
Marrying Dynamic Programming

with Recurrent Neural Networks

I eat sushi with tuna from Japan

Liang Huang
Oregon State University

Structured Prediction Workshop, EMNLP 2017, Copenhagen, Denmark

Marrying Dynamic Programming

with Recurrent Neural Networks

I eat sushi with tuna from Japan

Liang Huang
Oregon State University

Structured Prediction Workshop, EMNLP 2017, Copenhagen, Denmark

Marrying Dynamic Programming

with Recurrent Neural Networks

I eat sushi with tuna from Japan

Liang Huang
Oregon State University

Structured Prediction Workshop, EMNLP 2017, Copenhagen, Denmark
James Cross

Structured Prediction is Hard!

2

Not Easy for Humans Either...

3(structural ambiguity :-P)

Not Even Easy for Nature!

4

• prion: “misfolded protein”

• structural ambiguity for the same amino-acid sequence

• similar to different interpretations under different contexts

• causes mad-cow diseases etc.

Case Study: Parsing and Folding
• both problems have exponentially large search space

• both can be modeled by grammars (context-free & above)

• question 1: how to search for the highest-scoring structure?

• question 2: how to make gold structure score the highest?

5

I eat sushi with tuna from Japan

Solutions to Search and Learning
• question 1: how to search for the highest-scoring structure?

• answer: dynamic programming to factor search space

• question 2: how to make gold structure score the highest?

• answer: neural nets to automate feature engineering

• But do DP and neural nets like each other??

6

I eat sushi with tuna from Japan

Solutions to Search and Learning
• question 1: how to search for the highest-scoring structure?

• answer: dynamic programming to factor search space

• question 2: how to make gold structure score the highest?

• answer: neural nets to automate feature engineering

• But do DP and neural nets like each other??

6

I eat sushi with tuna from Japan

In this talk...

• Background

• Dynamic Programming for Incremental Parsing

• Features: from sparse to neural to recurrent neural nets

• Bidirectional RNNs: minimal features; no tree structures!

• dependency parsing (Kiperwaser+Goldberg, 2016, Cross+Huang, 2016a)

• span-based constituency parsing (Cross+Huang, 2016b)

• Marrying DP & RNNs (mostly not my work!)

• transition-based dependency parsing (Shi et al, EMNLP 2017)

• minimal span-based constituency parsing (Stern et al, ACL 2017)

7

Spectrum: Neural Incremental Parsing

8

Feedforward NNs
(Chen + Manning 14)

Stack LSTM
 (Dyer+ 15)

biRNN dependency
(Kiperwaser+Goldberg 16;

Cross+Huang 16a)

biRNN span-based
constituency
(Cross+Huang 16b) minimal span-based

constituency
(Stern+ ACL 17)

minimal dependency
(Shi+ EMNLP 17)

edge-factored
(McDonald+ 05a)

biRNN graph-based
dependency

(Kiperwaser+Goldberg 16;
Wang+Chang 16)

DP incremental parsing
(Huang+Sagae 10, Kuhlmann+ 11)

RNNG
(Dyer+ 16)

DP impossible enables slow DP enables fast DP fastest DP: O(n3)

all tree info
(summarize output y)

minimal or no tree info
(summarize input x)

constituency
dependency

bottom-up

Spectrum: Neural Incremental Parsing

8

Feedforward NNs
(Chen + Manning 14)

Stack LSTM
 (Dyer+ 15)

biRNN dependency
(Kiperwaser+Goldberg 16;

Cross+Huang 16a)

biRNN span-based
constituency
(Cross+Huang 16b) minimal span-based

constituency
(Stern+ ACL 17)

minimal dependency
(Shi+ EMNLP 17)

edge-factored
(McDonald+ 05a)

biRNN graph-based
dependency

(Kiperwaser+Goldberg 16;
Wang+Chang 16)

DP incremental parsing
(Huang+Sagae 10, Kuhlmann+ 11)

RNNG
(Dyer+ 16)

DP impossible enables slow DP enables fast DP fastest DP: O(n3)

all tree info
(summarize output y)

minimal or no tree info
(summarize input x)

constituency
dependency

bottom-up

Incremental Parsing with Dynamic Programming

(Huang & Sagae, ACL 2010*; Kuhlmann et al., ACL 2011; Mi & Huang, ACL 2015)
* best paper nominee

Incremental Parsing with Dynamic Programming

(Huang & Sagae, ACL 2010*; Kuhlmann et al., ACL 2011; Mi & Huang, ACL 2015)
* best paper nominee

Liang Huang (Oregon State)

Incremental Parsing (Shift-Reduce)

10

action stack queue

I eat sushi with tuna from Japan in a restaurant

Liang Huang (Oregon State)

Incremental Parsing (Shift-Reduce)

10

action stack queue

I eat sushi ...

eat sushi with ...

sushi with tuna ...

sushi with tuna ...

with tuna from ...

with tuna from ...

tuna from Japan ...

0 -

1 shift

2 shift

3 l-reduce

4 shift

5a r-reduce

5b shift

I eat sushi with tuna from Japan in a restaurant

Liang Huang (Oregon State)

Incremental Parsing (Shift-Reduce)

10

action stack queue

I eat sushi ...

eat sushi with ...

sushi with tuna ...

sushi with tuna ...

with tuna from ...

with tuna from ...

tuna from Japan ...

I

0 -

1 shift

2 shift

3 l-reduce

4 shift

5a r-reduce

5b shift

I eat sushi with tuna from Japan in a restaurant

Liang Huang (Oregon State)

Incremental Parsing (Shift-Reduce)

10

action stack queue

I eat sushi ...

eat sushi with ...

sushi with tuna ...

sushi with tuna ...

with tuna from ...

with tuna from ...

tuna from Japan ...

