n^3|P|)$

- parsing with CFGs in Chomsky Normal Form (CNF)
- typical instance of the generalized Viterbi for DAHs
- many variants of CKY ~ various topological ordering

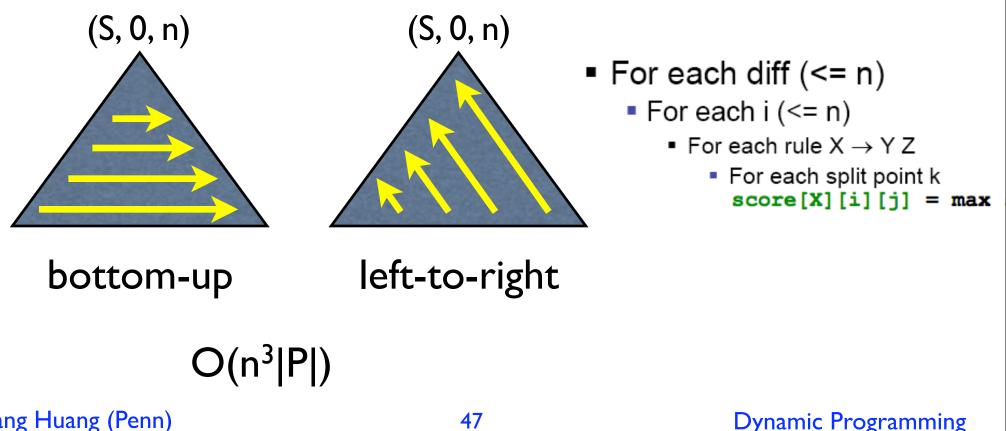


- For each diff (<= n)
 - For each i (<= n)</p>
 - For each rule $X \to Y \: Z$
 - For each split point k score[X][i][j] = max

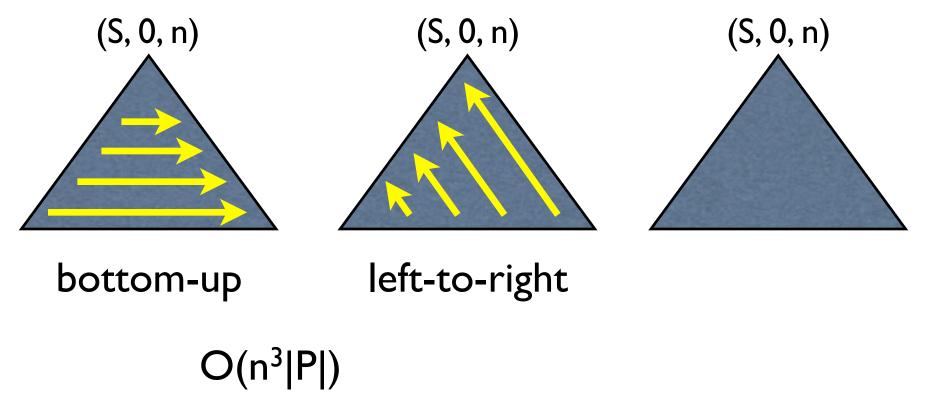
bottom-up

$O(n^3|P|)$

- parsing with CFGs in Chomsky Normal Form (CNF)
- typical instance of the generalized Viterbi for DAHs
- many variants of CKY ~ various topological ordering

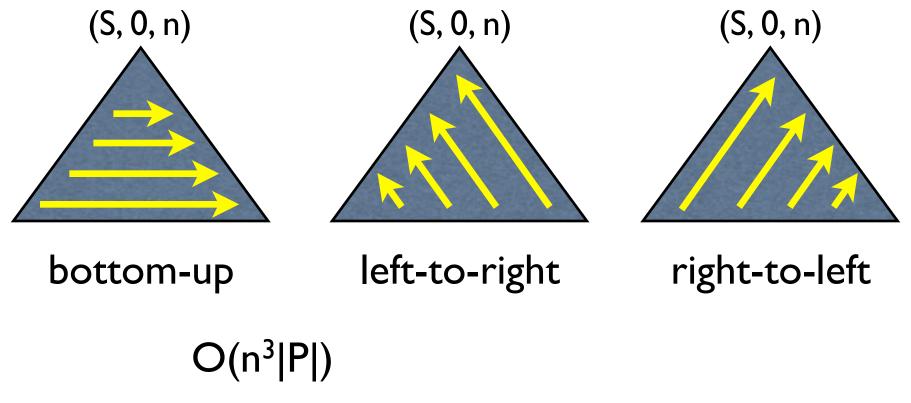


- parsing with CFGs in Chomsky Normal Form (CNF)
- typical instance of the generalized Viterbi for DAHs
- many variants of CKY ~ various topological ordering



Liang Huang (Penn)

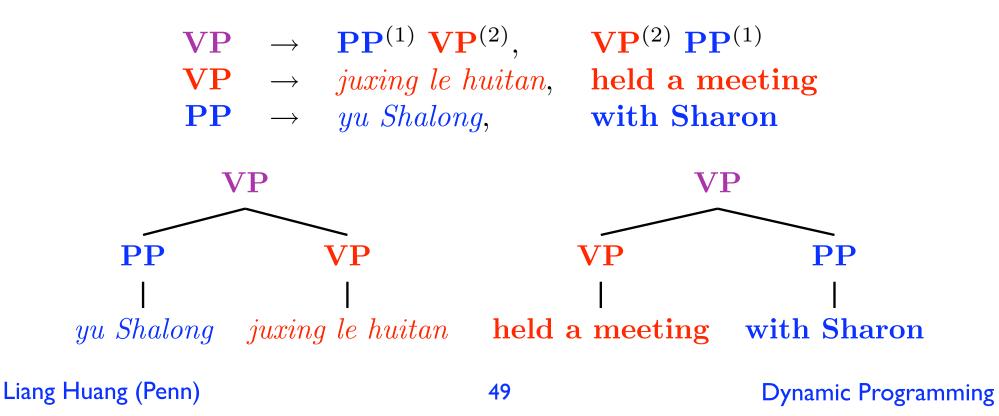
- parsing with CFGs in Chomsky Normal Form (CNF)
- typical instance of the generalized Viterbi for DAHs
- many variants of CKY ~ various topological ordering



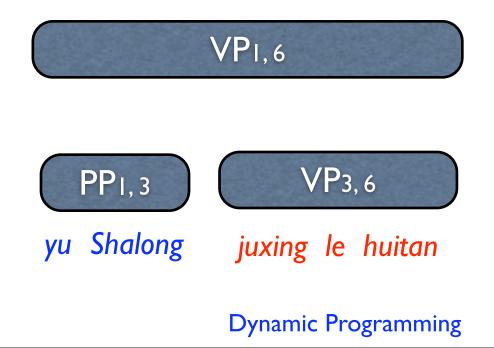
Liang Huang (Penn)

Example: Syntax-based MT

- synchronous context-free grammars (SCFGs)
 - context-free grammar in two dimensions
 - generating pairs of strings/trees simultaneously
 - co-indexed nonterminal further rewritten as a unit



- translation with SCFGs => monolingual parsing
- parse the source input with the source projection
 - build the corresponding target sub-strings in parallel
- $\mathbf{VP} \rightarrow \mathbf{PP}^{(1)} \mathbf{VP}^{(2)},$
- **VP** \rightarrow *juxing le huitan*,
- $\mathbf{PP} \rightarrow yu \ Shalong,$



- translation with SCFGs => monolingual parsing
- parse the source input with the source projection
 - build the corresponding target sub-strings in parallel
- $\mathbf{VP} \rightarrow \mathbf{PP}^{(1)} \mathbf{VP}^{(2)}, \mathbf{VF}^{(2)}$
- $VP \rightarrow juxing \ le \ huitan$, held a meeting
- $\mathbf{PP} \rightarrow yu \ Shalong,$
- VP⁽²⁾ PP⁽¹⁾ held a meeting with Sharon

