
Dynamic Programming for

Linear-Time Incremental Parsing

Liang Huang
Information Sciences Institute

University of Southern California

(Joint work with Kenji Sagae, USC/ICT)

JHU CLSP Seminar September 14, 2010

Remembering Fred Jelinek (1932-2010)

Prof. Jelinek hosted my visit and this talk on his last day.

He was very supportive of this work, which is related to his work on
structured language models, and I dedicate my work to his memory.

DP for Incremental Parsing

Ambiguity and Incrementality

3

• NLP is (almost) all about ambiguity resolution

• human-beings resolve ambiguity incrementally

DP for Incremental Parsing

Ambiguity and Incrementality

3

One morning in Africa,
I shot an elephant in my pajamas;

• NLP is (almost) all about ambiguity resolution

• human-beings resolve ambiguity incrementally

DP for Incremental Parsing

Ambiguity and Incrementality

3

One morning in Africa,
I shot an elephant in my pajamas;

how he got into my pajamas I’ll never know.

• NLP is (almost) all about ambiguity resolution

• human-beings resolve ambiguity incrementally

DP for Incremental Parsing

Ambiguity and Incrementality

3

One morning in Africa,
I shot an elephant in my pajamas;

how he got into my pajamas I’ll never know.

• NLP is (almost) all about ambiguity resolution

• human-beings resolve ambiguity incrementally

DP for Incremental Parsing

Ambiguity and Incrementality

3

One morning in Africa,
I shot an elephant in my pajamas;

how he got into my pajamas I’ll never know.

• NLP is (almost) all about ambiguity resolution

• human-beings resolve ambiguity incrementally

CS 562 - Intro

Ambiguities in Translation

4

CS 562 - Intro

Ambiguities in Translation

4

CS 562 - Intro

Ambiguities in Translation

4

Google translate: carefully slide

CS 562 - Intro

Ambiguities in Translation

4

Google translate: carefully slide

CS 562 - Intro

Ambiguities in Translation

4

Google translate: carefully slide

CS 562 - Intro

If you are stolen...

5

CS 562 - Intro

If you are stolen...

5

Google translate: Once the theft to the police

CS 562 - Intro

or even...

6

CS 562 - Intro

or even...

6
clear evidence that NLP is used in real life!

DP for Incremental Parsing

Ambiguities in Parsing

I feed cats nearby in the garden ...

• let’s focus on dependency structures for simplicity

• ambiguous attachments of nearby and in

• ambiguity explodes exponentially with sentence length

• must design efficient (polynomial) search algorithm

• typically using dynamic programming (DP); e.g. CKY

7

DP for Incremental Parsing

Ambiguities in Parsing

I feed cats nearby in the garden ...

• let’s focus on dependency structures for simplicity

• ambiguous attachments of nearby and in

• ambiguity explodes exponentially with sentence length

• must design efficient (polynomial) search algorithm

• typically using dynamic programming (DP); e.g. CKY

7

DP for Incremental Parsing

Ambiguities in Parsing

I feed cats nearby in the garden ...

• let’s focus on dependency structures for simplicity

• ambiguous attachments of nearby and in

• ambiguity explodes exponentially with sentence length

• must design efficient (polynomial) search algorithm

• typically using dynamic programming (DP); e.g. CKY

7

DP for Incremental Parsing

Ambiguities in Parsing

I feed cats nearby in the garden ...

• let’s focus on dependency structures for simplicity

• ambiguous attachments of nearby and in

• ambiguity explodes exponentially with sentence length

• must design efficient (polynomial) search algorithm

• typically using dynamic programming (DP); e.g. CKY

7

DP for Incremental Parsing

But full DP is too slow...

8

I feed cats nearby in the garden ...

• full DP (like CKY) is too slow (cubic-time)

• while human parsing is fast & incremental (linear-time)

DP for Incremental Parsing

But full DP is too slow...

8

I feed cats nearby in the garden ...