 I eat

I

0 -

1 shift

2 shift

3 l-reduce

4 shift

5a r-reduce

5b shift

I eat sushi with tuna from Japan in a restaurant

Liang Huang (Oregon State)

Incremental Parsing (Shift-Reduce)

10

action stack queue

I eat sushi ...

eat sushi with ...

sushi with tuna ...

sushi with tuna ...

with tuna from ...

with tuna from ...

tuna from Japan ...

 I eat

I

eat
I

0 -

1 shift

2 shift

3 l-reduce

4 shift

5a r-reduce

5b shift

I eat sushi with tuna from Japan in a restaurant

Liang Huang (Oregon State)

Incremental Parsing (Shift-Reduce)

10

action stack queue

I eat sushi ...

eat sushi with ...

sushi with tuna ...

sushi with tuna ...

with tuna from ...

with tuna from ...

tuna from Japan ...

 I eat

I

eat
I
 eat sushi

I

0 -

1 shift

2 shift

3 l-reduce

4 shift

5a r-reduce

5b shift

I eat sushi with tuna from Japan in a restaurant

Liang Huang (Oregon State)

Incremental Parsing (Shift-Reduce)

10

action stack queue

I eat sushi ...

eat sushi with ...

sushi with tuna ...

sushi with tuna ...

with tuna from ...

with tuna from ...

tuna from Japan ...

 I eat

I

eat
I
 eat sushi

I
eat

I sushi

0 -

1 shift

2 shift

3 l-reduce

4 shift

5a r-reduce

5b shift

I eat sushi with tuna from Japan in a restaurant

Liang Huang (Oregon State)

Incremental Parsing (Shift-Reduce)

10

action stack queue

I eat sushi ...

eat sushi with ...

sushi with tuna ...

sushi with tuna ...

with tuna from ...

with tuna from ...

tuna from Japan ...

 I eat

I

eat
I
 eat sushi

I
eat

I sushi

 eat sushi with

I

0 -

1 shift

2 shift

3 l-reduce

4 shift

5a r-reduce

5b shift

I eat sushi with tuna from Japan in a restaurant

Liang Huang (Oregon State)

Incremental Parsing (Shift-Reduce)

10

action stack queue

shift-reduce
conflict

I eat sushi ...

eat sushi with ...

sushi with tuna ...

sushi with tuna ...

with tuna from ...

with tuna from ...

tuna from Japan ...

 I eat

I

eat
I
 eat sushi

I
eat

I sushi

 eat sushi with

I

0 -

1 shift

2 shift

3 l-reduce

4 shift

5a r-reduce

5b shift

I eat sushi with tuna from Japan in a restaurant

Liang Huang (Oregon State)

Greedy Search

11

• each state => three new states (shift, l-reduce, r-reduce)

• greedy search: always pick the best next state

• “best” is defined by a score learned from data

sh

l-re

r-re

Liang Huang (Oregon State)

Greedy Search

12

• each state => three new states (shift, l-reduce, r-reduce)

• greedy search: always pick the best next state

• “best” is defined by a score learned from data

Liang Huang (Oregon State)

 Beam Search

13

• each state => three new states (shift, l-reduce, r-reduce)

• beam search: always keep top-b states

• still just a tiny fraction of the whole search space

Liang Huang (Oregon State)

 Beam Search

13

• each state => three new states (shift, l-reduce, r-reduce)

• beam search: always keep top-b states

• still just a tiny fraction of the whole search space

psycholinguistic evidence:
parallelism (Fodor et al, 1974; Gibson, 1991)

Liang Huang (Oregon State)

Dynamic Programming
• each state => three new states (shift, l-reduce, r-reduce)

• key idea of DP: share common subproblems

• merge equivalent states => polynomial space

14(Huang and Sagae, 2010)

Liang Huang (Oregon State)

Dynamic Programming
• each state => three new states (shift, l-reduce, r-reduce)

• key idea of DP: share common subproblems

• merge equivalent states => polynomial space

15(Huang and Sagae, 2010)

Liang Huang (Oregon State)

Dynamic Programming
• each state => three new states (shift, l-reduce, r-reduce)

• key idea of DP: share common subproblems

• merge equivalent states => polynomial space

16(Huang and Sagae, 2010)

Liang Huang (Oregon State)

Dynamic Programming
• each state => three new states (shift, l-reduce, r-reduce)

• key idea of DP: share common subproblems

• merge equivalent states => polynomial space

16

each DP state corresponds to
exponentially many non-DP states

(Huang and Sagae, 2010)

graph-structured stack
(Tomita, 1986)

Liang Huang (Oregon State)

Dynamic Programming
• each state => three new states (shift, l-reduce, r-reduce)

• key idea of DP: share common subproblems

• merge equivalent states => polynomial space

17

each DP state corresponds to
exponentially many non-DP states

(Huang and Sagae, 2010)

100

102

104

106

108

1010

 0 10 20 30 40 50 60 70n
u
m
b
e
r

o
f

t
r
e
e
s

e
x
p
l
o
r
e
d

sentence length

DP: e
xponen

tia
l

non-DP beam search

Liang Huang (Oregon State)

Dynamic Programming
• each state => three new states (shift, l-reduce, r-reduce)

• key idea of DP: share common subproblems

• merge equivalent states => polynomial space

17

each DP state corresponds to
exponentially many non-DP states

(Huang and Sagae, 2010)

100

102

104

106

108

1010

 0 10 20 30 40 50 60 70n
u
m
b
e
r

o
f

t
r
e
e
s

e
x
p
l
o
r
e
d

sentence length

DP: e
xponen

tia
l

non-DP beam search

graph-structured stack
(Tomita, 1986)

Liang Huang (Oregon State)

Merging (Ambiguity Packing)
• two states are equivalent if they agree on features

• because same features guarantee same cost

• example: if we only care about the last 2 words on stack

I sushi

I eat sushi

eat sushi

(Huang and Sagae, 2010)