VPI,6

VP3,6

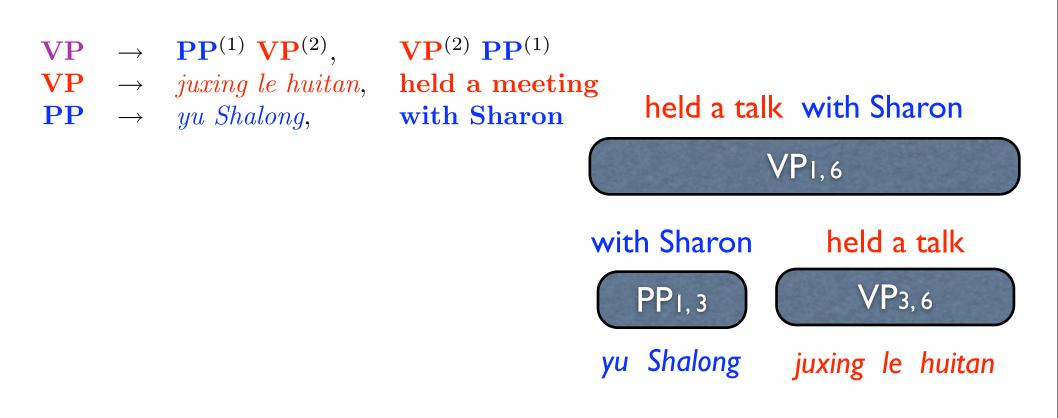
juxing le huitan

Dynamic Programming

PP1,3

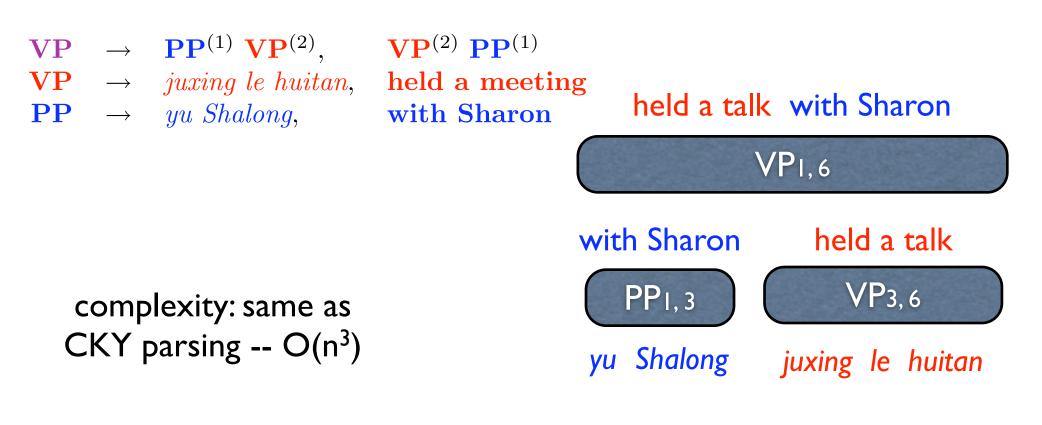
yu Shalong

- translation with SCFGs => monolingual parsing
- parse the source input with the source projection
 - build the corresponding target sub-strings in parallel



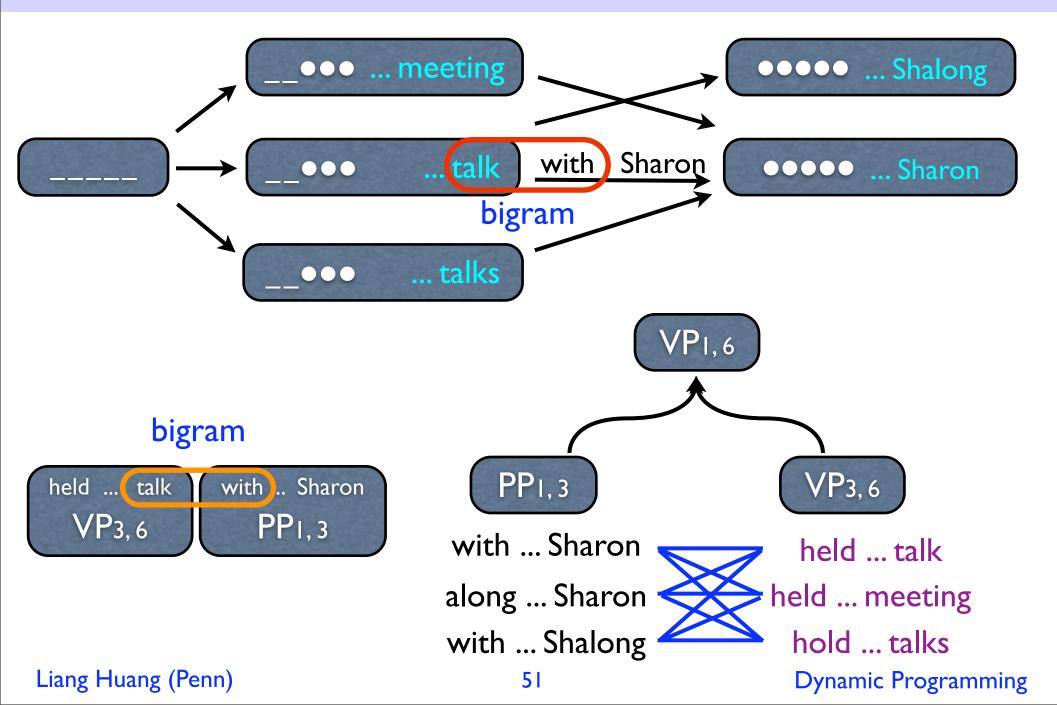
Liang Huang (Penn)

- translation with SCFGs => monolingual parsing
- parse the source input with the source projection
 - build the corresponding target sub-strings in parallel

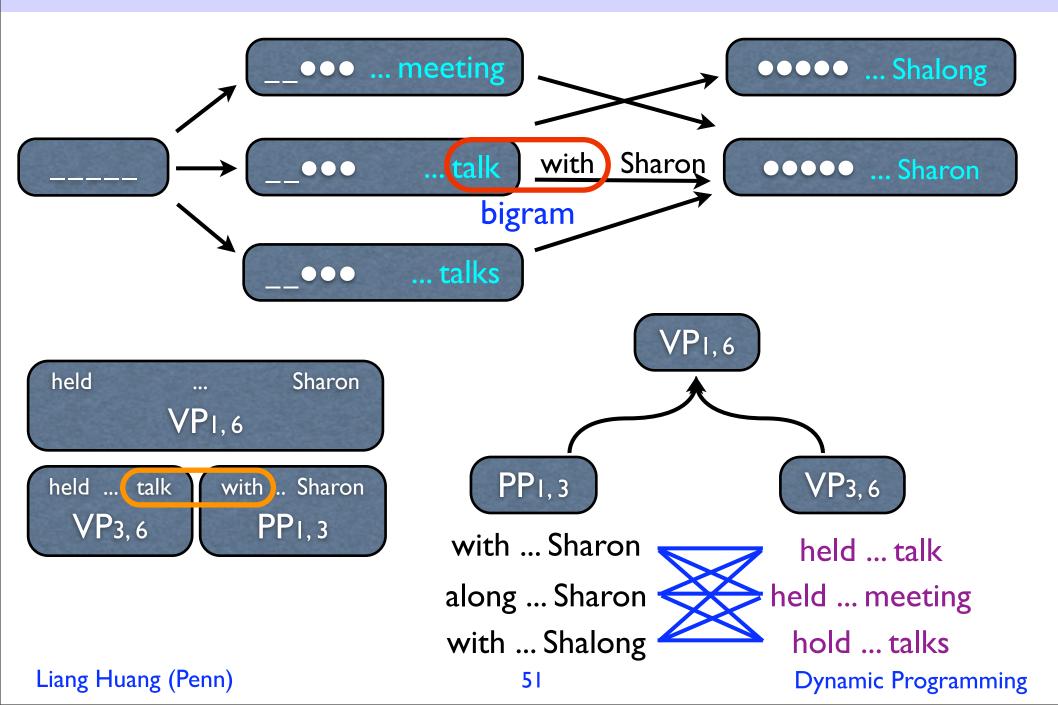


Liang Huang (Penn)

