Dynamic Programming for

Linear-Time Incremental Parsing

University of Southern California

...........

Liang Huang '\:\
Information Sciences Institute L#f

(Joint work with Kenji Sagae, USC/ICT)

JHU CLSP Seminar September 14,2010

Remembering Fred Jelinek (1932-2010)

Prof. Jelinek hosted my visit and this talk on his last day.

He was very supportive of this work, which is related to his work on
structured language models, and | dedicate my work to his memory.

Ambiguity and Incrementality

® NLP is (almost) all about ambiguity resolution

® human-beings resolve ambiguity incrementally

DP for Incremental Parsing

Ambiguity and Incrementality

® NLP is (almost) all about ambiguity resolution

® human-beings resolve ambiguity incrementally

One morning in Africa,
| shot an elephant in my pajamas;

DP for Incremental Parsing

Ambiguity and Incrementality

® NLP is (almost) all about ambiguity resolution

® human-beings resolve ambiguity incrementally

One morning in Africa,
| shot an elephant in my pajamas;

how he got into my pajamas I'll never know.

DP for Incremental Parsing

Ambiguity and Incrementality

® NLP is (almost) all about ambiguity resolution

® human-beings resolve ambiguity incrementally

One morning in Africa,
| shot an elephant in my pajamas;

how he got into my pajamas I'll never know.

DP for Incremental Parsing

Ambiguity and Incrementality

® NLP is (almost) all about ambiguity resolution

® human-beings resolve ambiguity incrementally

One morning in Africa,
| shot an elephant in my pajamas;

how he got into my pajamas I'll never know.
S

/\
NP VP
| /\
| \'} NP
| /4\
shot Det N PP
an elephant P NP
I
in Det N
| N
my pajamas

DP for Incremental Parsing

Ambiguities in Translation

ymm '.‘.""‘.‘ =

Slip carefully

CS 562 - Intro

CS 562 - Intro 4

Ambiguities in Translation

e . - - & Google translate: carefully slide

£ DBR

..l

CS 562 - Intro 4

Google translate: carefully slide

£ /M0 H R \

BE CAREFUL OF LANDSLIDE

¥ 2
~

1k X554

TAKE cARer K1)

N D PR

FALL INTO WATER éAREFULLY!

CS 562 - Intro

Amblgumes in Translation

' M Google translate: carefully slide

S UL

e BE CAREFUL OF LANDSLIDE

If you are stolen...

MERE, ;

If you are stolen, caljf ﬁ

& - ENGRISH FUNNY.com

CS 562 - Intro

If you are stolen...

TERE, 1 é.

u are stolen, call the polic

Google translate the theft to the police

& - ENGRISH FUNNY.com

CS 562 - Intro

or even...

CS 562 - Intro

or even...

clear evidence that NLP is used in real life!

CS 562 - Intro

Ambiguities in Parsing
AN A

| feed cats nearby in the garden..

® |et’s focus on dependency structures for simplicity

® ambiguous attachments of nearby and in

® ambiguity explodes exponentially with sentence length
® must design efficient (polynomial) search algorithm
e typically using dynamic programming (DP); e.g. CKY

DP for Incremental Parsing 7

Ambiguities in Parsing
SN\ A

| feed cats nearby in the garden..

® |et’s focus on dependency structures for simplicity

® ambiguous attachments of nearby and in

® ambiguity explodes exponentially with sentence length
® must design efficient (polynomial) search algorithm
e typically using dynamic programming (DP); e.g. CKY

DP for Incremental Parsing 7

Ambiguities in Parsing

| feed cats nearby in he garden

® |et’s focus on dependency structures for simplicity

® ambiguous attachments of nearby and in

® ambiguity explodes exponentially with sentence length
® must design efficient (polynomial) search algorithm
e typically using dynamic programming (DP); e.g. CKY

DP for Incremental Parsing 7

Ambiguities in Parsing

N AN A

| feed cats nearby in he garden ...