Liang Huang (Oregon State)

Merging (Ambiguity Packing)
• two states are equivalent if they agree on features

• because same features guarantee same cost

• example: if we only care about the last 2 words on stack

I sushi

I eat sushi

eat sushi

(Huang and Sagae, 2010)

tw
o

eq
ui

va
le

nt
 c

la
ss

es

... eat sushi

... I sushi

Liang Huang (Oregon State)

Merging (Ambiguity Packing)
• two states are equivalent if they agree on features

• because same features guarantee same cost

• example: if we only care about the last 2 words on stack

I sushi

I eat sushi

eat sushi

(Huang and Sagae, 2010)

psycholinguistic evidence
(eye-tracking experiments):

delayed disambiguation

John and Mary had 2 papers
John and Mary had 2 papers

Frazier and Rayner (1990), Frazier (1999)

tw
o

eq
ui

va
le

nt
 c

la
ss

es

... eat sushi

... I sushi

Liang Huang (Oregon State)

Merging (Ambiguity Packing)
• two states are equivalent if they agree on features

• because same features guarantee same cost

• example: if we only care about the last 2 words on stack

I sushi

I eat sushi

eat sushi

(Huang and Sagae, 2010)

psycholinguistic evidence
(eye-tracking experiments):

delayed disambiguation

John and Mary had 2 papers
John and Mary had 2 papers

Frazier and Rayner (1990), Frazier (1999)

tw
o

eq
ui

va
le

nt
 c

la
ss

es

... eat sushi

... I sushi

each
together

Liang Huang (Oregon State)

Result: linear-time, DP, and accurate!

• very fast linear-time dynamic programming parser

• explores exponentially many trees (and outputs forest)

• state-of-the-art parsing accuracy on English & Chinese

19

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 10 20 30 40 50 60 70

pa
rs
in
g
ti
me
 (
se
cs
)

sentence length

Liang Huang (Oregon State)

Result: linear-time, DP, and accurate!

• very fast linear-time dynamic programming parser

• explores exponentially many trees (and outputs forest)

• state-of-the-art parsing accuracy on English & Chinese

19

C
ha

rn
ia

k

B
er

ke
le

y
M

ST

this work
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 10 20 30 40 50 60 70

pa
rs
in
g
ti
me
 (
se
cs
)

sentence length

O(n2)

O(n)

O(n2.4)O(n2.5)

Liang Huang (Oregon State)

Result: linear-time, DP, and accurate!

• very fast linear-time dynamic programming parser

• explores exponentially many trees (and outputs forest)

• state-of-the-art parsing accuracy on English & Chinese

19

C
ha

rn
ia

k

B
er

ke
le

y
M

ST

this work
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 10 20 30 40 50 60 70

pa
rs
in
g
ti
me
 (
se
cs
)

sentence length

100

102

104

106

108

1010

 0 10 20 30 40 50 60 70n
u
m
b
e
r

o
f

t
r
e
e
s

e
x
p
l
o
r
e
d

sentence length

DP: e
xponen

tia
l

non-DP beam search

O(n2)

O(n)

O(n2.4)O(n2.5)

In this talk...

• Background

• Dynamic Programming for Incremental Parsing

• Features: from sparse to neural to recurrent neural nets

• Bidirectional RNNs: minimal features; no tree structures!

• dependency parsing (Kiperwaser+Goldberg, 2016, Cross+Huang, 2016a)

• span-based constituency parsing (Cross+Huang, 2016b)

• Marrying DP & RNNs (mostly not my work!)

• minimal span-based constituency parsing (Stern et al, ACL 2017)

• transition-based dependency parsing (Shi et al, EMNLP 2017)

20

Liang Huang (Oregon State)

Sparse Features

• score each action using features f and weights w

• features are drawn from a local window

• abstraction (or signature) of a state -- this inspires DP!

• weights trained by structured perceptron (Collins 02)

21

 ... s2 s1 s0 q0 q1 ...

← stack queue →

(Huang+Sagae, 2010)

Liang Huang (Oregon State)

Sparse Features

• score each action using features f and weights w

• features are drawn from a local window

• abstraction (or signature) of a state -- this inspires DP!

• weights trained by structured perceptron (Collins 02)

21

 ... s2 s1 s0 q0 q1 ...

← stack queue →← stack queue →
 ... feed cats

I nearby
in the garden ...

(Huang+Sagae, 2010)

Liang Huang (Oregon State)

Sparse Features

• score each action using features f and weights w

• features are drawn from a local window

• abstraction (or signature) of a state -- this inspires DP!

• weights trained by structured perceptron (Collins 02)

21

 ... s2 s1 s0 q0 q1 ...

← stack queue →

features:
(s0.w, s0.rc, q0, ...) = (cats, nearby, in, ...)

← stack queue →
 ... feed cats

I nearby
in the garden ...

(Huang+Sagae, 2010)

Liang Huang (Oregon State)

From Sparse to Neural to RNN

22

			 	 	… …	

	 	… 	 	…

				

(Chen+Manning 2014)

Liang Huang (Oregon State)

From Sparse to Neural to RNN

• neural nets can automate feature engineering :-)

• but early neural work (e.g., Chen+Manning 14) still use lots of
manually designed atomic features on the stack

22

			 	 	… …	

	 	… 	 	…

				

(Chen+Manning 2014)

Liang Huang (Oregon State)

From Sparse to Neural to RNN

• neural nets can automate feature engineering :-)

• but early neural work (e.g., Chen+Manning 14) still use lots of
manually designed atomic features on the stack

• can we automate even more?