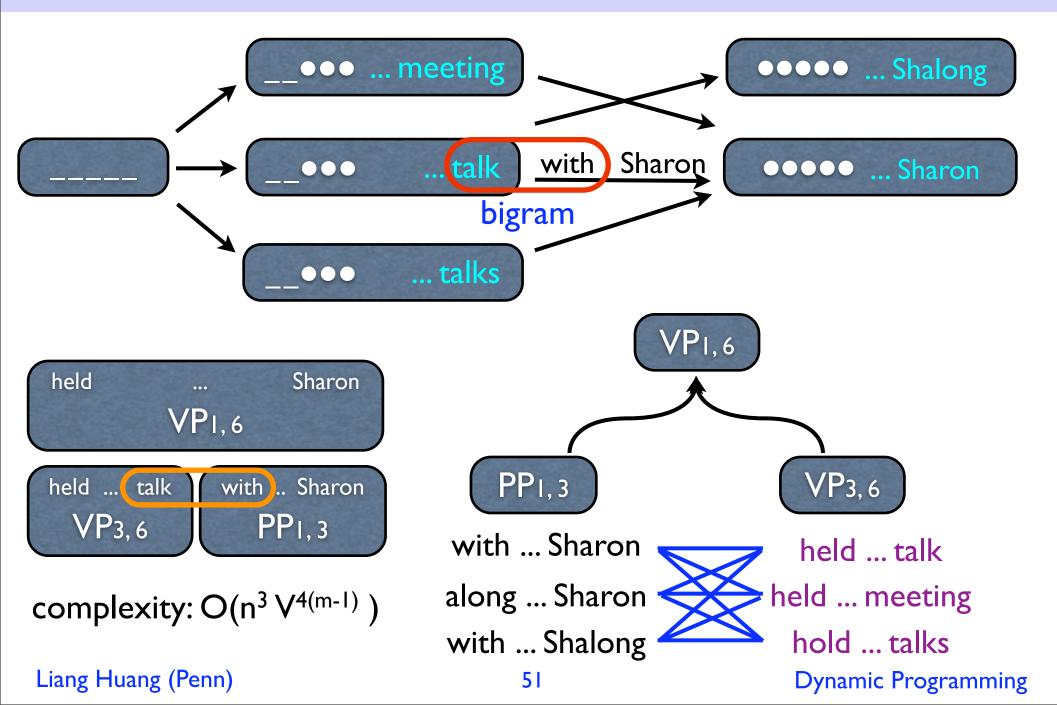
Adding a Bigram Model



Adding a Bigram Model

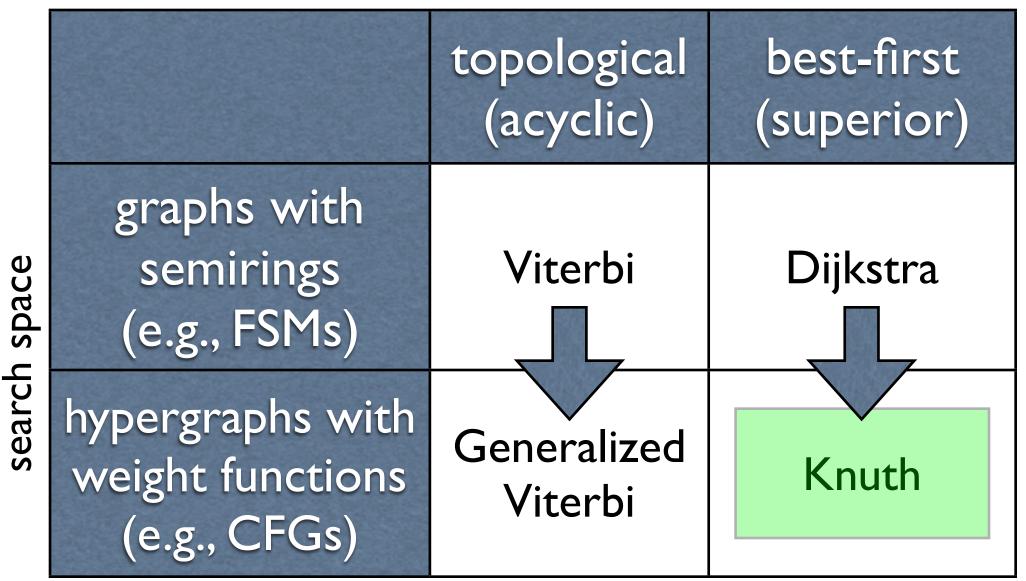


Adding a Bigram Model



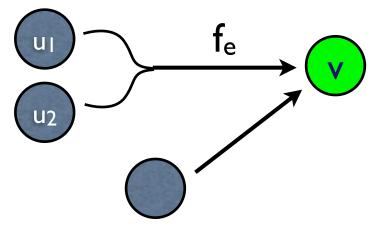
Two Dimensional Survey

traversing order



Viterbi Algorithm for DAHs

- I. topological sort
- 2. visit each vertex v in sorted order and do updates
 - for each incoming hyperedge e = ((u₁, .., u_{|e|}), v, f_e)
 - use d(u_i)'s to update d(v)
 - key observation: $d(u_i)$'s are fixed to optimal at this time



time complexity: O(V + E) (assuming constant arity)

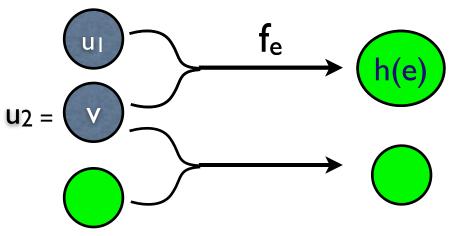
Liang Huang (Penn)

Dynamic Programming

 $d(v) \oplus = f_e(d(u_1), \cdots, d(u_{|e|}))$

Forward Variant for DA-s

- I. topological sort
- 2. visit each vertex v in sorted order and do updates
 - for each outgoing hyperedge e = ((u₁, ..., u_{|e|}), h(e), f_e)
 - if d(u_i)'s have all been fixed to optimal
 - use d(u_i)'s to update d(h(e))



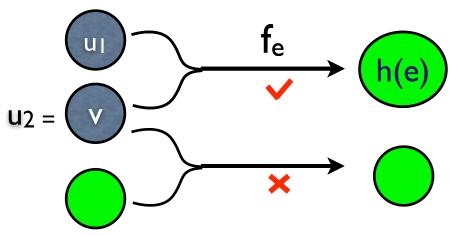
time complexity: O(V + E)

Liang Huang (Penn)

= u_i

Forward Variant for DA-s

- I. topological sort
- 2. visit each vertex v in sorted order and do updates
 - for each outgoing hyperedge e = ((u₁, ..., u_{|e|}), h(e), f_e)
 - if d(u_i)'s have all been fixed to optimal
 - use d(u_i)'s to update d(h(e))



time complexity: O(V + E)

Liang Huang (Penn)