—)

® |et’s focus on dependency structures for simplicity

® ambiguous attachments of nearby and in

® ambiguity explodes exponentially with sentence length
® must design efficient (polynomial) search algorithm
e typically using dynamic programming (DP); e.g. CKY

DP for Incremental Parsing 7

But full DP is too slow...

| feed cats nearby in the garden ..

e —
e full DP (like CKY) is too slow (cubic-time)

® while human parsing is fast & incremental (linear-time)

DP for Incremental Parsing 8

But full DP is too slow...

| feed cats nearby in the garden ..

——
e full DP (like CKY) is too slow (cubic-time)

® while human parsing is fast & incremental (linear-time)
® how about incremental parsing then?
® yes, but only with greedy search (accuracy suffers)

® explores tiny fraction of trees (even w/ beam search)

DP for Incremental Parsing 8

But full DP is too slow...

| feed cats nearby in the garden ...

——
e full DP (like CKY) is too slow (cubic-time)

® while human parsing is fast & incremental (linear-time)
® how about incremental parsing then!?

® yes, but only with greedy search (accuracy suffers)

® explores tiny fraction of trees (even w/ beam search)
® can we combine the merits of both approaches!?

® a fast, incremental parser with dynamic programming!?

® explores exponentially many trees in linear-time!?

DP for Incremental Parsing 8

Linear-Time Incremental DP

SEetey incremental parsing

search (e.g. shift-reduce)
@ (Nivre 04; Collins/Roark 04;...)

this work: full DP

principled fast shift-reduce parsing (e.g. CKY)

search

©

with dynamic programming | (Eisner 96; Collins 99;...)

fast © slow)
(linear-time) (cubic-time)

DP for Incremental Parsing 9

Big Picture

natural

languages

©

psycholinguistics

programming
languages

S

computer

@NLP

©

compiler theory
(LR, LALR, ...)

DP for Incremental Parsing

10

Big Picture

natural programming

languages languages

© ®

psycholinguistics

Computer @ N Lpﬁompiler theory

(LR, LALR, ..

DP for Incremental Parsing

Preview of the Results

® very fast linear-time dynamic programming parser

® best reported dependency accuracy on PTB/CTB

® explores exponentially many trees (and outputs forest)

~ I A e E

2 12| _

7

N 1 o |
H

GE) 008 [DD |

.,_' ED

Y 0.6 o

g :

B 0.4 F]

S . ’ -

Q-' o = | nE

0 @ oesi

0O 10 20 30 40 50 60 70
sentence length

DP for Incremental Parsing |

Preview of the Results

® very fast linear-time dynamic programming parser

® best reported dependency accuracy on PTB/CTB

® explores exponentially many trees (and outputs forest)

1.4 I T 1 i I**l:
n .m I\w
o 1.2 F S '
0 £ K:
ol - %
.,_' EI
Y 0.6 g
2 :
5 0.4 | _
0.2 [, work
Q—' = B I =

0O 10 20 30 40 50 60 70
sentence length

DP for Incremental Parsing |

Preview of the Results

® very fast linear-time dynamic programming parser

® best reported dependency accuracy on PTB/CTB

® explores exponentially many trees (and outputs forest)

n ted | '] ! P lér-
n .m *%l\w

o 1.2 F S 9
0 ; k:
ol - %
.,_| EI

Y 0.6 SRS
2 :

= 0.4 | _
0.2 [, work
Q—' = B I =

0O 10 20 30 40 50 60 70
sentence length

DP for Incremental Parsing

1010

108

* non=-DP beam search
I I I I I I -

10 20 30 40 50 60 70
sentence length
|

Qutline

® |ncremental (Shift-Reduce) Parsing
® Dynamic Programming for Incremental Parsing

® Experiments

DP for Incremental Parsing

12

Shift-Reduce Parsing

| feed cats nearby in the garden.

action

DP for Incremental Parsing

stack

queue

| feed cats ...

|3

Shift-Reduce Parsing

| feed cats nearby in the garden.

action stack queue
0 - | feed cats ...
I shift feed cats nearby ...

DP for Incremental Parsing 14

Shift-Reduce Parsing

| feed cats nearby in the garden.

action stack queue
0 - | feed cats ...
| shift | feed cats nearby ...
2 shift | feed cats nearby in ...