• full DP (like CKY) is too slow (cubic-time)

• while human parsing is fast & incremental (linear-time)

• how about incremental parsing then?

• yes, but only with greedy search (accuracy suffers)

• explores tiny fraction of trees (even w/ beam search)

DP for Incremental Parsing

But full DP is too slow...

8

I feed cats nearby in the garden ...

• full DP (like CKY) is too slow (cubic-time)

• while human parsing is fast & incremental (linear-time)

• how about incremental parsing then?

• yes, but only with greedy search (accuracy suffers)

• explores tiny fraction of trees (even w/ beam search)

• can we combine the merits of both approaches?

• a fast, incremental parser with dynamic programming?

• explores exponentially many trees in linear-time?

DP for Incremental Parsing

Linear-Time Incremental DP

9

greedy
search

principled
search

incremental parsing
(e.g. shift-reduce)

(Nivre 04; Collins/Roark 04; ...)

this work:
fast shift-reduce parsing
with dynamic programming

full DP
(e.g. CKY)

(Eisner 96; Collins 99; ...)

fast
(linear-time)

slow
(cubic-time)

☹☺
☺

☹

DP for Incremental Parsing

Big Picture

10

natural
languages

programming
languages

human

computer

☺
psycholinguistics ☹

☹NLP
☺

compiler theory
(LR, LALR, ...)

DP for Incremental Parsing

Big Picture

10

natural
languages

programming
languages

human

computer

☺
psycholinguistics ☹

☹NLP
☺

compiler theory
(LR, LALR, ...)

DP for Incremental Parsing

Preview of the Results
• very fast linear-time dynamic programming parser

• best reported dependency accuracy on PTB/CTB

• explores exponentially many trees (and outputs forest)

11

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 10 20 30 40 50 60 70

pa
rs
in
g
ti
me
 (
se
cs
)

sentence length

DP for Incremental Parsing

Preview of the Results
• very fast linear-time dynamic programming parser

• best reported dependency accuracy on PTB/CTB

• explores exponentially many trees (and outputs forest)

11

C
h

ar
n

ia
k

B
er

ke
le

y
M

ST

this work
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 10 20 30 40 50 60 70

pa
rs
in
g
ti
me
 (
se
cs
)

sentence length

DP for Incremental Parsing

Preview of the Results
• very fast linear-time dynamic programming parser

• best reported dependency accuracy on PTB/CTB

• explores exponentially many trees (and outputs forest)

11

C
h

ar
n

ia
k

B
er

ke
le

y
M

ST

this work
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 10 20 30 40 50 60 70

pa
rs
in
g
ti
me
 (
se
cs
)

sentence length

100

10
2

104

10
6

10
8

1010

 0 10 20 30 40 50 60 70n
u
m
b
e
r

o
f

t
r
e
e
s

e
x
p
l
o
r
e
d

sentence length

DP: e
xponen

tia
l

non-DP beam search

DP for Incremental Parsing

Outline

• Motivation

• Incremental (Shift-Reduce) Parsing

• Dynamic Programming for Incremental Parsing

• Experiments

12

DP for Incremental Parsing

I feed cats ...

feed cats nearby ...

cats nearby in ...

cats nearby in ...

nearby in the ...

nearby in the ...

in the garden ...

Shift-Reduce Parsing

13

action stack queue

I feed cats nearby in the garden.

0 -

DP for Incremental Parsing

I feed cats ...

feed cats nearby ...

cats nearby in ...

cats nearby in ...

nearby in the ...

nearby in the ...

in the garden ...

Shift-Reduce Parsing

14

action stack queue

I feed cats nearby in the garden.

I

0 -

1 shift

DP for Incremental Parsing

I feed cats ...

feed cats nearby ...

cats nearby in ...

cats nearby in ...

nearby in the ...

nearby in the ...

in the garden ...

Shift-Reduce Parsing

15

action stack queue

I feed cats nearby in the garden.