Dynamic Programming

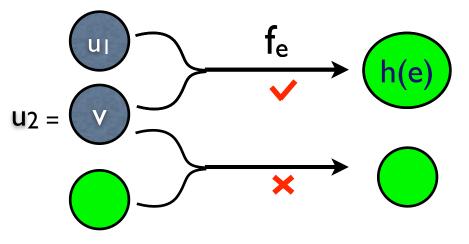
= **U**i

Forward Variant for DA-s

- I. topological sort
- 2. visit each vertex v in sorted order and do updates
 - for each outgoing hyperedge $e = ((u_1, ..., u_{|e|}), h(e), f_e)$
 - if d(u_i)'s have all been fixed to optimal
 - use d(u_i)'s to update d(h(e))

Q: how to avoid repeated checking? maintain a counter r[e] for each e: how many tails yet to be fixed? fire this hyperedge only if r[e]=0

time complexity: O(V + E)



= **U**i

Dijkstra Algorithm

- keep a cut (S :V S) where S vertices are fixed
 - maintain a priority queue Q of V S vertices
- each iteration choose the best vertex v from Q
 - move v to S, and use d(v) to forward-update others

 $d(u) \oplus = d(v) \otimes w(v, u)$

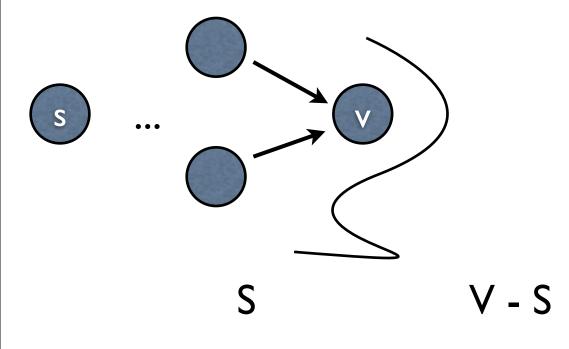
time complexity: O((V+E) lgV) (binary heap) O(V lgV + E) (fib. heap)

S

V - S

Dijkstra Algorithm

- keep a cut (S : V S) where S vertices are fixed
 - maintain a priority queue Q of V S vertices
- each iteration choose the best vertex v from Q
 - move v to S, and use d(v) to forward-update others



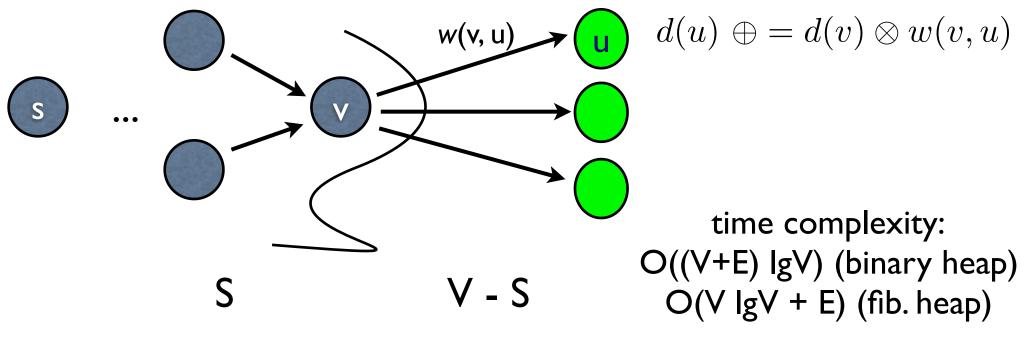
 $d(u) \oplus = d(v) \otimes w(v,u)$

time complexity: O((V+E) lgV) (binary heap) O(V lgV + E) (fib. heap)

Liang Huang (Penn)

Dijkstra Algorithm

- keep a cut (S : V S) where S vertices are fixed
 - maintain a priority queue Q of V S vertices
- each iteration choose the best vertex v from Q
 - move v to S, and use d(v) to forward-update others

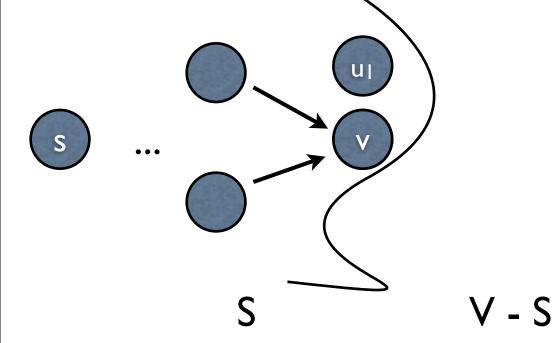


- keep a cut (S : V S) where S vertices are fixed
 - maintain a priority queue Q of V S vertices
- each iteration choose the best vertex v from Q
 - move v to S, and use d(v) to forward-update others

S)
	S	V - S

time complexity: O((V+E) IgV) (binary heap) O(V IgV + E) (fib. heap)

- keep a cut (S : V S) where S vertices are fixed
 - maintain a priority queue Q of V S vertices
- each iteration choose the best vertex v from Q
 - move v to S, and use d(v) to forward-update others



time complexity: O((V+E) lgV) (binary heap) O(V lgV + E) (fib. heap)

Liang Huang (Penn)

- keep a cut (S : V S) where S vertices are fixed
 - maintain a priority queue Q of V S vertices
- each iteration choose the best vertex v from Q
 - move v to S, and use d(v) to forward-update others

s ... f_e h(e)time complexity: S V - S O((V+E) lgV) (binary heap) O(V lgV + E) (fib. heap)

- keep a cut (S : V S) where S vertices are fixed
 - maintain a priority queue Q of V S vertices
- each iteration choose the best vertex v from Q
 - move v to S, and use d(v) to forward-update others

t_e

s ...

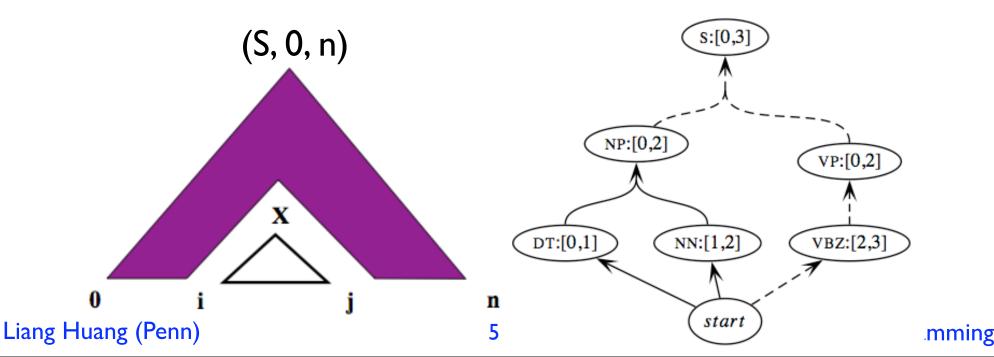
time complexity: O((V+E) lgV) (binary heap) O(V lgV + E) (fib. heap)

S

V - S

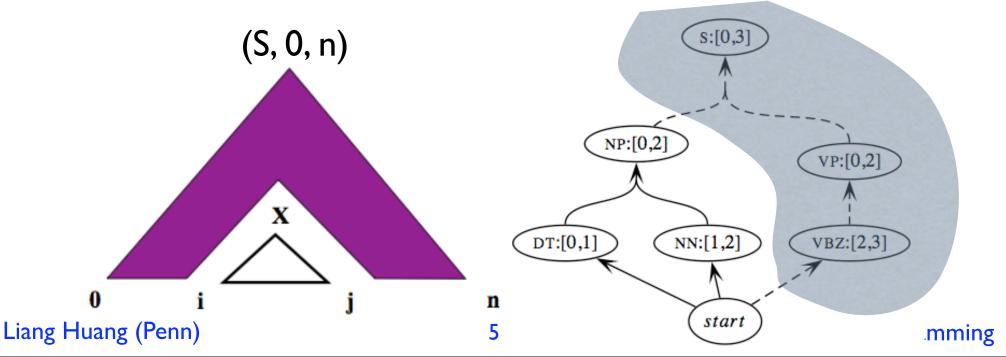
Example: Best-First/A* Parsing

- Knuth for parsing: best-first (Caraballo & Charniak, 1998)
- further speed-up: use A* heuristics
 - showed significant speed up with carefully designed heuristic functions (Klein and Manning, 2003)
 - heuristic function: an estimate of outside cost