DP for Incremental Parsing 15

Shift-Reduce Parsing

| feed cats nearby in the garden.

action stack queue
0 - | feed cats ...
| shift | feed cats nearby ...
2 shift | feed cats nearby in ...
3 l-reduce yfeed cats nearby in ...

DP for Incremental Parsing 16

Shift-Reduce Parsing

action
0 -
I shift
2 shift
3 |-reduce
4 shift

DP for Incremental Parsing

stack

%

| feed

feed

| feed cats nearby in the garden.

queue

| feed cats ...

feed cats nearby ...

cats nearby in ...

cats nearby in ...

feed cats

_k

nearby in the ...

|7

Shift-Reduce Parsing

| feed cats nearby in the garden.

queue

| feed cats ...

feed cats nearby ...

cats nearby in ...

cats nearby in ...

action stack
0 _
I shift |
2 shift | feed
3 l-reduce Kfeed
4 shift feed cats
_k

5a r-reduce

DP for Incremental Parsing

nearby in the ...

nearby in the ...

18

Shift-Reduce Parsing

| feed cats nearby in the garden.

queue

| feed cats ...

feed cats nearby ...

cats nearby in ...

cats nearby in ...

nearby in the ...

nearby in the ...

action stack
0 i}
I shift |
2 shift | feed
3 l-reduce feed
4 shift feed cats

_k

5a r-reduce feed |
5b shift 1kfeed cats nearby

DP for Incremental Parsing

in the garden ...

19

Shift-Reduce Parsing

| feed cats nearby in the garden.

action stack queue
0 - | feed cats ...
| shift | feed cats nearby ...
2 shift | feed cats nearby in ...
3 l-reduce yfeed cats nearby in ...
shift Jeed Cats\ nearby in the ...

| shift-reduce

52 r-reduce feed | conflict nearby in the ...

| cats

Sb shift feed cats nearby in the garden ...

i

DP for Incremental Parsing 20

Choosing Parser Actions

+ stack queue — + stack queue —

.. \feed cats in'the garden ...
" N .. S2 [SI So| qo/qi ..
features: A A
(so.w, , 4o, ...) = (cats, ,in, ...)

® score each action using features f and weights w

® features are drawn from a local window
abstraction (or signature) of a state -- this inspires DP!

® weights trained by structured perceptron (Collins 02)

DP for Incremental Parsing 21

Greedy Search

® each state => three new states (shift, I-reduce, r-reduce)

® search space should be exponential

® greedy search: always pick the best next state

DP for Incremental Parsing 22

Greedy Search

® each state => three new states (shift, I-reduce, r-reduce)
® search space should be exponential

® greedy search: always pick the best next state

DP for Incremental Parsing 23

Beam Search

® each state => three new states (shift, I-reduce, r-reduce)

® search space should be exponential

® beam search: always keep top-b states

DP for Incremental Parsing 24

Dynamic Programming

® cach state => three new states (s

® key idea of DP: share common su

® merge equivalent states => polynomial space

DP for Incremental Parsing

ift, I-reduce, r-reduce)

oproblems

25

Dynamic Programming

® cach state => three new states (s

® key idea of DP: share common su

ift, I-reduce, r-reduce)

oproblems

® merge equivalent states => polynomial space

o
<52 4B
<=

“graph-structured stack” (Tomita, | 988)

DP for Incremental Parsing

26

Dynamic Programming

® cach state => three new states (s

® key idea of DP: share common su

ift, I-reduce, r-reduce)

oproblems

® merge equivalent states => polynomial space

=

“graph-structured stack” (Tomita, | 988)

DP for Incremental Parsing

‘/"

27

Dynamic Programming

® cach state => three new states (s

® key idea of DP: share common su

ift, I-reduce, r-reduce)

oproblems

® merge equivalent states => polynomial space

each DP state corresponds to
exponentially many non-DP states

=Z

“graph-structured stack” (Tomita, | 988)

DP for Incremental Parsing

0
e v

27

Dynamic Programming

® cach state => three new states (s

® key idea of DP: share common su

ift, I-reduce, r-reduce)

oproblems

® merge equivalent states => polynomial space

each DP state corresponds to 1010

exponentially many non-DP states .
10

/ % ¥

—_—) 2 / 104

; “hon-DP beam search’

0O 10 20 30 40 50 60 70

“graph-structured stack” (Tomita, | 988)

DP for Incremental Parsing

sentence length
28

Merging Equivalent States

® two states are equivalent if they agree on features

® because same features guarantee same cost
+ stack queue —

S2 1;

qo qi ...