• option 1: summarize the whole stack (part of y) using RNNs =>
stack LSTM / RNNG (Dyer+ 15, 16)

• option 2: summarize the whole input (x) using RNNs =>
biLSTM dependency parsing (Kiperwaser+Goldberg 16, Cross+Huang 16a)
biLSTM constituency parsing (Cross+Huang 16b)

22

			 	 	… …	

	 	… 	 	…

				

(Chen+Manning 2014)

Liang Huang (Oregon State)

From Sparse to Neural to RNN

• neural nets can automate feature engineering :-)

• but early neural work (e.g., Chen+Manning 14) still use lots of
manually designed atomic features on the stack

• can we automate even more?

• option 1: summarize the whole stack (part of y) using RNNs =>
stack LSTM / RNNG (Dyer+ 15, 16)

• option 2: summarize the whole input (x) using RNNs =>
biLSTM dependency parsing (Kiperwaser+Goldberg 16, Cross+Huang 16a)
biLSTM constituency parsing (Cross+Huang 16b)

22

rules out DP! :(

enables DP! :)

			 	 	… …	

	 	… 	 	…

				

(Chen+Manning 2014)

Spectrum: Neural Incremental Parsing

23

Feedforward NNs
(Chen + Manning 14)

Stack LSTM
 (Dyer+ 15)

biRNN dependency
(Kiperwaser+Goldberg 16;

Cross+Huang 16a)

biRNN span-based
constituency
(Cross+Huang 16b) minimal span-based

constituency
(Stern+ ACL 17)

minimal dependency
(Shi+ EMNLP 17)

edge-factored
(McDonald+ 05a)

biRNN graph-based
dependency

(Kiperwaser+Goldberg 16;
Wang+Chang 16)

DP incremental parsing
(Huang+Sagae 10, Kuhlmann+ 11)

RNNG
(Dyer+ 16)

DP impossible enables slow DP enables fast DP fastest DP: O(n3)

all tree info
(summarize output y)

minimal or no tree info
(summarize input x)

constituency
dependency

bottom-up

In this talk...

• Background

• Dynamic Programming for Incremental Parsing

• Interlude: NN Features: from feedforward to recurrent

• Bidirectional RNNs: minimal features; no tree structures!

• dependency parsing (Kiperwaser+Goldberg, 2016, Cross+Huang, 2016a)

• span-based constituency parsing (Cross+Huang, 2016b)

• Marrying DP & RNNs (mostly not my work!)

• minimal span-based constituency parsing (Stern et al, ACL 2017)

• transition-based dependency parsing (Shi et al, EMNLP 2017)

24

biRNN for Dependency Parsing
• several parallel efforts in 2016 used biLSTM features

• Kiperwaser+Goldberg 2016: four positional feats; arc-eager

• Cross+Huang ACL 2016: three positional feats; arc-standard

• Wang+Chang 2016: two positional feats; graph-based

• all inspired by sparse edge-factored model (McDonald+05)

• use positions to summarize the input x, not the output y!

• => O(n3) DP, e.g. graph-based, but also incremental!

25

		 	… …			 	… …

these developments lead to state-of-the-art in dependency parsing

(Cross and Huang, ACL 2016)
(Kiperwaser and Goldberg 2016)

Liang Huang (Oregon State)

Span-Based Constituency Parsing
• previous work uses tree structures on stack

• we simplify to operate directly on sentence spans

• simple-to-implement linear-time parsing

26

do/MD like/VBPI/PRP
0 1

eating/VBG fish/NN
3 4 5

Stack Queue

do/MDI/PRP eating/VBG fish/NN

Stack Queue
VP’NP

like/VBP
previous work

our work

(Cross and Huang, EMNLP 2016)

Liang Huang (Oregon State)

current
brackets

27

S

VP

S

VP

NP

NN

fish

VBG

eating

VBP

like

MD

do

NP

PRP

I

Structural
(even step)

ShiftStructural
(even step) Combine

Label
(odd step)

Label-XLabel
(odd step) No-Label

do/MDI/PRP like/VBP
0 1 2

eating/VBG fish/NN
3 4 5

t = {}

(Cross and Huang, EMNLP 2016)

Liang Huang (Oregon State)

current
brackets

27

S

VP

S

VP

NP

NN

fish

VBG

eating

VBP

like

MD

do

NP

PRP

I

Structural
(even step)

ShiftStructural
(even step) Combine

Label
(odd step)

Label-XLabel
(odd step) No-Label

do/MDI/PRP like/VBP
0 1 2

eating/VBG fish/NN
3 4 5

t = {}

Shift

do/MDI/PRP like/VBP
0 1 2

eating/VBG fish/NN
3 4 5

(Cross and Huang, EMNLP 2016)

Liang Huang (Oregon State)

current
brackets

27

S

VP

S

VP

NP

NN

fish

VBG

eating

VBP

like

MD

do

NP

PRP

I

Structural
(even step)

ShiftStructural
(even step) Combine

Label
(odd step)

Label-XLabel
(odd step) No-Label

do/MDI/PRP like/VBP
0 1 2

eating/VBG fish/NN
3 4 5

t = {}

Shift

do/MDI/PRP like/VBP
0 1 2

eating/VBG fish/NN
3 4 5

t = {0NP1}
Label-NP

(Cross and Huang, EMNLP 2016)

Liang Huang (Oregon State)

current
brackets

27

S

VP

S

VP

NP

NN

fish

VBG

eating

VBP

like

MD

do

NP

PRP

I

Structural
(even step)

ShiftStructural
(even step) Combine

Label
(odd step)

Label-XLabel
(odd step) No-Label

do/MDI/PRP like/VBP
0 1 2

eating/VBG fish/NN
3 4 5

t = {}

Shift

do/MDI/PRP like/VBP
0 1 2

eating/VBG fish/NN
3 4 5

Shift

do/MDI/PRP like/VBP
0 1 2

eating/VBG fish/NN
3 4 5

t = {0NP1}
Label-NP

(Cross and Huang, EMNLP 2016)

Liang Huang (Oregon State)

current
brackets

27

S

VP

S

VP

NP

NN

fish

VBG

eating

VBP

like

MD

do

NP

PRP

I

Structural
(even step)