I feed

I

0 -

1 shift

2 shift

DP for Incremental Parsing

I feed cats ...

feed cats nearby ...

cats nearby in ...

cats nearby in ...

nearby in the ...

nearby in the ...

in the garden ...

Shift-Reduce Parsing

16

action stack queue

I feed cats nearby in the garden.

I feed

I

 feed
I

0 -

1 shift

2 shift

3 l-reduce

DP for Incremental Parsing

I feed cats ...

feed cats nearby ...

cats nearby in ...

cats nearby in ...

nearby in the ...

nearby in the ...

in the garden ...

Shift-Reduce Parsing

17

action stack queue

I feed cats nearby in the garden.

I feed

I

 feed
I
 feed cats

I

0 -

1 shift

2 shift

3 l-reduce

4 shift

DP for Incremental Parsing

Shift-Reduce Parsing

18

action stack queue

I feed cats nearby in the garden.

I feed cats ...

feed cats nearby ...

cats nearby in ...

cats nearby in ...

nearby in the ...

nearby in the ...

in the garden ...

I feed

I

 feed
I
 feed cats

I
 feed

I cats

0 -

1 shift

2 shift

3 l-reduce

4 shift

5a r-reduce

DP for Incremental Parsing

Shift-Reduce Parsing

19

action stack queue

I feed cats ...

feed cats nearby ...

cats nearby in ...

cats nearby in ...

nearby in the ...

nearby in the ...

in the garden ...

I feed cats nearby in the garden.

I feed

I

 feed
I
 feed cats

I
 feed

I cats

 feed cats nearby
I

0 -

1 shift

2 shift

3 l-reduce

4 shift

5a r-reduce

5b shift

DP for Incremental Parsing

Shift-Reduce Parsing

20

action stack queue

shift-reduce
conflict

I feed cats nearby in the garden.

I feed cats ...

feed cats nearby ...

cats nearby in ...

cats nearby in ...

nearby in the ...

nearby in the ...

in the garden ...

I feed

I

 feed
I
 feed cats

I
 feed

I cats

 feed cats nearby
I

0 -

1 shift

2 shift

3 l-reduce

4 shift

5a r-reduce

5b shift

DP for Incremental Parsing

Choosing Parser Actions

• score each action using features f and weights w

• features are drawn from a local window

• abstraction (or signature) of a state -- this inspires DP!

• weights trained by structured perceptron (Collins 02)

21

 ... s2 s1 s0 q0 q1 ...

← stack queue →← stack queue →

features:
(s0.w, s0.rc, q0, ...) = (cats, nearby, in, ...)

 ... feed cats
I nearby

in the garden ...

DP for Incremental Parsing

Greedy Search

22

• each state => three new states (shift, l-reduce, r-reduce)

• search space should be exponential

• greedy search: always pick the best next state

DP for Incremental Parsing

Greedy Search

23

• each state => three new states (shift, l-reduce, r-reduce)

• search space should be exponential

• greedy search: always pick the best next state

DP for Incremental Parsing

 Beam Search

24

• each state => three new states (shift, l-reduce, r-reduce)

• search space should be exponential

• beam search: always keep top-b states

DP for Incremental Parsing

Dynamic Programming
• each state => three new states (shift, l-reduce, r-reduce)

• key idea of DP: share common subproblems

• merge equivalent states => polynomial space

25

DP for Incremental Parsing

Dynamic Programming
• each state => three new states (shift, l-reduce, r-reduce)

• key idea of DP: share common subproblems

• merge equivalent states => polynomial space

26

“graph-structured stack” (Tomita, 1988)

DP for Incremental Parsing

Dynamic Programming
• each state => three new states (shift, l-reduce, r-reduce)

• key idea of DP: share common subproblems

• merge equivalent states => polynomial space

27

“graph-structured stack” (Tomita, 1988)

DP for Incremental Parsing

Dynamic Programming
• each state => three new states (shift, l-reduce, r-reduce)

