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Remembering Fred Jelinek (1932-2010)

Prof. Jelinek hosted my visit and this talk on his last day.

He was very supportive of this work, which is related to his work on
structured language models, and | dedicate my work to his memory.
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® NLP is (almost) all about ambiguity resolution

® human-beings resolve ambiguity incrementally
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Ambiguities in Translation
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Google translate: carefully slide
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If you are stolen...
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If you are stolen...

TERE, 1 é.

u are stolen, call the polic

Google translate  the theft to the police
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or even...
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or even...

clear evidence that NLP is used in real life!
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Ambiguities in Parsing
AN A

| feed cats nearby in the garden..

® |et’s focus on dependency structures for simplicity

® ambiguous attachments of nearby and in

® ambiguity explodes exponentially with sentence length
® must design efficient (polynomial) search algorithm
e typically using dynamic programming (DP); e.g. CKY
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Ambiguities in Parsing

N AN A

| feed cats nearby in he garden ...

—)

® |et’s focus on dependency structures for simplicity

® ambiguous attachments of nearby and in

® ambiguity explodes exponentially with sentence length
® must design efficient (polynomial) search algorithm
e typically using dynamic programming (DP); e.g. CKY
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But full DP is too slow...

| feed cats nearby in the garden ..

e —
e full DP (like CKY) is too slow (cubic-time)

® while human parsing is fast & incremental (linear-time)
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But full DP is too slow...

| feed cats nearby in the garden ...

——
e full DP (like CKY) is too slow (cubic-time)

® while human parsing is fast & incremental (linear-time)
® how about incremental parsing then!?

® yes, but only with greedy search (accuracy suffers)

® explores tiny fraction of trees (even w/ beam search)
® can we combine the merits of both approaches!?

® a fast, incremental parser with dynamic programming!?

® explores exponentially many trees in linear-time!?
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Linear-Time Incremental DP

SEetey incremental parsing

search (e.g. shift-reduce)
@ (Nivre 04; Collins/Roark 04;...)

this work: full DP

principled fast shift-reduce parsing (e.g. CKY)

search

©

with dynamic programming | (Eisner 96; Collins 99;...)

fast © slow )
(linear-time) (cubic-time)
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Big Picture

natural

languages

©

psycholinguistics

programming
languages

S

computer

@NLP

©

compiler theory
(LR, LALR, ...)
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Preview of the Results

® very fast linear-time dynamic programming parser

® best reported dependency accuracy on PTB/CTB

® explores exponentially many trees (and outputs forest)
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Preview of the Results

® very fast linear-time dynamic programming parser

® best reported dependency accuracy on PTB/CTB

® explores exponentially many trees (and outputs forest)
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Qutline

® |ncremental (Shift-Reduce) Parsing
® Dynamic Programming for Incremental Parsing

® Experiments

DP for Incremental Parsing
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Shift-Reduce Parsing
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Shift-Reduce Parsing

action
0 -
I shift
2 shift
3 |-reduce
4 shift
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Shift-Reduce Parsing

| feed cats nearby in the garden.

queue

| feed cats ...

feed cats nearby ...

cats nearby in ...

cats nearby in ...

action stack
0 _
I shift |
2 shift | feed
3 l-reduce Kfeed
4 shift feed cats
_k
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Shift-Reduce Parsing

| feed cats nearby in the garden.

queue

| feed cats ...

feed cats nearby ...

cats nearby in ...

cats nearby in ...

nearby in the ...

nearby in the ...

action stack
0 i}
I shift |
2 shift | feed
3 l-reduce feed
4 shift feed cats

_k

5a r-reduce feed |
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Shift-Reduce Parsing

| feed cats nearby in the garden.

action stack queue
0 - | feed cats ...
| shift | feed cats nearby ...
2 shift | feed cats nearby in ...
3 l-reduce yfeed cats nearby in ...
shift Jeed Cats\ nearby in the ...

| shift-reduce

52  r-reduce feed | conflict nearby in the ...

| cats

Sb shift feed cats nearby in the garden ...

i
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Choosing Parser Actions

+ stack queue — + stack queue —

.. \feed cats in'the garden ...
" N .. S2 [ SI So| qo/qi ..
features: A A
(so.w, , 4o, ...) = (cats, ,in, ...)

® score each action using features f and weights w

® features are drawn from a local window
abstraction (or signature) of a state -- this inspires DP!

