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Structured Prediction is Hard!

2



Not Easy for Humans Either...

3(structural ambiguity :-P)



Not Even Easy for Nature!
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• prion: “misfolded protein”

• structural ambiguity for the same amino-acid sequence

• similar to different interpretations under different contexts

• causes mad-cow diseases etc.



Case Study: Parsing and Folding
• both problems have exponentially large search space

• both can be modeled by grammars (context-free & above)

• question 1: how to search for the highest-scoring structure?

• question 2: how to make gold structure score the highest?
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Solutions to Search and Learning
• question 1: how to search for the highest-scoring structure?

• answer: dynamic programming to factor search space

• question 2: how to make gold structure score the highest?

• answer: neural nets to automate feature engineering

• But do DP and neural nets like each other??

6
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In this talk...

• Background

• Dynamic Programming for Incremental Parsing

• Features: from sparse to neural to recurrent neural nets

• Bidirectional RNNs: minimal features; no tree structures!

• dependency parsing (Kiperwaser+Goldberg, 2016, Cross+Huang, 2016a)

• span-based constituency parsing (Cross+Huang, 2016b)

• Marrying DP & RNNs (mostly not my work!)

• transition-based dependency parsing (Shi et al, EMNLP 2017)

• minimal span-based constituency parsing (Stern et al, ACL 2017)
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Spectrum: Neural Incremental Parsing
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Feedforward NNs 
(Chen + Manning 14)

Stack LSTM
 (Dyer+ 15)

biRNN dependency
(Kiperwaser+Goldberg 16; 

Cross+Huang 16a)

biRNN span-based 
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(Cross+Huang 16b) minimal span-based 

constituency
(Stern+ ACL 17)

minimal dependency
(Shi+ EMNLP 17)

edge-factored
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biRNN graph-based 
dependency
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Wang+Chang 16)
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(Huang+Sagae 10, Kuhlmann+ 11)

RNNG
(Dyer+ 16)

DP impossible enables slow DP enables fast DP fastest DP: O(n3)

all tree info
(summarize output y)

minimal or no tree info
(summarize input x)

constituency
dependency

bottom-up
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• each state => three new states (shift, l-reduce, r-reduce)

• beam search:  always keep top-b states

• still just a tiny fraction of the whole search space

psycholinguistic evidence:
parallelism (Fodor et al, 1974; Gibson, 1991)
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Result: linear-time, DP, and accurate!

• very fast linear-time dynamic programming parser

• explores exponentially many trees (and outputs forest)

• state-of-the-art parsing accuracy on English & Chinese
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• weights trained by structured perceptron (Collins 02)
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Spectrum: Neural Incremental Parsing
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In this talk...

• Background

• Dynamic Programming for Incremental Parsing

• Interlude: NN Features: from feedforward to recurrent

• Bidirectional RNNs: minimal features; no tree structures!

• dependency parsing (Kiperwaser+Goldberg, 2016, Cross+Huang, 2016a)

• span-based constituency parsing (Cross+Huang, 2016b)

• Marrying DP & RNNs (mostly not my work!)

• minimal span-based constituency parsing (Stern et al, ACL 2017)

• transition-based dependency parsing (Shi et al, EMNLP 2017)
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biRNN for Dependency Parsing
• several parallel efforts in 2016 used biLSTM features

• Kiperwaser+Goldberg 2016: four positional feats; arc-eager

• Cross+Huang ACL 2016: three positional feats; arc-standard

• Wang+Chang 2016: two positional feats; graph-based

• all inspired by sparse edge-factored model (McDonald+05)

• use positions to summarize the input x, not the output y!

• => O(n3) DP, e.g. graph-based, but also incremental!

25
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Span-Based Constituency Parsing
• previous work uses tree structures on stack

• we simplify to operate directly on sentence spans

• simple-to-implement linear-time parsing
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Bi-LSTM Span Features

30

18

hsi I do like eating
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1
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Figure 3.4: Word spans are modeled by differences in LSTM output. Here the span 3 eating
fish 5 is represented by the vector differences (f5 � f3) and (b3 � b5). The forward difference
corresponds to LSTM-Minus [33].

such as language modeling [29] and translation [30].
LSTMs have also been incorporated into parsing in a variety of ways, such as directly en-

coding an entire sentence [32], separately modeling the stack, buffer, and action history [9], to
encode words based on their character forms [2], and as an element in a recursive structure to
combine dependency subtrees with their left and right children [19].