ShiftStructural
(even step) Combine

Label
(odd step)

Label-XLabel
(odd step) No-Label

do/MDI/PRP like/VBP
0 1 2

eating/VBG fish/NN
3 4 5

t = {}

Shift

do/MDI/PRP like/VBP
0 1 2

eating/VBG fish/NN
3 4 5

Shift

do/MDI/PRP like/VBP
0 1 2

eating/VBG fish/NN
3 4 5

t = {0NP1}
Label-NP

t = {0NP1}
No-Label

(Cross and Huang, EMNLP 2016)

Liang Huang (Oregon State)

current
brackets

27

S

VP

S

VP

NP

NN

fish

VBG

eating

VBP

like

MD

do

NP

PRP

I

Structural
(even step)

ShiftStructural
(even step) Combine

Label
(odd step)

Label-XLabel
(odd step) No-Label

do/MDI/PRP like/VBP
0 1 2

eating/VBG fish/NN
3 4 5

t = {}

Shift

do/MDI/PRP like/VBP
0 1 2

eating/VBG fish/NN
3 4 5

Shift

do/MDI/PRP like/VBP
0 1 2

eating/VBG fish/NN
3 4 5

Shift

do/MDI/PRP like/VBP
0 1 2

eating/VBG fish/NN
3 4 5

t = {0NP1}
Label-NP

t = {0NP1}
No-Label

(Cross and Huang, EMNLP 2016)

Liang Huang (Oregon State)

current
brackets

27

S

VP

S

VP

NP

NN

fish

VBG

eating

VBP

like

MD

do

NP

PRP

I

Structural
(even step)

ShiftStructural
(even step) Combine

Label
(odd step)

Label-XLabel
(odd step) No-Label

do/MDI/PRP like/VBP
0 1 2

eating/VBG fish/NN
3 4 5

t = {}

Shift

do/MDI/PRP like/VBP
0 1 2

eating/VBG fish/NN
3 4 5

Shift

do/MDI/PRP like/VBP
0 1 2

eating/VBG fish/NN
3 4 5

Shift

do/MDI/PRP like/VBP
0 1 2

eating/VBG fish/NN
3 4 5

t = {0NP1}
Label-NP

t = {0NP1}
No-Label

t = {0NP1}
No-Label

(Cross and Huang, EMNLP 2016)

Liang Huang (Oregon State) 28

Structural
(even step)

ShiftStructural
(even step) Combine

Label
(odd step)

Label-XLabel
(odd step) No-Label

do/MDI/PRP like/VBP
0 1 2

eating/VBG fish/NN
3 4 5

t = {0NP1}

S

VP

S

VP

NP

NN

fish

VBG

eating

VBP

like

MD

do

NP

PRP

I

(Cross and Huang, EMNLP 2016)

Liang Huang (Oregon State) 28

Structural
(even step)

ShiftStructural
(even step) Combine

Label
(odd step)

Label-XLabel
(odd step) No-Label

do/MDI/PRP like/VBP
0 1 2

eating/VBG fish/NN
3 4 5

t = {0NP1}

Combine

do/MD like/VBPI/PRP
0 1

eating/VBG fish/NN
3 4 5

S

VP

S

VP

NP

NN

fish

VBG

eating

VBP

like

MD

do

NP

PRP

I

(Cross and Huang, EMNLP 2016)

Liang Huang (Oregon State) 28

Structural
(even step)

ShiftStructural
(even step) Combine

Label
(odd step)

Label-XLabel
(odd step) No-Label

do/MDI/PRP like/VBP
0 1 2

eating/VBG fish/NN
3 4 5

t = {0NP1}

Combine

do/MD like/VBPI/PRP
0 1

eating/VBG fish/NN
3 4 5

t = {0NP1}
No-Label

S

VP

S

VP

NP

NN

fish

VBG

eating

VBP

like

MD

do

NP

PRP

I

(Cross and Huang, EMNLP 2016)

Liang Huang (Oregon State) 28

Structural
(even step)

ShiftStructural
(even step) Combine

Label
(odd step)

Label-XLabel
(odd step) No-Label

do/MDI/PRP like/VBP
0 1 2

eating/VBG fish/NN
3 4 5

t = {0NP1}

Combine

do/MD like/VBPI/PRP
0 1

eating/VBG fish/NN
3 4 5

Shift

do/MD like/VBPI/PRP
0 1

eating/VBG fish/NN
3 4 5

t = {0NP1}
No-Label

S

VP

S

VP

NP

NN

fish

VBG

eating

VBP

like

MD

do

NP

PRP

I

(Cross and Huang, EMNLP 2016)

Liang Huang (Oregon State) 28

Structural
(even step)

ShiftStructural
(even step) Combine

Label
(odd step)

Label-XLabel
(odd step) No-Label

do/MDI/PRP like/VBP
0 1 2

eating/VBG fish/NN
3 4 5

t = {0NP1}

Combine

do/MD like/VBPI/PRP
0 1

eating/VBG fish/NN
3 4 5

Shift

do/MD like/VBPI/PRP
0 1

eating/VBG fish/NN
3 4 5

t = {0NP1}
No-Label

t = {0NP1}
No-Label

S

VP

S

VP

NP

NN

fish

VBG

eating

VBP

like

MD

do

NP

PRP

I

(Cross and Huang, EMNLP 2016)

Liang Huang (Oregon State) 28

Structural
(even step)

ShiftStructural
(even step) Combine

Label
(odd step)

Label-XLabel
(odd step) No-Label

do/MDI/PRP like/VBP
0 1 2

eating/VBG fish/NN
3 4 5

t = {0NP1}

Combine

do/MD like/VBPI/PRP
0 1

eating/VBG fish/NN
3 4 5

Shift

do/MD like/VBPI/PRP
0 1

eating/VBG fish/NN
3 4 5

t = {0NP1}
No-Label

t = {0NP1}
No-Label

Shift

do/MD like/VBPI/PRP
0 1 3 5

eating/VBG fish/NN
4

S

VP

S

VP

NP

NN

fish

VBG

eating

VBP

like

MD

do

NP

PRP

I

(Cross and Huang, EMNLP 2016)