DP for Incremental Parsing 29

Merging Equivalent States

® two states are equivalent if they agree on features

® because same features guarantee same cost
+ stack queue —

S2 KiAO

assume features only
look at root of so

qo qi ...

DP for Incremental Parsing 29

Merging Equivalent States

® two states are equivalent if they agree on features

® because same features guarantee same cost
+ stack queue —

S2 KiAO

assume features only
look at root of so

qo qi ...

two states are equivalent
if they agree on root of sg

DP for Incremental Parsing 29

Merging Equivalent States

® two states are equivalent if they agree on features

® because same features guarantee same cost
+ stack queue —

qo qi ...

® shift-reduce conflict: 52 1 S0
o ueed cats|nearby in the garden A

sh re sh assume features only
m ... feed |—{feed —)[cats
look at root of sg

® I .
ueed cats|nearby in the garden . equivalent

if they agree on root of sg

DP for Incremental Parsing 29

Merging

Equivalent States

® two states are equivalent if they agree on features

® because same features guarantee same cost

® shift-reduce conflict:

° ueed cats nearby

° ‘ feed \ nearby

DP for Incremental Parsing

+ stack queue —

qo qi ...

. S2 SISO
in the garden A 5

& ... nearby

... cats

™
1. feed

in the garden

30

Merging

Equivalent States

® two states are equivalent if they agree on features

® because same features guarantee same cost

® shift-reduce conflict:

° ueed cats nearby

° ‘ feed \ nearby

DP for Incremental Parsing

+ stack queue —

qo qi ...

e S2 S| SO
in the garden A 5

& ... nearby

... cats

™
1. feed

in the garden

30

Merging Equivalent States

® two states are equivalent if they agree on features

® because same features guarantee same cost
+ stack queue —

® shift-reduce conflict: qo qiI ...

e S2 S| SO
° ueed catsJ in the garden A K

re
& ... hearby |—»|... cats

... cats

T h
€. . feed S—> ... nearby

° _“l‘eed.Sk nearby|in the garden

DP for Incremental Parsing 31

Merging Equivalent States

® two states are equivalent if they agree on features

® because same features guarantee same cost

® shift-reduce conflict:

+ stack queue —

® | feed in the garden

... cats

feed,
o ‘ feed |

DP for Incremental Parsing

S2 SI/ So |'qoqiI ..
& ... nearby 5. cats 5. feed
T h
€1 ... feed S—> nearbyg ... feed

in the garden

32

Merging Equivalent States

® two states are equivalent if they agree on features

® because same features guarantee same cost

® shift-reduce conflict:

+ stack queue —

® | feed in the garden

... cats

feed,
o ‘ feed |

DP for Incremental Parsing

S2 SI/ So |'qoqiI ..
& ... nearby 5. cats 5. feed
T h
€1 ... feed S—> nearbyg ... feed

in the garden

32

Merging Equivalent States

® two states are equivalent if they agree on features

® because same features guarantee same cost
+ stack queue —

® shift-reduce conflict: .. S2 SI/ so|/qoqI ..
° ‘ feed \ in the garden A K
' &y ... nearby S |... cats Q;
Ao |...cats - N P __feed
"¢"|...feed| —>|... nearby| "¢
° ‘ feed | in the garden

DP for Incremental Parsing 33

Merging Equivalent States

® two states are equivalent if they agree on features

® because same features guarantee same cost
+ stack queue —

® shift-reduce conflict: e 52 1 S0 |/qoq1 ...
° ‘ feed \ in the garden K
e} Shy!... nearby 5|, cats|re
Nearby\ | cats < X > ... feed
" feed| —> ... nearby| "¢

° ‘ feed | in the garden

nearby
(local) ambiguity-packing!