Example: Best-First/A* Parsing

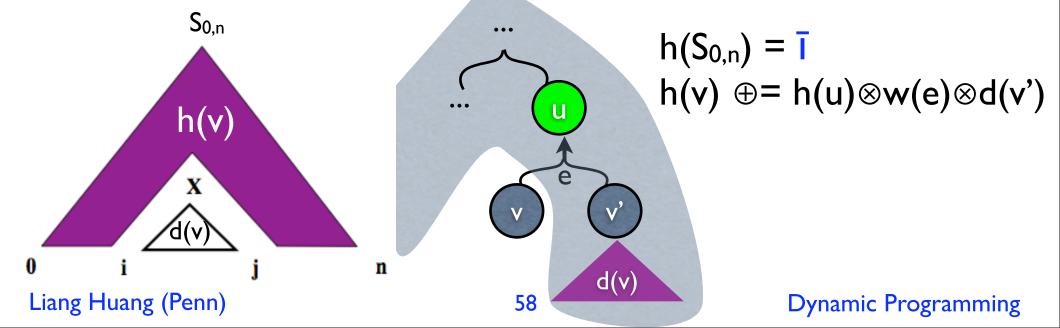
- Knuth for parsing: best-first (Caraballo & Charniak, 1998)
- further speed-up: use A* heuristics
 - showed significant speed up with carefully designed heuristic functions (Klein and Manning, 2003)
 - heuristic function: an estimate of outside cost



Outside Cost in Hypergraph

d(v)

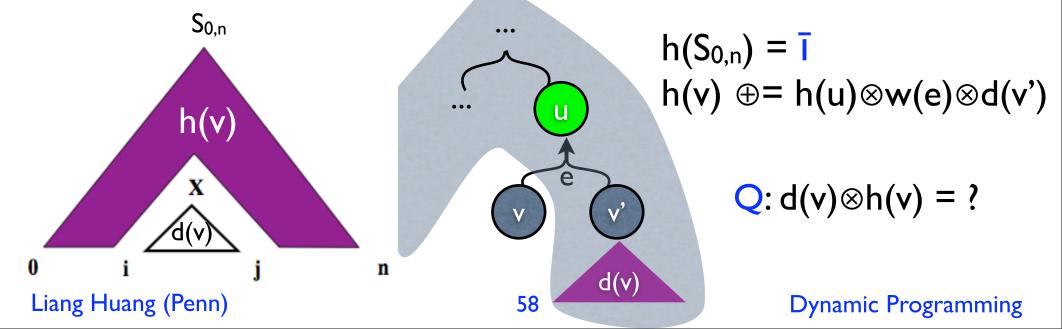
- outside cost: yet to pay to reach goal
- let's only consider semiring-composed case
 - and only acyclic hypergraphs
- after computing d(v) for all v from bottom-up
 - backwards Viterbi from top-down (outside-in)



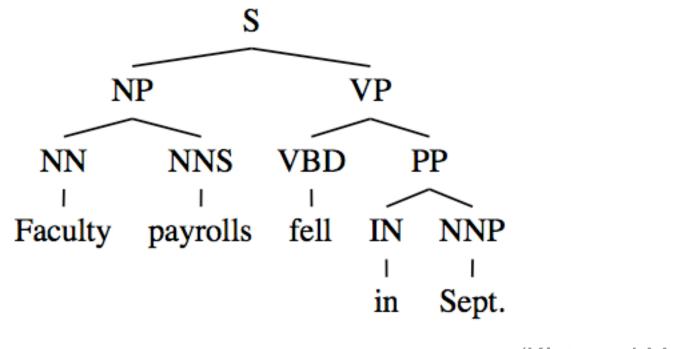
Outside Cost in Hypergraph

d(v)

- outside cost: yet to pay to reach goal
- Iet's only consider semiring-composed case
 - and only acyclic hypergraphs
- after computing d(v) for all v from bottom-up
 - backwards Viterbi from top-down (outside-in)



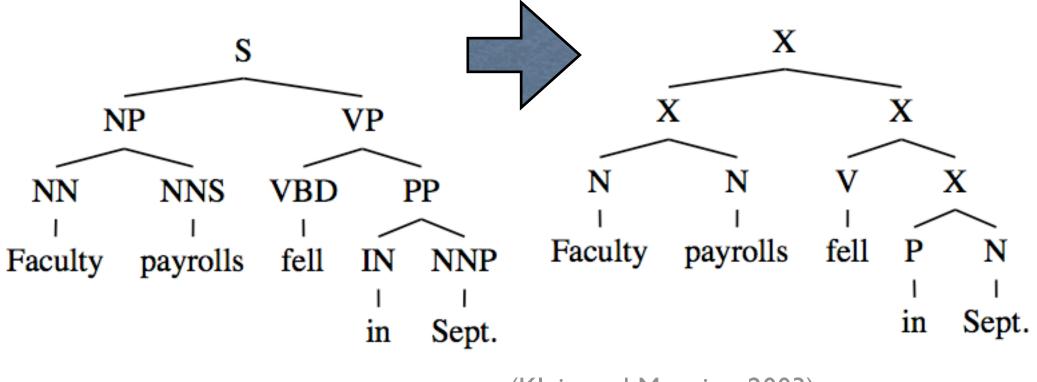
- how to guess? project onto a coarser-grained space
- and parse with the coarser grammar
 - outside cost of of the coarser item as heuristics



(Klein and Manning, 2003)

Liang Huang (Penn)

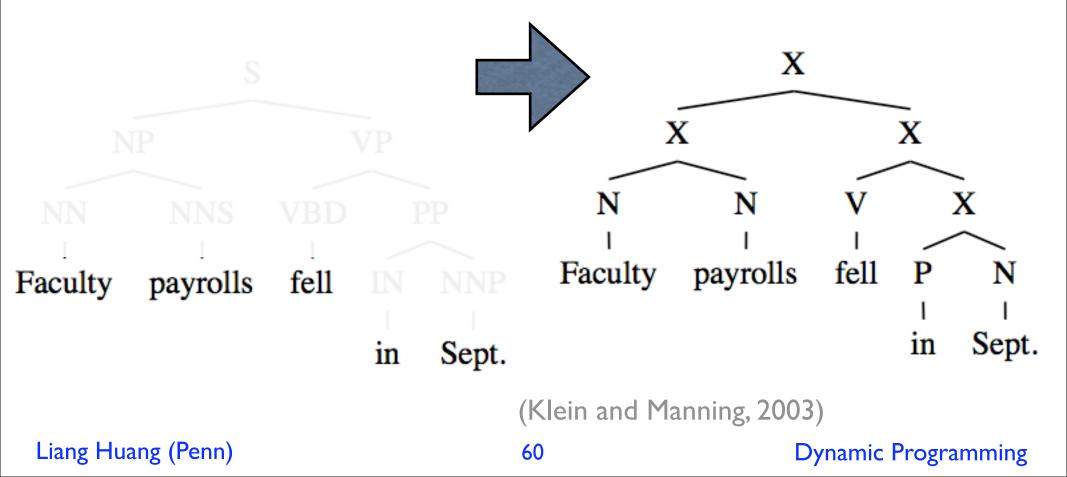
- how to guess? project onto a coarser-grained space
- and parse with the coarser grammar
 - outside cost of of the coarser item as heuristics