Liang Huang (Oregon State) 28

Structural
(even step)

ShiftStructural
(even step) Combine

Label
(odd step)

Label-XLabel
(odd step) No-Label

do/MDI/PRP like/VBP
0 1 2

eating/VBG fish/NN
3 4 5

t = {0NP1}

Combine

do/MD like/VBPI/PRP
0 1

eating/VBG fish/NN
3 4 5

Shift

do/MD like/VBPI/PRP
0 1

eating/VBG fish/NN
3 4 5

t = {0NP1}
No-Label

t = {0NP1}
No-Label

Label-NP
t = {0NP1, 4NP5}

Shift

do/MD like/VBPI/PRP
0 1 3 5

eating/VBG fish/NN
4

S

VP

S

VP

NP

NN

fish

VBG

eating

VBP

like

MD

do

NP

PRP

I

(Cross and Huang, EMNLP 2016)

Liang Huang (Oregon State) 29

Structural
(even step)

ShiftStructural
(even step) Combine

Label
(odd step)

Label-XLabel
(odd step) No-Label

do/MD like/VBPI/PRP
0 1

eating/VBG fish/NN
3 4 5

t = {0NP1, 4NP5}

S

VP

S

VP

NP

NN

fish

VBG

eating

VBP

like

MD

do

NP

PRP

I

(Cross and Huang, EMNLP 2016)

Liang Huang (Oregon State) 29

Structural
(even step)

ShiftStructural
(even step) Combine

Label
(odd step)

Label-XLabel
(odd step) No-Label

do/MD like/VBPI/PRP
0 1

eating/VBG fish/NN
3 4 5

t = {0NP1, 4NP5}

Combine

do/MD like/VBPI/PRP
0 1

eating/VBG fish/NN
3 5

S

VP

S

VP

NP

NN

fish

VBG

eating

VBP

like

MD

do

NP

PRP

I

(Cross and Huang, EMNLP 2016)

Liang Huang (Oregon State) 29

Structural
(even step)

ShiftStructural
(even step) Combine

Label
(odd step)

Label-XLabel
(odd step) No-Label

do/MD like/VBPI/PRP
0 1

eating/VBG fish/NN
3 4 5

t = {0NP1, 4NP5}

Combine

do/MD like/VBPI/PRP
0 1

eating/VBG fish/NN
3 5

Label-S-VP t = {0NP1, 4NP5,
3S5, 3VP5}

S

VP

S

VP

NP

NN

fish

VBG

eating

VBP

like

MD

do

NP

PRP

I

(Cross and Huang, EMNLP 2016)

Liang Huang (Oregon State) 29

Structural
(even step)

ShiftStructural
(even step) Combine

Label
(odd step)

Label-XLabel
(odd step) No-Label

do/MD like/VBPI/PRP
0 1

eating/VBG fish/NN
3 4 5

t = {0NP1, 4NP5}

Combine

do/MD like/VBPI/PRP
0 1

eating/VBG fish/NN
3 5

Combine

do/MD like/VBP eating/VBG fish/NNI/PRP
0 1 5

Label-S-VP t = {0NP1, 4NP5,
3S5, 3VP5}

S

VP

S

VP

NP

NN

fish

VBG

eating

VBP

like

MD

do

NP

PRP

I

(Cross and Huang, EMNLP 2016)

Liang Huang (Oregon State) 29

Structural
(even step)

ShiftStructural
(even step) Combine

Label
(odd step)

Label-XLabel
(odd step) No-Label

do/MD like/VBPI/PRP
0 1

eating/VBG fish/NN
3 4 5

t = {0NP1, 4NP5}

Combine

do/MD like/VBPI/PRP
0 1

eating/VBG fish/NN
3 5

Combine

do/MD like/VBP eating/VBG fish/NNI/PRP
0 1 5

Label-S-VP t = {0NP1, 4NP5,
3S5, 3VP5}

Label-VP
t = {0NP1, 4NP5,

3S5, 3VP5,
1VP5}

S

VP

S

VP

NP

NN

fish

VBG

eating

VBP

like

MD

do

NP

PRP

I

(Cross and Huang, EMNLP 2016)

Liang Huang (Oregon State) 29

Structural
(even step)

ShiftStructural
(even step) Combine

Label
(odd step)

Label-XLabel
(odd step) No-Label

do/MD like/VBPI/PRP
0 1

eating/VBG fish/NN
3 4 5

t = {0NP1, 4NP5}

Combine

do/MD like/VBPI/PRP
0 1

eating/VBG fish/NN
3 5

Combine

do/MD like/VBP eating/VBG fish/NNI/PRP
0 1 5

Combine

I/PRP do/MD like/VBP eating/VBG fish/NN
0 5

Label-S-VP t = {0NP1, 4NP5,
3S5, 3VP5}

Label-VP
t = {0NP1, 4NP5,

3S5, 3VP5,
1VP5}

S

VP

S

VP

NP

NN

fish

VBG

eating

VBP

like

MD

do

NP

PRP

I

(Cross and Huang, EMNLP 2016)

Liang Huang (Oregon State) 29

Structural
(even step)

ShiftStructural
(even step) Combine

Label
(odd step)