DP for Incremental Parsing 33

Merging Equivalent States

® two states are equivalent if they agree on features

® because same features guarantee same cost
+ stack queue —

® shift-reduce conflict: e 52 1 S0 |/qo q1 ..
® | feed in[the garden K
b Y & ... nearby 35|... cats X
L. |...Cats - 1 / .. feed
" feed| > ... nearby| "¢ sh
® | feed in|the garden - 1N

DP for Incremental Parsing 34

Merging Equivalent States

® two states are equivalent if they agree on features

® because same features guarantee same cost
+ stack queue —

® shift-reduce conflict: e 52 1 S0 |/ qoql ...
° feed‘ in[the garden K
| cats sh re
... hearby|—>|... cats|Je
\neal”b_}’ cats<)’h > feed
" feed| > . nearby| "¢ sh

... in

® | feed in|the garden

'X\
I cats nearby Eﬁ ﬁ‘

graph structured stack

DP for Incremental Parsing

Theory: Polynomial-Time DP

+ stack queue —

eof S2 SIS0

® this DP is exact and polynomial-time if features are:

qo/qi ...

® a) bounded -- for polynomial time
® features can only look at a local window
® b) monotonic -- for correctness (optimal substructure)

® features should draw no more info from trees farther
away from stack top than from trees closer to top

® both are intuitive: a) always true; b) almost always true

DP for Incremental Parsing 35

Theory: Monotonic History

® related: grammar refinement by annotation (Johnson, 1998)
® annotate vertical context history (e.g., parent)

® monotonicity: can’t annotate grand-parent without
annotating the parent (otherwise DP would fail)

® our features: left-context history instead of vertical-context
® similarly, can’t annotate s2 without annotating s

® but we can always design “minimum monotonic superset”

srand-parent S
S
NP NP I VP So
| V/ \Np stack
—
shot Det N PP shot Det N PP

DP for Incremerﬁ;gl Parsinqgnl /\ | | /%

| B D AND ~ Alamizrarmt D AND

Related VWork

® Graph-Structured Stack (Tomita 88): Generalized LR
® GSSis just a chart viewed from left to right (e.g. Earley 70)
® this line of work started w/ Lang (1974); stuck since 1990
® b/c explicit LR table is impossible with modern grammars

® Jelinek (2004) independently rediscovered GSS

DP for Incremental Parsing

37

Related VWork

® Graph-Structured Stack (Tomita 88): Generalized LR
® GSSis just a chart viewed from left to right (e.g. Earley 70)
® this line of work started w/ Lang (1974); stuck since 1990
® b/c explicit LR table is impossible with modern grammars

® Jelinek (2004) independently rediscovered GSS

® We revived and advanced this line of work in two aspects
® theoretical:implicit LR table based on features
merge and split on-the-fly; no pre-compilation needed
monotonic feature functions guarantee correctness (new)

® practical: achieved linear-time performance with pruning

DP for Incremental Parsing 37

Jelinek (2004)

STOCHASTIC ANALYSIS OF
STRUCTURED LANGUAGE MODELING

FREDERICK JELINEK*

\\ \'- Abstract. As previously introduced, the Structured Language Model (SLM) op-
erated with the help of a stack from which less probable sub-parse entries were purged
before further words were generated. In this article we generalize the CKY algorithm to
obtain a chart which allows the direct computation of language model probabilities thus
rendering the stacks unnecessary. An analysis of the behavior of the SLM leads to a gen-
eralization of the Inside — Qutside algorithm and thus to rigorous EM type re-estimation
of the SLM parameters. The derived algorithms are computationally expensive but their
demands can be mitigated by use of appropriate thresholding. | ’

1. Introduction. The structuréd language model (SLM) was devel-
oped to allow a speech recognizer to assign a priori probabilities to words
and do so based on a wider past context than is available to the state-of-
the-art trigram language model. It is then not surprising that the use of
the SLM results in lower perplexities and lower error probabilities [1, 2.’