• key idea of DP: share common subproblems

• merge equivalent states => polynomial space

27

“graph-structured stack” (Tomita, 1988)

each DP state corresponds to
exponentially many non-DP states

DP for Incremental Parsing

Dynamic Programming
• each state => three new states (shift, l-reduce, r-reduce)

• key idea of DP: share common subproblems

• merge equivalent states => polynomial space

28

“graph-structured stack” (Tomita, 1988)

100

10
2

104

10
6

10
8

1010

 0 10 20 30 40 50 60 70n
u
m
b
e
r

o
f

t
r
e
e
s

e
x
p
l
o
r
e
d

sentence length

DP: e
xponen

tia
l

non-DP beam search

each DP state corresponds to
exponentially many non-DP states

DP for Incremental Parsing

Merging Equivalent States

• two states are equivalent if they agree on features

• because same features guarantee same cost

• shift-reduce conflict:

• feed cats nearby in the garden
I

• feed cats nearby in the garden
I

29

 ... s2 s1 s0 q0 q1 ...

← stack queue →

... cats
re

feed... feedI
shsh

DP for Incremental Parsing

Merging Equivalent States

• two states are equivalent if they agree on features

• because same features guarantee same cost

• shift-reduce conflict:

• feed cats nearby in the garden
I

• feed cats nearby in the garden
I

29

 ... s2 s1 s0 q0 q1 ...

← stack queue →

... cats
re

feed... feedI
shsh assume features only

look at root of s0

DP for Incremental Parsing

Merging Equivalent States

• two states are equivalent if they agree on features

• because same features guarantee same cost

• shift-reduce conflict:

• feed cats nearby in the garden
I

• feed cats nearby in the garden
I

29

 ... s2 s1 s0 q0 q1 ...

← stack queue →

... cats
re

feed... feedI
shsh assume features only

look at root of s0

two states are equivalent
if they agree on root of s0

DP for Incremental Parsing

Merging Equivalent States

• two states are equivalent if they agree on features

• because same features guarantee same cost

• shift-reduce conflict:

• feed cats nearby in the garden
I

• feed cats nearby in the garden
I

29

 ... s2 s1 s0 q0 q1 ...

← stack queue →

... cats
re

feed... feedI
shsh assume features only

look at root of s0

two states are equivalent
if they agree on root of s0

DP for Incremental Parsing

Merging Equivalent States

• two states are equivalent if they agree on features

• because same features guarantee same cost

• shift-reduce conflict:

• feed cats nearby in the garden
I

• feed cats nearby in the garden
I cats

30

 ... s2 s1 s0 q0 q1 ...

← stack queue →

sh

re
... cats

... nearby

... feed

...

DP for Incremental Parsing

Merging Equivalent States

• two states are equivalent if they agree on features

• because same features guarantee same cost

• shift-reduce conflict:

• feed cats nearby in the garden
I

• feed cats nearby in the garden
I cats

30

 ... s2 s1 s0 q0 q1 ...

← stack queue →

sh

re
... cats

... nearby

... feed

...

DP for Incremental Parsing

Merging Equivalent States

• two states are equivalent if they agree on features

• because same features guarantee same cost

• shift-reduce conflict:

• feed cats nearby in the garden
I nearby

• feed cats nearby in the garden
I cats

31

 ... s2 s1 s0 q0 q1 ...

← stack queue →

sh

re
... cats

... nearby

... feed

re
... cats

sh
... nearby

...

DP for Incremental Parsing

Merging Equivalent States

• two states are equivalent if they agree on features

• because same features guarantee same cost

• shift-reduce conflict:

• feed in the garden
I cats
 nearby

• feed in the garden
I cats nearby

32

 ... s2 s1 s0 q0 q1 ...

← stack queue →

sh

re
... cats

... nearby

... feed

re
... cats ... feedre

... feed
resh

... nearby

...