Label-XLabel
(odd step) No-Label

do/MD like/VBPI/PRP
0 1

eating/VBG fish/NN
3 4 5

t = {0NP1, 4NP5}

Combine

do/MD like/VBPI/PRP
0 1

eating/VBG fish/NN
3 5

Combine

do/MD like/VBP eating/VBG fish/NNI/PRP
0 1 5

Combine

I/PRP do/MD like/VBP eating/VBG fish/NN
0 5

Label-S-VP t = {0NP1, 4NP5,
3S5, 3VP5}

Label-VP
t = {0NP1, 4NP5,

3S5, 3VP5,
1VP5}

Label-S
t = {0NP1, 4NP5,

3S5, 3VP5,
1VP5, 0S5}

S

VP

S

VP

NP

NN

fish

VBG

eating

VBP

like

MD

do

NP

PRP

I

(Cross and Huang, EMNLP 2016)

Liang Huang (Oregon State)

Bi-LSTM Span Features

30

18

hsi I do like eating

fish

h/si0

f0

b0

1

f1

b1

2

f2

b2

3

f3

b3

4

f4

b4

5

f5

b5

Figure 3.4: Word spans are modeled by differences in LSTM output. Here the span 3 eating
fish 5 is represented by the vector differences (f5 � f3) and (b3 � b5). The forward difference
corresponds to LSTM-Minus [33].

such as language modeling [29] and translation [30].
LSTMs have also been incorporated into parsing in a variety of ways, such as directly en-

coding an entire sentence [32], separately modeling the stack, buffer, and action history [9], to
encode words based on their character forms [2], and as an element in a recursive structure to
combine dependency subtrees with their left and right children [19].

For our parsing system, however, we need a way to model arbitrary sentence spans in the
context of the rest of the sentence. We do this by representing each sentence span as the ele-
mentwise difference of the vector outputs of the LSTM outputs at different time steps, which
correspond to word boundaries. The spans are represented using output from both backward and
forward LSTM components, as can be seen in Figure 3.4. This is essentially the LSTM-Minus
feature representation described by Wang and Chang (2016) [33] extended to the bi-directional
case.

This model allows a sentence to be processed once, and then the same recurrent outputs
can be used to compute span features throughout the parse. Intuitively, this allows the span
differences to learn to represent the sentence spans in the context of the rest of the sentence,
not in isolation (especially true for LSTM given the extra hidden recurrent connection, typically
described as a “memory cell”). In practice, we use a two-layer bi-directional LSTM, where the
input to the second layer combines the forward and backward outputs from the first layer at that
time step. For each direction, the components from the first and second layers are concatenated
to form the vectors which go into the span features.

For the particular case of our transition constituency parser, we use only four span features to

• Sentence segment “eating fish” represented by two vectors:

• Forward component: f5 - f3 (Wang and Chang, ACL 2016)

• Backward component: b3 - b5

(Cross and Huang, EMNLP 2016)

Liang Huang (Oregon State)

Structural & Label Actions

31

pre-s1 s1 s0 queue

do/MD like/VBPI/PRP eating/VBG fish/NN ./.

pre-s0 s0 queue

do/MD like/VBP eating/VBG fish/NNI/PRP ./.

Structural Action: 4 spans

Label Action: 3 spans

Liang Huang (Oregon State)

Results on Penn Treebank

32

Parser Search Recall Prec. F1

Carreras et al. (2008) cubic 90.7 91.4 91.1

Shindo et al. (2012) cubic 91.1

Thang et al. (2015) ~cubic 91.1

Watanabe et al. (2015) beam 90.7

Static Oracle greedy 90.7 91.4 91.0

Dynamic + Exploration greedy 90.5 92.1 91.3

• state of the art despite simple system with greedy actions and
small embeddings trained from scratch

• first neural constituency parser to outperform sparse features
(Cross and Huang, EMNLP 2016)

Liang Huang (Oregon State)

Extension: Joint Syntax-Discourse Parsing

• extend span-based parsing to discourse parsing

• end-to-end, joint syntactic and discourse parsing

33(Kai and Huang, EMNLP 2017)

RST discourse tree

+PTB
discourse-level

syntax-level

In this talk...

• Background

• Dynamic Programming for Incremental Parsing

• Interlude: NN Features: from feedforward to recurrent

• Bidirectional RNNs: minimal features; no tree structures!

• dependency parsing (Kiperwaser+Goldberg, 2016, Cross+Huang, 2016a)

• span-based constituency parsing (Cross+Huang, 2016b)

• Marrying DP & RNNs (mostly not my work!)

• minimal span-based constituency parsing (Stern et al, ACL 2017)

• transition-based dependency parsing (Shi et al, EMNLP 2017)

34

Minimal Span-based Const. Parsing
• chart-based bottom-up parsing instead of incremental

• an even simpler score formulation

• O(n3) exact DP (CKY) instead of greedy search

• global loss-augmented training instead of local training

35

Minimal Span-based Const. Parsing
• chart-based bottom-up parsing instead of incremental

• an even simpler score formulation

• O(n3) exact DP (CKY) instead of greedy search

• global loss-augmented training instead of local training

35

pre-s1 s1 s0 queue

do/MD like/VBPI/PRP eating/VBG fish/NN ./.

i jk

pre-s0 s0 queue

do/MD like/VBP eating/VBG fish/NNI/PRP ./.

i j

(Cross+Huang, EMNLP16)

Minimal Span-based Const. Parsing
• chart-based bottom-up parsing instead of incremental

• an even simpler score formulation

• O(n3) exact DP (CKY) instead of greedy search

• global loss-augmented training instead of local training

35

pre-s1 s1 s0 queue

do/MD like/VBPI/PRP eating/VBG fish/NN ./.

i jk

pre-s0 s0 queue

do/MD like/VBP eating/VBG fish/NNI/PRP ./.

i j

score action (i, k, j)

structural action

score label (i, j)

label action

(Cross+Huang, EMNLP16)

Minimal Span-based Const. Parsing
• chart-based bottom-up parsing instead of incremental

• an even simpler score formulation

• O(n3) exact DP (CKY) instead of greedy search

• global loss-augmented training instead of local training

35

(Stern+, ACL 2017)

pre-s1 s1 s0 queue

do/MD like/VBPI/PRP eating/VBG fish/NN ./.