In: M.Johnson, S. Khudanpur, M. Ostendorf, and R. Rosenfeld (eds.):
DP for Incremental Parsing Mathematical Foundations of Speech and Language Processing, 2004 38

Jelinek (2004)

STOCHASTIC ANALYSIS OF
STRUCTURED LANGUAGE MODELING

FREDERICK JELINEK*

Y) graph-structured stack!
L\ ,

A .- Abstract. As previously introduced, the Sigf€tured Language Model (SLM) op-
erated with the help of a stack from which lgg#probable sub-parse entries were purged
before further words were generated. In (2% article we generalize the CKY algorithm to
obtain a chart which allows the direci€omputation of language model probabilities thus
rendering the stacks unnecessary.An analysis of the behavior of the SLM leads to a gen-
eralization of the Inside — Qutside algorithm and thus to rigorous EM type re-estimation
of the SLM parameters. The derived algorithms are computationally expensive but their
demands can be mitigated by use of appropriate thresholding. | ’

1. Introduction. The structuréd language model (SLM) was devel-
oped to allow a speech recognizer to assign a priori probabilities to words
and do so based on a wider past context than is available to the state-of-
the-art trigram language model. It is then not surprising that the use of
the SLM results in lower perplexities and lower error probabilities [1, 2].!

In: M.Johnson, S. Khudanpur, M. Ostendorf, and R. Rosenfeld (eds.):
DP for Incremental Parsing Mathematical Foundations of Speech and Language Processing, 2004 38

Jelinek (2004)

| don’t know anything about this paper...

STOCHASTIC ANALYSIS OF
STRUCTURED LANGUAGE MODELING

FREDERICK JELINEK* JBN{g1o]a BN ileidi[y=Te BT ¢

.“\i\

i- Abstract. As previously introduced, the Sigf€tured Language Model (SLM) op-
erated with the help of a stack from which lgg#probable sub-parse entries were purged
before further words were generated. In 2% article we generalize the CKY algorithm to
obtain a chart which allows the direcj€omputation of language model probabilities thus
rendering the stacks unnecessary.n analysis of the behavior of the SLM leads to a gen-
eralization of the Inside — Qutside algorithm and thus to rigorous EM type re-estimation
of the SLM parameters. The derived algorithms are computationally expensive but their
demands can be mitigated by use of appropriate thresholding. | ’

1. Introduction. The structuréd language model (SLM) was devel-
oped to allow a speech recognizer to assign a priori probabilities to words
and do so based on a wider past context than is available to the state-of-
the-art trigram language model. It is then not surprising that the use of
the SLM results in lower perplexities and lower error probabilities [1, 2].!

In: M.]Johnson, S. Khudanpur, M. Ostendorf, and R. Rosenfeld (eds.):
DP for Incremental Parsing Mathematical Foundations of Speech and Language Processing, 2004 38

Jelinek (2004)

e structured language model as graph-structured stack

(has)*
TR 1A youues Ix wATKEMATICS has
_ has

Mathematical h
Foundations of Show
Speech and
Language has
Processing show

as

Belgian

show host

<s> A Flemish game show has as its host a Belgian </s>

DP for Incremental Parsing S€€ also (Chelba and Jelinek, 98; 00; Xu, Chelba, Jelinek, 02) ;4

Jelinek (2004)

e structured language model as graph-structured stack
. psLm(a | has, show)

(has)* PBgram(d | itS, hOSt)

has
has

Mathematical
: g R show
Foundations of
Speech and
Language has
Processing show

as

Belgian

show host

<s> A Flemish game show has as its host a Belgian </s>

DP for Incremental Parsing S€€ also (Chelba and Jelinek, 98; 00; Xu, Chelba, Jelinek, 02) 34

Experiments

Speed Comparison

® 5 times faster with the same parsing accuracy

03.1
03
g 929 1
3 0 ol s o e ek |
2 :
= 9.7 B o _
S 92.6 —3 B
% 92.5 I-| .
k3 92 4 _ ... DP _
92.3 _J L
92.2 © | I I I'lOln-DPl |

U 005 01 015 02 9.2 03 035
time (hours)

DP for Incremental Parsing

Correlation of Search and Parsing

® better search quality <=> better parsing accuracy

O
W
=

O
w
I

92.
92.
92.
92.
92.
92.
92.
92.