DP for Incremental Parsing

Merging Equivalent States

• two states are equivalent if they agree on features

• because same features guarantee same cost

• shift-reduce conflict:

• feed in the garden
I cats
 nearby

• feed in the garden
I cats nearby

32

 ... s2 s1 s0 q0 q1 ...

← stack queue →

equivalent if features
only look at s0 and q0

sh

re
... cats

... nearby

... feed

re
... cats ... feedre

... feed
resh

... nearby

...

DP for Incremental Parsing

Merging Equivalent States

• two states are equivalent if they agree on features

• because same features guarantee same cost

• shift-reduce conflict:

• feed in the garden
I cats
 nearby

• feed in the garden
I cats nearby

33

 ... s2 s1 s0 q0 q1 ...

← stack queue →

sh

re
... cats

... nearby

... feed

re
... cats re

... feed
resh

... nearby

...

DP for Incremental Parsing

Merging Equivalent States

• two states are equivalent if they agree on features

• because same features guarantee same cost

• shift-reduce conflict:

• feed in the garden
I cats
 nearby

• feed in the garden
I cats nearby

33

 ... s2 s1 s0 q0 q1 ...

← stack queue →

sh

re
... cats

... nearby

... feed

re
... cats re

... feed
resh

... nearby

...

(local) ambiguity-packing!

DP for Incremental Parsing

Merging Equivalent States

• two states are equivalent if they agree on features

• because same features guarantee same cost

• shift-reduce conflict:

• feed in the garden
I cats
 nearby

• feed in the garden
I cats nearby

34

 ... s2 s1 s0 q0 q1 ...

← stack queue →

sh

re
... cats

... nearby

... feed

re
... cats re

... feed
resh

... nearby
... in

sh

...

DP for Incremental Parsing

Merging Equivalent States

• two states are equivalent if they agree on features

• because same features guarantee same cost

• shift-reduce conflict:

• feed in the garden
I cats
 nearby

• feed in the garden
I cats nearby

34

 ... s2 s1 s0 q0 q1 ...

← stack queue →

sh

re
... cats

... nearby

... feed

re
... cats re

... feed
resh

... nearby
... in

sh

...

graph-structured stack

DP for Incremental Parsing

Theory: Polynomial-Time DP

• this DP is exact and polynomial-time if features are:

• a) bounded -- for polynomial time

• features can only look at a local window

• b) monotonic -- for correctness (optimal substructure)

• features should draw no more info from trees farther
away from stack top than from trees closer to top

• both are intuitive: a) always true; b) almost always true
35

 ... s2 s1 s0 q0 q1 ...

← stack queue →

DP for Incremental Parsing

Theory: Monotonic History
• related: grammar refinement by annotation (Johnson, 1998)

• annotate vertical context history (e.g., parent)

• monotonicity: can’t annotate grand-parent without
annotating the parent (otherwise DP would fail)

• our features: left-context history instead of vertical-context

• similarly, can’t annotate s2 without annotating s1

• but we can always design “minimum monotonic superset”

36

parent

grand-parent

s1

s2

s0

stack

DP for Incremental Parsing

Related Work

• Graph-Structured Stack (Tomita 88): Generalized LR

• GSS is just a chart viewed from left to right (e.g. Earley 70)

• this line of work started w/ Lang (1974); stuck since 1990

• b/c explicit LR table is impossible with modern grammars

• Jelinek (2004) independently rediscovered GSS

37

DP for Incremental Parsing

Related Work

• Graph-Structured Stack (Tomita 88): Generalized LR

• GSS is just a chart viewed from left to right (e.g. Earley 70)

• this line of work started w/ Lang (1974); stuck since 1990

• b/c explicit LR table is impossible with modern grammars

• Jelinek (2004) independently rediscovered GSS

• We revived and advanced this line of work in two aspects

• theoretical: implicit LR table based on features

• merge and split on-the-fly; no pre-compilation needed

• monotonic feature functions guarantee correctness (new)

• practical: achieved linear-time performance with pruning

37

DP for Incremental Parsing

Jelinek (2004)

38
In: M. Johnson, S. Khudanpur, M. Ostendorf, and R. Rosenfeld (eds.):
Mathematical Foundations of Speech and Language Processing, 2004

DP for Incremental Parsing

Jelinek (2004)

38

graph-structured stack!