i jk

pre-s0 s0 queue

do/MD like/VBP eating/VBG fish/NNI/PRP ./.

i j

score action (i, k, j)

structural action

score label (i, j)

label action

(Cross+Huang, EMNLP16)

max label
score label (i, j)

max k
best (i, k)+best (k, j)

Minimal Span-based Const. Parsing
• chart-based bottom-up parsing instead of incremental

• an even simpler score formulation

• O(n3) exact DP (CKY) instead of greedy search

• global loss-augmented training instead of local training

35

(Stern+, ACL 2017)

pre-s1 s1 s0 queue

do/MD like/VBPI/PRP eating/VBG fish/NN ./.

i jk

pre-s0 s0 queue

do/MD like/VBP eating/VBG fish/NNI/PRP ./.

i j

score action (i, k, j)

structural action

score label (i, j)

label action

(Cross+Huang, EMNLP16)

max label
score label (i, j)

max k
best (i, k)+best (k, j)

+

best (i, j) =

Liang Huang (Oregon State)

Global Training & Loss-Augmented Decoding

want for all

and larger margin for worse trees:

loss-augmented decoding in training (find the most-violated tree,
i.e., a bad tree with good score)

loss-augmented decoding for Hamming loss (approximating F1):
simply replace score label (i, j)
 with score label (i, j) + 1(label ≠ label*ij)
 gold tree label for span (i, j)
 (could be “nolabel”)

bad tree good score

(Stern+, ACL 2017)

Liang Huang (Oregon State)

Penn Treebank Results

Parser F1 Score
Hall et al. (2014) 89.2

Vinyals et al. (2015) 88.3

Cross and Huang (2016b) 91.3

Dyer et al. (2016) corrected 91.7

Liu and Zhang (2017) 91.7

Chart Parser 91.7

+refinement 91.8

(Stern+, ACL 2017)

Minimal Feats for Incremental Dep. Parsing

38

		 	… …			 	… …

(Cross and Huang, ACL 2016)
arc-standard(Kiperwaser and Goldberg 2016)

arc-eager

Minimal Feats for Incremental Dep. Parsing

38

		 	… …			 	… …

(Cross and Huang, ACL 2016)
arc-standard(Kiperwaser and Goldberg 2016)

arc-eager

	 	… …

(Shi, Huang, Lee, EMNLP 2017)
Saturday talk!

arc-hybrid and arc-eager

works for both greedy and O(n3) DP

Minimal Feats for Incremental Dep. Parsing

39

Spectrum: Neural Incremental Parsing

40

Feedforward NNs
(Chen + Manning 14)

Stack LSTM
 (Dyer+ 15)

biRNN dependency
(Kiperwaser+Goldberg 16;

Cross+Huang 16a)

biRNN span-based
constituency
(Cross+Huang 16b) minimal span-based

constituency
(Stern+ ACL 17)

minimal dependency
(Shi+ EMNLP 17)

edge-factored
(McDonald+ 05a)

biRNN graph-based
dependency

(Kiperwaser+Goldberg 16;
Wang+Chang 16)

DP incremental parsing
(Huang+Sagae 10, Kuhlmann+ 11)

RNNG
(Dyer+ 16)

DP impossible enables slow DP enables fast DP fastest DP: O(n3)

all tree info
(summarize output y)

minimal or no tree info
(summarize input x)

constituency
dependency

bottom-up

Spectrum: Neural Incremental Parsing

40

Feedforward NNs
(Chen + Manning 14)

Stack LSTM
 (Dyer+ 15)

biRNN dependency
(Kiperwaser+Goldberg 16;

Cross+Huang 16a)

biRNN span-based
constituency
(Cross+Huang 16b) minimal span-based

constituency
(Stern+ ACL 17)

minimal dependency
(Shi+ EMNLP 17)

edge-factored
(McDonald+ 05a)

biRNN graph-based
dependency

(Kiperwaser+Goldberg 16;
Wang+Chang 16)

DP incremental parsing
(Huang+Sagae 10, Kuhlmann+ 11)

RNNG
(Dyer+ 16)

DP impossible enables slow DP enables fast DP fastest DP: O(n3)

all tree info
(summarize output y)

minimal or no tree info
(summarize input x)

constituency
dependency

bottom-up

Conclusions and Limitations

41

Conclusions and Limitations
• DP and RNNs can indeed be married, if done creatively

• biRNN summarizing input x and not output structure y

• this allows efficient DP with exact search

• combine with global learning (loss-augmented decoding)

41

Conclusions and Limitations
• DP and RNNs can indeed be married, if done creatively

• biRNN summarizing input x and not output structure y

• this allows efficient DP with exact search

• combine with global learning (loss-augmented decoding)

• but exact DP is still too slow

• future work: linear-time beam search DP with biRNNs

41

Conclusions and Limitations
• DP and RNNs can indeed be married, if done creatively

• biRNN summarizing input x and not output structure y

• this allows efficient DP with exact search

• combine with global learning (loss-augmented decoding)

• but exact DP is still too slow

• future work: linear-time beam search DP with biRNNs

• what if we want strictly incremental parsing? no biRNN...

• DP search could compensate for loss of lookahead

41

Conclusions and Limitations
• DP and RNNs can indeed be married, if done creatively

• biRNN summarizing input x and not output structure y

• this allows efficient DP with exact search

• combine with global learning (loss-augmented decoding)

• but exact DP is still too slow

• future work: linear-time beam search DP with biRNNs

• what if we want strictly incremental parsing? no biRNN...

• DP search could compensate for loss of lookahead

• what about translation? we do need to model y directly...
41

非常 感谢 !
 fēi cháng gǎn xiè

James Cross

Thank you very much

非常 感谢 !
 fēi cháng gǎn xiè

!

James Cross