Dp —&—

non-DP
| | | | |

23652370237523802385 23902395

average model score

dependency accuracy

N W b O O 9 00 VO
I
|

DP for Incremental Parsing 42

Search Space: Exponential

10
- 10
Q
o g
= 10
D
o 10°
Y
% 10*
o >
0 10
-
= 0
10

DP for Incremental Parsing

non-DP: fixed (beam-width) |
| | | | | | .

10 20 30 40 50 60 70

sentence length

43

N-Best / Forest Oracles

99 T T I l
DP forest oracle (98.15)

98 F

97
96
95

oracle precision

94

93

(b) oracle precision on dev

DP for e ermenua rdrsiig

Better Search => Better Learning

® DP leads to faster and better learning w/ perceptron

- I I I T T

S o - e]

o 03 | Proooe” «. Bisiirup. con,, CONIIINNN

"8 »O 18th

§ 925 |- ¢ "

> 92 | i

- |

s 915 :

o |

g 01 "IT DP . .

> 90.5 [z 1 : lnon-I)lP 1 "
0 4 8 12 16 20 24

hours

DP for Incremental Parsing 45

Learning Details: Early Updates

® greedy search: update at first error

® beam search: update when gold is pruned (Collins/Roark 04)

® DP searc

® b/c we

it

n: also update when gold is “merged” (new!)

<now gold can’t make to the top again

DP

updates early% time

non-DP

updates early% time

17

25

DP for Increme

31943
27311

20236
8683

=¥ i b

98.9
98.8

98.3
97.1

912

22
29

38
48

51

31189 87.7 29
26324 809 37

19027 703 47
7434 495 60

4676 412 65 »

Parsing Time vs. Sentence Length

® parsing speed (scatter plot) compared to other parsers

1.4 ' T) e ey e
—_ + . $+ + +¢=|=++++++ + » »
A TR LT ii"' ¥ 3K+
0 1.2 " _
q) *
n 1)
Q o]
e 0.8 o -
.,_| E 2
Y 0.6 8 _
% .
'l_l O ® 4 —
n
4 0.2 _
Q-| ?':EE_" c _,..u;;|munn_n;"""'"'"""""“""“""" u I E m

O —uuun

O 10 20 30 40 50 60 70
sentence length

DP for Incremental Parsing 47

Parsing Time vs. Sentence Length

® parsing speed (scatter plot) compared to other parsers

g 1.4 | . 1 §T¢T+T¢+£:+ |++>|€|3|e Lw&
@ CE et W e
8 1 ° 2 B + :i$ + +++++) i% * -
0 | & +¢++i+ +$+ "*%é:w&

=
g 0.8 5 X
i X
¥ 0.6 n 7, S
g macad =
£ 0.4 F -
n :
4 0.2 this work
Q_| e u__u;;,,;;..nn_n;----"“""""""""u""“"“un:n“E“E [33

O —

O 10 20 30 40 50 60 70

sentence length

DP for Incremental Parsing 47

Parsing Time vs. Sentence Length

® parsing speed (scatter plot) compared to other parsers

O(n*°) O(n24)
- l) 4 ! o 1 g ! :;"'T ¢l+l.:j+ |+_,_ Kok ;L w&
n + Vi ++ 4+t +¢i I J ;K@K &
O 1 ° 2 B + "':+;+ ++ +'¢$ +=|= + x% g |
() L+ B X K5
2 @ 7 . +¥ 4*%6*&
~— 1 |)
Q

2 -
5 0.8 |- Efméa‘ o
-|-) O ° 6 [] EIEI v
@ |
5 0.4]
g 02l this workl O(n)

