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Remembering Fred Jelinek (1932-2010)

Prof. Jelinek hosted my visit and this talk on his last day.

He was very supportive of this work, which is related to his work on 
structured language models, and I dedicate my work to his memory.
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Google translate: Once the theft to the police
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But full DP is too slow...
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I  feed  cats  nearby  in  the  garden  ... 

• full DP (like CKY) is too slow (cubic-time)

• while human parsing is fast & incremental (linear-time)

• how about incremental parsing then?

• yes, but only with greedy search (accuracy suffers)

• explores tiny fraction of trees (even w/ beam search)

• can we combine the merits of both approaches?

• a fast, incremental parser with dynamic programming?

• explores exponentially many trees in linear-time?



DP for Incremental Parsing

Linear-Time Incremental DP
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greedy 
search

principled 
search

incremental parsing 
(e.g. shift-reduce)

(Nivre 04; Collins/Roark 04; ...)

this work:
fast shift-reduce parsing 
with dynamic programming 

full DP
(e.g. CKY)

(Eisner 96; Collins 99; ...)

fast
(linear-time)

slow
(cubic-time)

☹☺
☺

☹
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Outline

• Motivation

• Incremental (Shift-Reduce) Parsing

• Dynamic Programming for Incremental Parsing

• Experiments

12
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Choosing Parser Actions

• score each action using features f and weights w

• features are drawn from a local window

• abstraction (or signature) of a state -- this inspires DP!

• weights trained by structured perceptron (Collins 02)

21

    ...   s2     s1    s0    q0 q1  ...  

← stack   queue →← stack   queue →

features:
(s0.w, s0.rc, q0, ...) = (cats, nearby, in, ...)

 ...  feed cats      
I nearby

in the garden ...
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• each state => three new states (shift, l-reduce, r-reduce)

• search space should be exponential

•   beam search:  always keep top-b states
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Theory: Polynomial-Time DP

• this DP is exact and polynomial-time if features are:

• a) bounded  --  for polynomial time

• features can only look at a local window

• b) monotonic  --  for correctness (optimal substructure)

• features should draw no more info from trees farther 
away from stack top than from trees closer to top

• both are intuitive: a) always true; b) almost always true
35

    ...   s2     s1    s0    q0 q1  ...  

← stack   queue →
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Theory: Monotonic History
• related: grammar refinement by annotation (Johnson, 1998)

• annotate vertical context history (e.g., parent)

• monotonicity: can’t annotate grand-parent without 
annotating the parent (otherwise DP would fail)

• our features: left-context history instead of vertical-context

• similarly, can’t annotate s2 without annotating s1

• but we can always design “minimum monotonic superset”

36

parent

grand-parent

s1

s2

s0

stack
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• Graph-Structured Stack (Tomita 88): Generalized LR

• GSS is just a chart viewed from left to right (e.g. Earley 70)

• this line of work started w/ Lang (1974); stuck since 1990

• b/c explicit LR table is impossible with modern grammars

• Jelinek (2004) independently rediscovered GSS
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• GSS is just a chart viewed from left to right (e.g. Earley 70)

• this line of work started w/ Lang (1974); stuck since 1990

• b/c explicit LR table is impossible with modern grammars

• Jelinek (2004) independently rediscovered GSS

• We revived and advanced this line of work in two aspects

• theoretical: implicit LR table based on features

• merge and split on-the-fly; no pre-compilation needed

• monotonic feature functions guarantee correctness (new)

• practical: achieved linear-time performance with pruning

37
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graph-structured stack!
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Mathematical Foundations of Speech and Language Processing, 2004
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Jelinek (2004)

38

I don’t know anything about this paper...

graph-structured stack!

In:  M. Johnson, S. Khudanpur, M. Ostendorf, and R. Rosenfeld (eds.): 
Mathematical Foundations of Speech and Language Processing, 2004
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• structured language model as graph-structured stack
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Jelinek (2004)
• structured language model as graph-structured stack
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pSLM( a | has, show)

p3gram( a | its, host)

see also (Chelba and Jelinek, 98; 00; Xu, Chelba, Jelinek, 02) 
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Speed Comparison

41

• 5 times faster with the same parsing accuracy

time (hours)

non-DPDP



DP for Incremental Parsing

Correlation of Search and Parsing
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Search Space: Exponential
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N-Best / Forest Oracles

44

DP forest oracle (98.15)

DP k-best in forest
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Better Search => Better Learning

45

• DP leads to faster and better learning w/ perceptron
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Learning Details: Early Updates
• greedy search: update at first error          

• beam search: update when gold is pruned (Collins/Roark 04)

• DP search: also update when gold is “merged” (new!)

• b/c we know gold can’t make to the top again

46

DP non-DP
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Parsing Time vs. Sentence Length

47

• parsing speed (scatter plot) compared to other parsers
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Parsing Time vs. Sentence Length
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• parsing speed (scatter plot) compared to other parsers
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Final Results
• much faster than major parsers (even with Python!)

• first linear-time incremental dynamic programming parser

• best reported dependency accuracy on Penn Treebank
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Final Results
• much faster than major parsers (even with Python!)

• first linear-time incremental dynamic programming parser

• best reported dependency accuracy on Penn Treebank

time complexity trees searched

0.12 O(n2) exponential

- O(n4) exponential

0.11 O(n) constant

0.04 O(n) exponential

0.49 O(n2.5) exponential

0.21 O(n2.4) exponential
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*at this ACL: Koo & Collins 10: 93.0 with O(n4)
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Final Results on Chinese

• also the best parsing accuracy on Chinese

• Penn Chinese Treebank (CTB 5)

• all numbers below use gold-standard POS tags
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Zoom out to Big Picture...

51

natural 
languages

programming 
languages

human

computer

☺
psycholinguistics ☹

 ☺?
NLP

☺ 
compiler theory

still a long way to go...
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Thank You

• a general theory of DP for shift-reduce parsing

• as long as features are bounded and monotonic

• fast, accurate DP parser release coming soon:

• http://www.isi.edu/~lhuang

• future work

• adapt to constituency parsing (straightforward)

• other grammar formalisms like CCG and TAG

• integrate POS tagging into the parser

• integrate semantic interpretation
52
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How I was invited to give this talk
• Fred attended ACL 2010 in Sweden

• Mark Johnson mentioned to him about this work

• Fred saw my co-author Kenji Sagae giving the talk

• but didn’t realize it was Kenji; he thought it was me

• he emailed me (but mis-spelled my name in the address)

• not getting a reply, he asked Kevin Knight to “forward it to 
Liang Haung or his student Sagae.”

• Fred complained that my paper is very hard to read
“As you can see, I am completely confused!” And he was right.

• finally he said “come here to give a talk and explain it.”
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