For our parsing system, however, we need a way to model arbitrary sentence spans in the
context of the rest of the sentence. We do this by representing each sentence span as the ele-
mentwise difference of the vector outputs of the LSTM outputs at different time steps, which
correspond to word boundaries. The spans are represented using output from both backward and
forward LSTM components, as can be seen in Figure 3.4. This is essentially the LSTM-Minus
feature representation described by Wang and Chang (2016) [33] extended to the bi-directional
case.

This model allows a sentence to be processed once, and then the same recurrent outputs
can be used to compute span features throughout the parse. Intuitively, this allows the span
differences to learn to represent the sentence spans in the context of the rest of the sentence,
not in isolation (especially true for LSTM given the extra hidden recurrent connection, typically
described as a “memory cell”). In practice, we use a two-layer bi-directional LSTM, where the
input to the second layer combines the forward and backward outputs from the first layer at that
time step. For each direction, the components from the first and second layers are concatenated
to form the vectors which go into the span features.

For the particular case of our transition constituency parser, we use only four span features to

• Sentence segment “eating fish” represented by two vectors:

• Forward component: f5 - f3  (Wang and Chang, ACL 2016)

• Backward component: b3 - b5

(Cross and Huang, EMNLP 2016)



Liang Huang (Oregon State)

Structural & Label Actions
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pre-s1 s1 s0 queue

do/MD   like/VBPI/PRP eating/VBG  fish/NN ./.

pre-s0 s0 queue

do/MD   like/VBP    eating/VBG  fish/NNI/PRP ./.

Structural Action: 4 spans

Label Action: 3 spans
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Results on Penn Treebank

32

Parser Search Recall Prec. F1

Carreras et al. (2008) cubic 90.7 91.4 91.1

Shindo et al. (2012) cubic 91.1

Thang et al. (2015) ~cubic 91.1

Watanabe et al. (2015) beam 90.7

Static Oracle greedy 90.7 91.4 91.0

Dynamic + Exploration greedy 90.5 92.1 91.3

• state of the art despite simple system with greedy actions and 
small embeddings trained from scratch

• first neural constituency parser to outperform sparse features
(Cross and Huang, EMNLP 2016)
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Extension: Joint Syntax-Discourse Parsing

• extend span-based parsing to discourse parsing

• end-to-end, joint syntactic and discourse parsing

33(Kai and Huang, EMNLP 2017)

RST discourse tree

+PTB
discourse-level

syntax-level



In this talk...

• Background

• Dynamic Programming for Incremental Parsing

• Interlude: NN Features: from feedforward to recurrent

• Bidirectional RNNs: minimal features; no tree structures!

• dependency parsing (Kiperwaser+Goldberg, 2016, Cross+Huang, 2016a)

• span-based constituency parsing (Cross+Huang, 2016b)

• Marrying DP & RNNs (mostly not my work!)

• minimal span-based constituency parsing (Stern et al, ACL 2017)

• transition-based dependency parsing (Shi et al, EMNLP 2017)

34
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• O(n3) exact DP (CKY) instead of greedy search
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max label
score label (i, j)

max k 
best (i, k)+best (k, j)

+

best (i, j) =
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Global Training & Loss-Augmented Decoding

want for all

and larger margin for worse trees:

loss-augmented decoding in training (find the most-violated tree,
i.e., a bad tree with good score)

loss-augmented decoding for Hamming loss (approximating F1):
simply replace score label (i, j) 
               with score label (i, j) + 1(label ≠ label*ij)
                                                            gold tree label for span (i, j)
                                                            (could be “nolabel”)

bad tree good score

(Stern+,  ACL 2017)
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Penn Treebank Results

Parser F1 Score
Hall et al. (2014) 89.2

Vinyals et al. (2015) 88.3

Cross and Huang (2016b) 91.3

Dyer et al. (2016) corrected 91.7

Liu and Zhang (2017) 91.7

Chart Parser 91.7

+refinement 91.8

(Stern+,  ACL 2017)
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		 	… …			 	… …

(Cross and Huang, ACL 2016)
arc-standard(Kiperwaser and Goldberg 2016)

arc-eager

	 	… …

(Shi, Huang, Lee, EMNLP 2017)
Saturday talk!

arc-hybrid and arc-eager

works for both greedy and O(n3) DP
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Spectrum: Neural Incremental Parsing
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• but exact DP is still too slow

• future work: linear-time beam search DP with biRNNs

• what if we want strictly incremental parsing? no biRNN...

• DP search could compensate for loss of lookahead

• what about translation? we do need to model y directly...
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James Cross