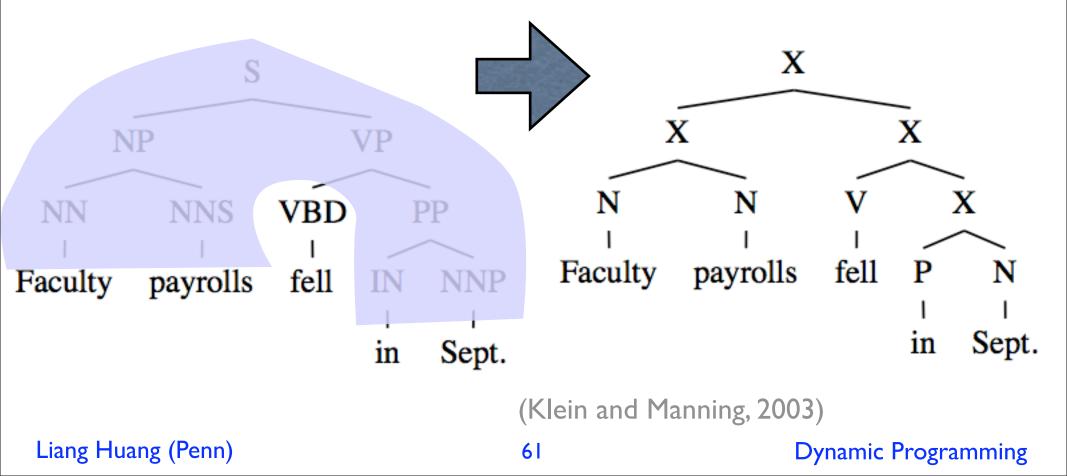
(Klein and Manning, 2003)

Liang Huang (Penn)

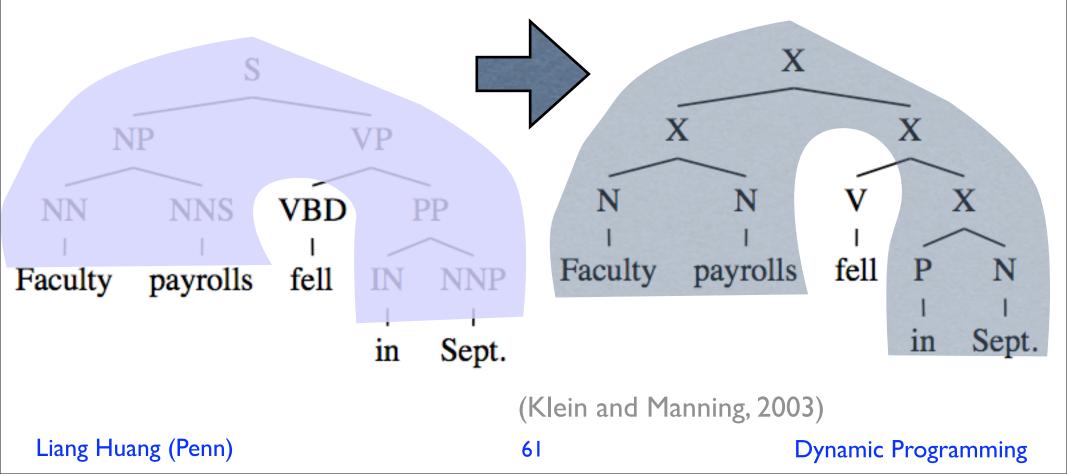
- how to guess? project onto a coarser-grained space
- and parse with the coarser grammar
 - outside cost of of the coarser item as heuristics



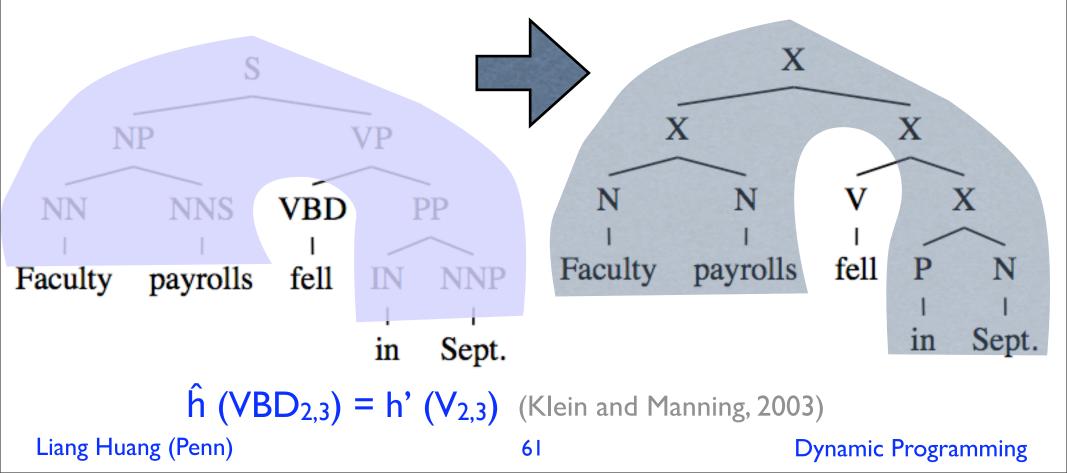
- how to guess? project onto a coarser-grained space
- and parse with the coarser grammar
 - outside cost of of the coarser item as heuristics



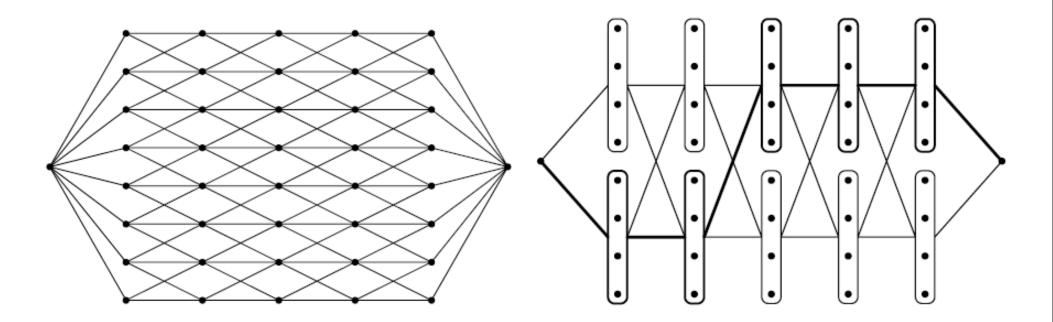
- how to guess? project onto a coarser-grained space
- and parse with the coarser grammar
 - outside cost of of the coarser item as heuristics

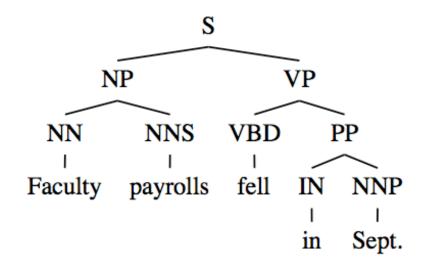


- how to guess? project onto a coarser-grained space
- and parse with the coarser grammar
 - outside cost of of the coarser item as heuristics