® weights trained by structured perceptron (Collins 02)
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Greedy Search

® each state => three new states (shift, I-reduce, r-reduce)

® search space should be exponential

® greedy search: always pick the best next state
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Beam Search

® each state => three new states (shift, I-reduce, r-reduce)

® search space should be exponential

® beam search: always keep top-b states
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Dynamic Programming

® cach state => three new states (s

® key idea of DP: share common su

® merge equivalent states => polynomial space
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ift, I-reduce, r-reduce)

oproblems

® merge equivalent states => polynomial space

o
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“graph-structured stack” (Tomita, | 988)
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Dynamic Programming

® cach state => three new states (s

® key idea of DP: share common su

ift, I-reduce, r-reduce)

oproblems

® merge equivalent states => polynomial space

each DP state corresponds to
exponentially many non-DP states

=Z

“graph-structured stack” (Tomita, | 988)
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Dynamic Programming

® cach state => three new states (s

® key idea of DP: share common su

ift, I-reduce, r-reduce)

oproblems

® merge equivalent states => polynomial space

each DP state corresponds to 1010

exponentially many non-DP states .
10

/ % ¥

—_— ) 2 / 104

; “hon-DP beam search’

0O 10 20 30 40 50 60 70

“graph-structured stack” (Tomita, | 988)
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Merging Equivalent States

® two states are equivalent if they agree on features

® because same features guarantee same cost
+ stack queue —

S2 1;

qo qi ...
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® shift-reduce conflict: 52 1 S0
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sh re sh assume features only
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® because same features guarantee same cost

® shift-reduce conflict:
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° ‘ feed \ nearby
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Merging Equivalent States

® two states are equivalent if they agree on features

® because same features guarantee same cost
+ stack queue —

® shift-reduce conflict: qo qiI ...

e S2 S| SO
° ueed catsJ in the garden A K

re
& ... hearby |—»|... cats

... cats

T h
€. . feed S—> ... nearby

° \_“l‘eed.Sk nearby|in the garden
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Merging Equivalent States

® two states are equivalent if they agree on features

® because same features guarantee same cost

® shift-reduce conflict:

+ stack queue —

® | feed in the garden

... cats

feed,
o ‘ feed |
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+ stack queue —
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Merging Equivalent States

® two states are equivalent if they agree on features

® because same features guarantee same cost
+ stack queue —

® shift-reduce conflict: e 52 1 S0 |/qoq1 ...
° ‘ feed \ in the garden K
e} Shy!... nearby 5|, cats|re
Nearby\ | cats < X > ... feed
" feed| —> ... nearby| "¢

° ‘ feed | in the garden

nearby
(local) ambiguity-packing!
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Merging Equivalent States

® two states are equivalent if they agree on features

® because same features guarantee same cost
+ stack queue —

® shift-reduce conflict: e 52 1 S0 |/qo q1 ..
® | feed in[the garden K
b Y & ... nearby 35|... cats X
L. |...Cats - 1 / .. feed
" feed| > ... nearby| "¢ sh
® | feed in|the garden - 1N
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Merging Equivalent States

® two states are equivalent if they agree on features

® because same features guarantee same cost
+ stack queue —

® shift-reduce conflict: e 52 1 S0 |/ qoql ...
° feed‘ in[the garden K
| cats sh re
... hearby|—>|... cats|Je
\neal”b_}’ cats< )’h > feed
" feed| > . nearby| "¢  sh

... in

® | feed in|the garden

'X\
I cats nearby Eﬁ ﬁ‘

graph structured stack
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Theory: Polynomial-Time DP

+ stack queue —

eof S2 SIS0

® this DP is exact and polynomial-time if features are:

qo/qi ...

® a) bounded -- for polynomial time
® features can only look at a local window
® b) monotonic -- for correctness (optimal substructure)

® features should draw no more info from trees farther
away from stack top than from trees closer to top

® both are intuitive: a) always true; b) almost always true
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Theory: Monotonic History

® related: grammar refinement by annotation (Johnson, 1998)
® annotate vertical context history (e.g., parent)

® monotonicity: can’t annotate grand-parent without
annotating the parent (otherwise DP would fail)

® our features: left-context history instead of vertical-context
® similarly, can’t annotate s2 without annotating s

® but we can always design “minimum monotonic superset”

srand-parent S
S
NP NP I VP So
| V/ \Np stack
—
shot Det N PP shot Det N PP
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Related VWork

® Graph-Structured Stack (Tomita 88): Generalized LR
® GSSis just a chart viewed from left to right (e.g. Earley 70)
® this line of work started w/ Lang (1974); stuck since 1990
® b/c explicit LR table is impossible with modern grammars

® Jelinek (2004) independently rediscovered GSS
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Related VWork

® Graph-Structured Stack (Tomita 88): Generalized LR
® GSSis just a chart viewed from left to right (e.g. Earley 70)
® this line of work started w/ Lang (1974); stuck since 1990
® b/c explicit LR table is impossible with modern grammars