™ === , T CHEEE T
Q-| O ‘;_—:—: ‘--_..ﬂu;;unnnnnun;au--uunu--uun----uuuun_n = I

O 10 20 30 40 50 60 70

sentence length

DP for Incremental Parsing 47

Final Results

® much faster than major parsers (even with Python!)
® first linear-time incremental dynamic programming parser

® best reported dependency accuracy on Penn Treebank

time complexity trees searched

0.12 | O(n?) | exponential
- O(n*) | exponential

0.11 O(n) constant

0.04 O(n) | exponential

McDonald et al 05 - MST
Koo et al 08 baseline*

Zhang & Clark 08 single

this work

89 91 93

DP for Incremental Parsing

Final Results

® much faster than major parsers (even with Python!)
® first linear-time incremental dynamic programming parser

® best reported dependency accuracy on Penn Treebank

time complexity trees searched

McDonald et al 05 - MST 0.12 | O(n? | exponential

Koo et al 08 baseline*

Zhang & Clark 08 single

- O(n*) | exponential

0.11 O(n) constant
0.04 O(n) | exponential

914

this work

Charniak 00
Petrov & Klein 07

049 | O(n*°) | exponential
0.21 | O(n**) | exponential

89 91 93

DP for Incremental Parsing

Final Results

® much faster than major parsers (even with Python!)
® first linear-time incremental dynamic programming parser

® best reported dependency accuracy on Penn Treebank

time complexity trees searched

0.12 | O(n?) | exponential

McDonald et al 05 - MST

Koo et al 08 baseline* - O(n*) | exponential

Zhang & Clark 08 single 0.1 O(n) constant
this work 0.04 O(n) | exponential
Charniak 00 049 | O(n*°) | exponential
Petrov & Klein 07 0.21 | O(n**) | exponential
89 91 93

DP for Incremental Parsing at this ACL: Koo & Collins 10:93.0 with O(n?)

Final Results on Chinese

® also the best parsing accuracy on Chinese
® Penn Chinese Treebank (CTB 5)

® all numbers below use gold-standard POS tags

83.9 = word
Duan et al. 2007 84.4 ® non-root
73.7 root
84.3
Zhang & Clark 08 (single) [A 84.7

this work

70 85

DP for Incremental Parsing

49

Conclusion

greedy
search

incremental
parsing
(e.g. shift-reduce)

principled
search

<=

OV

fast

(linear-time)

DP for Incremental Parsing

full dynamic
programming
(e.g. CKY)

slow:
(cubic-time)

50

Conclusion

greedy
search

incremental
parsing
(e.g. shift-reduce)

principled
search

=

linear-time

full dynamic

shift-reduce parsing {programming

w/ dynamic programming

fast

(linear-time)

DP for Incremental Parsing

(e.g. CKY)

slow:
(cubic-time)

50

Zoom out to Big Picture...

natural programming

languages languages

© ®

psycholinguistics

©

compiler theory

computer

still a long way to go...

DP for Incremental Parsing 51

Thank You

® a general theory of DP for shift-reduce parsing
® as |long as features are bounded and monotonic

® fast,accurate DP parser release coming soon:

® http://www.isi.edu/~1lhuang

® future work
® adapt to constituency parsing (straightforward)
® other grammar formalisms like CCG and TAG
® integrate POS tagging into the parser

® integrate semantic interpretation

DP for Incremental Parsing

52

http://www.isi.edu/~lhuang
http://www.isi.edu/~lhuang

How | was invited to give this talk

® Fred attended ACL 2010 in Sweden

Mark Johnson mentioned to him about this work

Fred saw my co-author

but didn’t realize it was

»y .
. 8
\
\
X : -
\ \ & '
L (9

Kenji Sagae giving the talk

Kenji; he thought it was me

he emailed me (but mis-spelled my name in the address)

not getting a reply, he asked Kevin Knight to “forward it to
Liang Haung or his student Sagae.”

Fred complained that my paper is very hard to read
“As you can see, | am completely confused!” And he was right.

finally he said “come here to give a talk and explain it.”

DP for Incremental Parsing

53