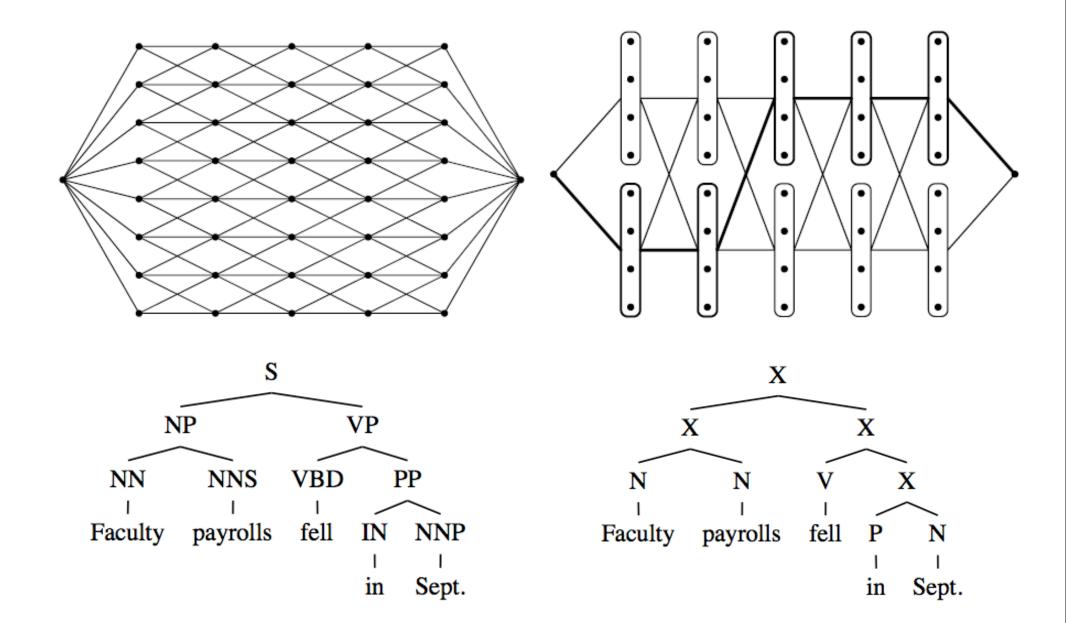
Analogy with Graphs





Liang Huang (Penn)

Analogy with Graphs



Liang Huang (Penn)

Dynamic Programming

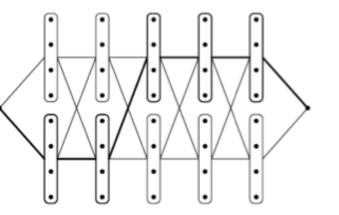
More on Coarse-to-Fine

- multilevel coarse-to-fine A*
 - heuristic = exact outside cost in previous stage
 - $\hat{h}_{i}(v) = h_{i-1}(proj_{i-1}(v))$
 - VBD>V>X. \hat{h}_i (VBD_{1,5}) = h_{i-1} (V_{1,5}); \hat{h}_{i-1} (V_{1,5}) = h_{i-2} (X_{1,5})
- multilevel coarse-to-fine Viterbi w/ beam-search
 - Viterbi + beam pruning in each stage
 - prune according to merit: $d(v) \otimes h(v) \oslash d(TOP)$
 - hard to derive a provably correct threshold

in practice: use a preset threshold (but works well!)
 Liang Huang (Penn)
 Dynamic Programming

More on Coarse-to-Fine

- multilevel coarse-to-fine A*
 - heuristic = exact outside cost in
 - $\hat{h}_{i}(v) = h_{i-1}(proj_{i-1}(v))$

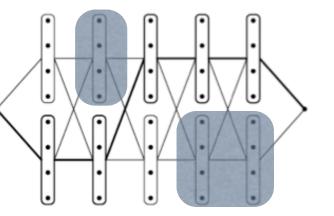


- VBD>V>X. \hat{h}_i (VBD_{1,5}) = h_{i-1} (V_{1,5}); \hat{h}_{i-1} (V_{1,5}) = h_{i-2} (X_{1,5})
- multilevel coarse-to-fine Viterbi w/ beam-search
 - Viterbi + beam pruning in each stage
 - prune according to merit: $d(v) \otimes h(v) \oslash d(TOP)$
 - hard to derive a provably correct threshold

in practice: use a preset threshold (but works well!)
 Liang Huang (Penn)
 63
 Dynamic Programming

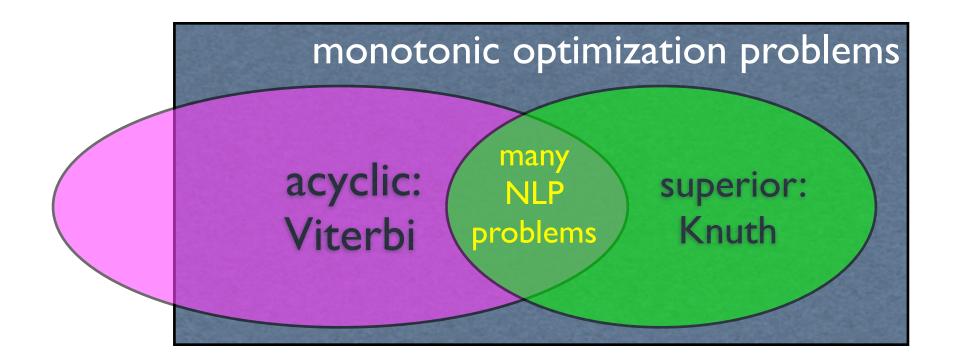
More on Coarse-to-Fine

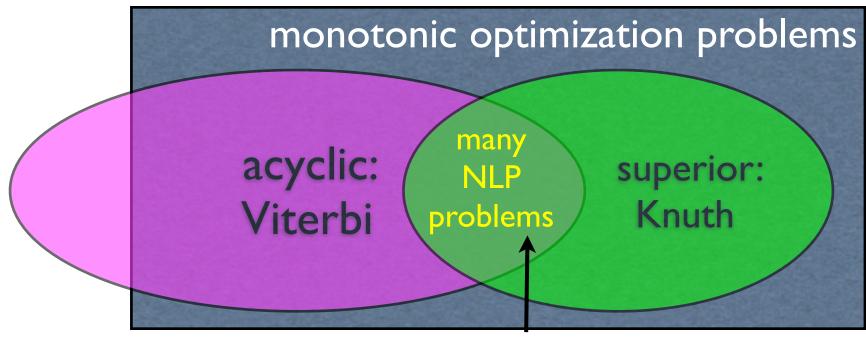
- multilevel coarse-to-fine A*
 - heuristic = exact outside cost in
 - $\hat{h}_{i}(v) = h_{i-1}(proj_{i-1}(v))$



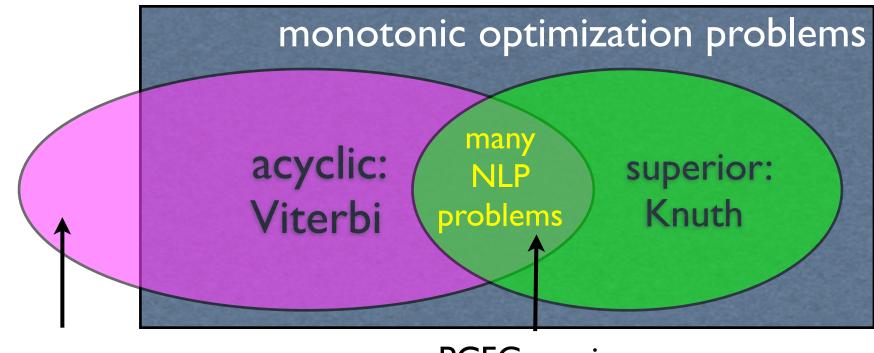
- VBD>V>X. \hat{h}_i (VBD_{1,5}) = h_{i-1} (V_{1,5}); \hat{h}_{i-1} (V_{1,5}) = h_{i-2} (X_{1,5})
- multilevel coarse-to-fine Viterbi w/ beam-search
 - Viterbi + beam pruning in each stage
 - prune according to merit: $d(v) \otimes h(v) \oslash d(TOP)$
 - hard to derive a provably correct threshold

in practice: use a preset threshold (but works well!)
 Liang Huang (Penn)
 63
 Dynamic Programming