® Jelinek (2004) independently rediscovered GSS

® We revived and advanced this line of work in two aspects
® theoretical:implicit LR table based on features
merge and split on-the-fly; no pre-compilation needed
monotonic feature functions guarantee correctness (new)

® practical: achieved linear-time performance with pruning
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Jelinek (2004)

STOCHASTIC ANALYSIS OF
STRUCTURED LANGUAGE MODELING

FREDERICK JELINEK*

\\ \'- Abstract. As previously introduced, the Structured Language Model (SLM) op-
erated with the help of a stack from which less probable sub-parse entries were purged
before further words were generated. In this article we generalize the CKY algorithm to
obtain a chart which allows the direct computation of language model probabilities thus
rendering the stacks unnecessary. An analysis of the behavior of the SLM leads to a gen-
eralization of the Inside — Qutside algorithm and thus to rigorous EM type re-estimation
of the SLM parameters. The derived algorithms are computationally expensive but their
demands can be mitigated by use of appropriate thresholding. | ’

1. Introduction. The structuréd language model (SLM) was devel-
oped to allow a speech recognizer to assign a priori probabilities to words
and do so based on a wider past context than is available to the state-of-
the-art trigram language model. It is then not surprising that the use of
the SLM results in lower perplexities and lower error probabilities [1, 2.’

In: M.Johnson, S. Khudanpur, M. Ostendorf, and R. Rosenfeld (eds.):
DP for Incremental Parsing Mathematical Foundations of Speech and Language Processing, 2004 38
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| don’t know anything about this paper...
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e structured language model as graph-structured stack
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Experiments



Speed Comparison

® 5 times faster with the same parsing accuracy
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Correlation of Search and Parsing

® better search quality <=> better parsing accuracy
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Search Space: Exponential
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N-Best / Forest Oracles
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Better Search => Better Learning

® DP leads to faster and better learning w/ perceptron
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Learning Details: Early Updates

® greedy search: update at first error

® beam search: update when gold is pruned (Collins/Roark 04)

® DP searc

® b/c we

it

n: also update when gold is “merged” (new!)

<now gold can’t make to the top again
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Parsing Time vs. Sentence Length

® parsing speed (scatter plot) compared to other parsers
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Parsing Time vs. Sentence Length

® parsing speed (scatter plot) compared to other parsers
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Parsing Time vs. Sentence Length

® parsing speed (scatter plot) compared to other parsers
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Final Results

® much faster than major parsers (even with Python!)
® first linear-time incremental dynamic programming parser

® best reported dependency accuracy on Penn Treebank

time complexity trees searched

0.12 | O(n?) | exponential
- O(n*) | exponential

0.11 O(n) constant

0.04 O(n) | exponential

McDonald et al 05 - MST
Koo et al 08 baseline*
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Final Results

® much faster than major parsers (even with Python!)
® first linear-time incremental dynamic programming parser

® best reported dependency accuracy on Penn Treebank

time complexity trees searched

0.12 | O(n?) | exponential

McDonald et al 05 - MST

Koo et al 08 baseline* - O(n*) | exponential

Zhang & Clark 08 single 0.1 O(n) constant
this work 0.04 O(n) | exponential
Charniak 00 049 | O(n*°) | exponential
Petrov & Klein 07 0.21 | O(n**) | exponential
89 91 93
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Final Results on Chinese

® also the best parsing accuracy on Chinese
® Penn Chinese Treebank (CTB 5)

® all numbers below use gold-standard POS tags

83.9 = word
Duan et al. 2007 84.4 ® non-root
73.7 root
84.3
Zhang & Clark 08 (single) [ A 84.7

this work

70 85
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Conclusion
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Zoom out to Big Picture...

natural programming

languages languages

© ®

psycholinguistics

©

compiler theory

computer

still a long way to go...
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Thank You

® a general theory of DP for shift-reduce parsing
® as |long as features are bounded and monotonic

® fast,accurate DP parser release coming soon:

® http://www.isi.edu/~1lhuang

® future work
® adapt to constituency parsing (straightforward)
® other grammar formalisms like CCG and TAG
® integrate POS tagging into the parser

® integrate semantic interpretation
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How | was invited to give this talk

® Fred attended ACL 2010 in Sweden

Mark Johnson mentioned to him about this work

Fred saw my co-author

but didn’t realize it was

»y .
. 8
\
\
X : -
\ \ & '
L (9

Kenji Sagae giving the talk

Kenji; he thought it was me

he emailed me (but mis-spelled my name in the address)

not getting a reply, he asked Kevin Knight to “forward it to
Liang Haung or his student Sagae.”

Fred complained that my paper is very hard to read
“As you can see, | am completely confused!” And he was right.

finally he said “come here to give a talk and explain it.”
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