In: M. Johnson, S. Khudanpur, M. Ostendorf, and R. Rosenfeld (eds.):
Mathematical Foundations of Speech and Language Processing, 2004

DP for Incremental Parsing

Jelinek (2004)

38

I don’t know anything about this paper...

graph-structured stack!

In: M. Johnson, S. Khudanpur, M. Ostendorf, and R. Rosenfeld (eds.):
Mathematical Foundations of Speech and Language Processing, 2004

DP for Incremental Parsing

Jelinek (2004)
• structured language model as graph-structured stack

39see also (Chelba and Jelinek, 98; 00; Xu, Chelba, Jelinek, 02)

DP for Incremental Parsing

Jelinek (2004)
• structured language model as graph-structured stack

39

pSLM(a | has, show)

p3gram(a | its, host)

see also (Chelba and Jelinek, 98; 00; Xu, Chelba, Jelinek, 02)

Experiments

DP for Incremental Parsing

Speed Comparison

41

• 5 times faster with the same parsing accuracy

time (hours)

non-DPDP

DP for Incremental Parsing

Correlation of Search and Parsing

42

 92.2

 92.3

 92.4

 92.5

 92.6

 92.7

 92.8

 92.9

 93

 93.1

 2365 2370 2375 2380 2385 2390 2395

d
e
p
e
n
d
e
n
c
y

a
c
c
u
r
a
c
y

average model score

DP
non-DP

• better search quality <=> better parsing accuracy

DP for Incremental Parsing

Search Space: Exponential

43

100

10
2

10
4

10
6

108

10
10

 0 10 20 30 40 50 60 70n
u
m
b
e
r

o
f

t
r
e
e
s

e
x
p
l
o
r
e
d

sentence length

DP: e
xponen

tia
l

non-DP: fixed (beam-width)nu
m

be
r

of
 t

re
es

 e
xp

lo
re

d

DP for Incremental Parsing

N-Best / Forest Oracles

44

DP forest oracle (98.15)

DP k-best in forest

no
n-

D
P

k-b
es

t

in
be

am

DP for Incremental Parsing

Better Search => Better Learning

45

• DP leads to faster and better learning w/ perceptron

DP for Incremental Parsing

Learning Details: Early Updates
• greedy search: update at first error

• beam search: update when gold is pruned (Collins/Roark 04)

• DP search: also update when gold is “merged” (new!)

• b/c we know gold can’t make to the top again

46

DP non-DP

DP for Incremental Parsing

Parsing Time vs. Sentence Length

47

• parsing speed (scatter plot) compared to other parsers

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 10 20 30 40 50 60 70

pa
rs
in
g
ti
me
 (
se
cs
)

sentence length

DP for Incremental Parsing

Parsing Time vs. Sentence Length

47

• parsing speed (scatter plot) compared to other parsers

C
h

ar
n

ia
k

B
er

ke
le

y
M

ST

this work

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 10 20 30 40 50 60 70

pa
rs
in
g
ti
me
 (
se
cs
)

sentence length

DP for Incremental Parsing

Parsing Time vs. Sentence Length

47

• parsing speed (scatter plot) compared to other parsers

C
h

ar
n

ia
k

B
er

ke
le

y
M

ST

this work

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 10 20 30 40 50 60 70

pa
rs
in
g
ti
me
 (
se
cs
)

sentence length

O(n2)

O(n)

O(n2.4)O(n2.5)

DP for Incremental Parsing

Final Results
• much faster than major parsers (even with Python!)