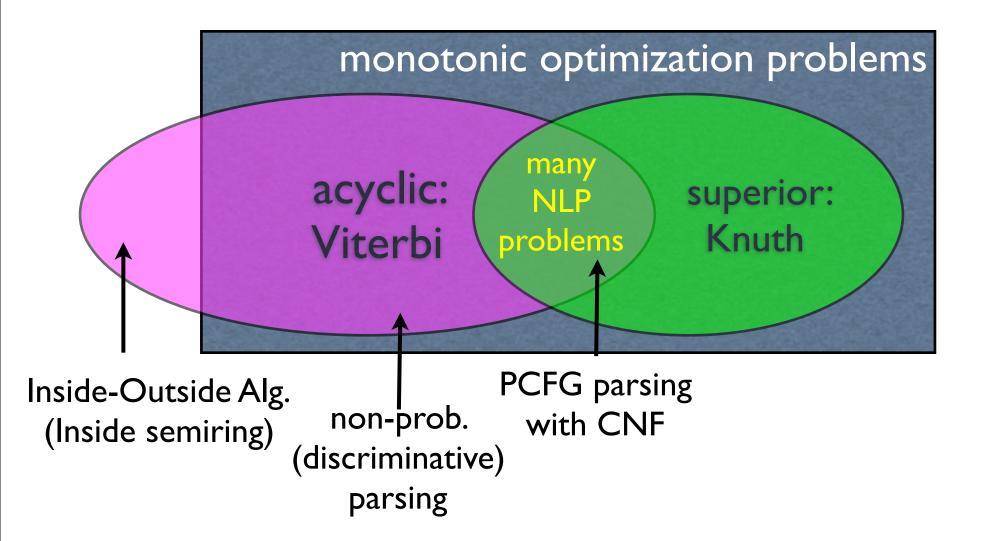


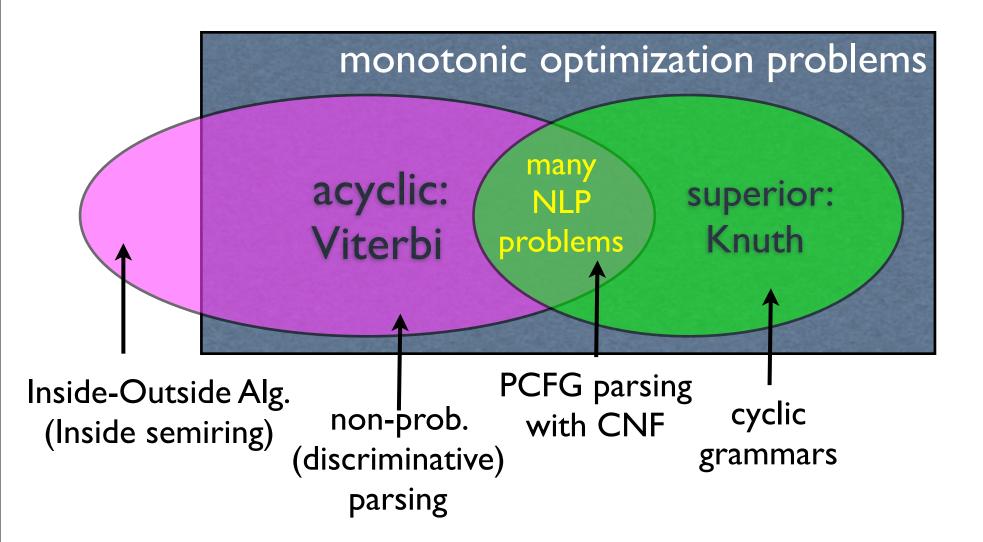


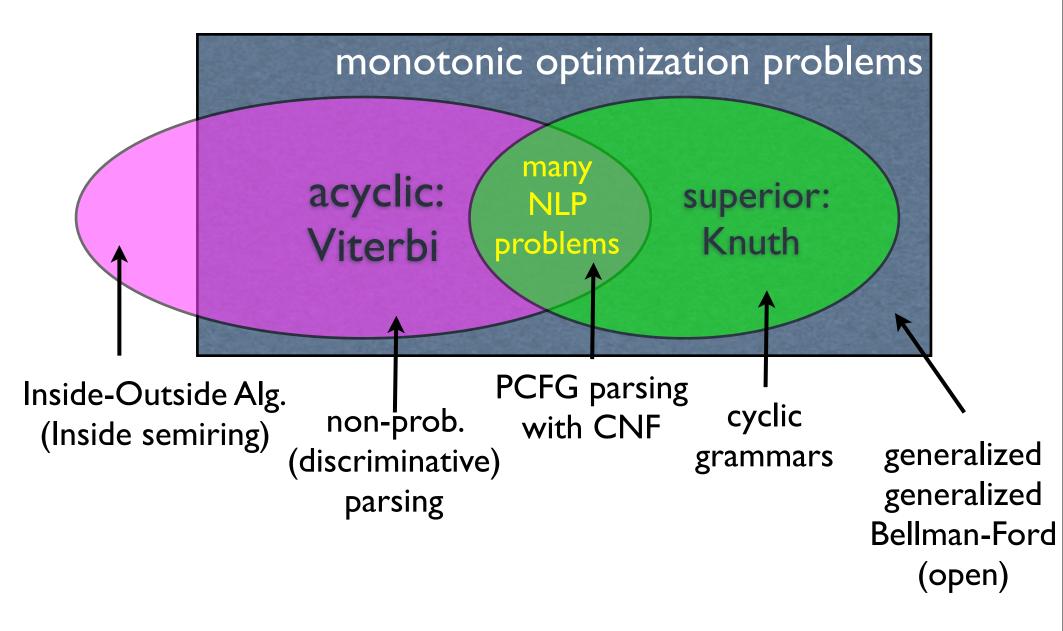
PCFG parsing with CNF



Inside-Outside Alg. (Inside semiring) PCFG parsing with CNF





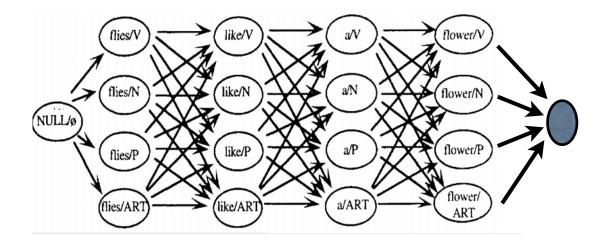


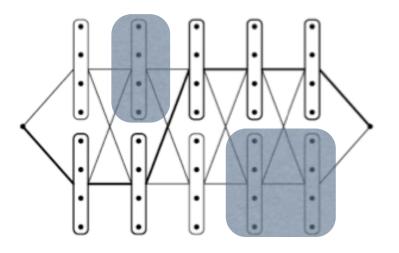
Take Home Message

- Dynamic Programming is cool, easy, and universal!
- two frameworks and two types of algorithms
 - monotonicity; acyclicity and/or superiority
 - topological (Viterbi) vs. best-first style (Dijkstra/Knuth/A*)
 - when to choose which: A* can finish early if lucky
 - graph (lattice) vs. hypergraph (forest)
 - incremental, finite-state vs. branching, context-free
- covered many typical NLP applications

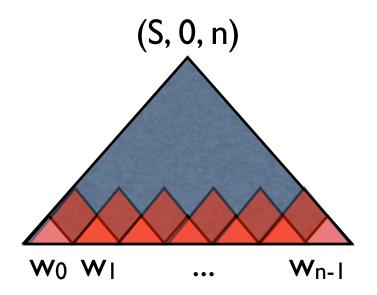
a better understanding of theory helps in practice
 Liang Huang (Penn)
 65
 Dynamic Programming

Thanks!





Questions? Comments?



final slides will be available on my website.