• first linear-time incremental dynamic programming parser

• best reported dependency accuracy on Penn Treebank

time complexity trees searched

0.12 O(n2) exponential

- O(n4) exponential

0.11 O(n) constant

0.04 O(n) exponential

0.49 O(n2.5) exponential

0.21 O(n2.4) exponential

McDonald et al 05 - MST

Koo et al 08 baseline*

Zhang & Clark 08 single

this work

Charniak 00

Petrov & Klein 07

89 91 93

92.4

92.5

92.1

91.4

92.0

90.2

DP for Incremental Parsing

Final Results
• much faster than major parsers (even with Python!)

• first linear-time incremental dynamic programming parser

• best reported dependency accuracy on Penn Treebank

time complexity trees searched

0.12 O(n2) exponential

- O(n4) exponential

0.11 O(n) constant

0.04 O(n) exponential

0.49 O(n2.5) exponential

0.21 O(n2.4) exponential

McDonald et al 05 - MST

Koo et al 08 baseline*

Zhang & Clark 08 single

this work

Charniak 00

Petrov & Klein 07

89 91 93

92.4

92.5

92.1

91.4

92.0

90.2

DP for Incremental Parsing

Final Results
• much faster than major parsers (even with Python!)

• first linear-time incremental dynamic programming parser

• best reported dependency accuracy on Penn Treebank

time complexity trees searched

0.12 O(n2) exponential

- O(n4) exponential

0.11 O(n) constant

0.04 O(n) exponential

0.49 O(n2.5) exponential

0.21 O(n2.4) exponential

McDonald et al 05 - MST

Koo et al 08 baseline*

Zhang & Clark 08 single

this work

Charniak 00

Petrov & Klein 07

89 91 93

92.4

92.5

92.1

91.4

92.0

90.2

*at this ACL: Koo & Collins 10: 93.0 with O(n4)

DP for Incremental Parsing

Final Results on Chinese

• also the best parsing accuracy on Chinese

• Penn Chinese Treebank (CTB 5)

• all numbers below use gold-standard POS tags

49

Duan et al. 2007

Zhang & Clark 08 (single)

this work

70 85

78.3

76.7

73.7

85.5

84.7

84.4

85.2

84.3

83.9 word
non-root
root

DP for Incremental Parsing

Conclusion

50

greedy
search

principled
search

incremental
parsing

(e.g. shift-reduce)

 ☺✓
full dynamic

programming
(e.g. CKY)

fast
(linear-time)

slow
(cubic-time)

DP for Incremental Parsing

Conclusion

50

greedy
search

principled
search

incremental
parsing

(e.g. shift-reduce)

 ☺✓
full dynamic

programming
(e.g. CKY)

fast
(linear-time)

slow
(cubic-time)

linear-time
shift-reduce parsing

w/ dynamic programming

DP for Incremental Parsing

Zoom out to Big Picture...

51

natural
languages

programming
languages

human

computer

☺
psycholinguistics ☹

 ☺?
NLP

☺
compiler theory

still a long way to go...

DP for Incremental Parsing

Thank You

• a general theory of DP for shift-reduce parsing

• as long as features are bounded and monotonic

• fast, accurate DP parser release coming soon:

• http://www.isi.edu/~lhuang

• future work

• adapt to constituency parsing (straightforward)

• other grammar formalisms like CCG and TAG

• integrate POS tagging into the parser

• integrate semantic interpretation
52

http://www.isi.edu/~lhuang
http://www.isi.edu/~lhuang

DP for Incremental Parsing

How I was invited to give this talk
• Fred attended ACL 2010 in Sweden

• Mark Johnson mentioned to him about this work

• Fred saw my co-author Kenji Sagae giving the talk

• but didn’t realize it was Kenji; he thought it was me

• he emailed me (but mis-spelled my name in the address)

• not getting a reply, he asked Kevin Knight to “forward it to
Liang Haung or his student Sagae.”

• Fred complained that my paper is very hard to read
“As you can see, I am completely confused!” And he was right.

• finally he said “come here to give a talk and explain it.”
53

