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Translation is hard!
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4clear evidence that MT is used in real life.



How do people translate?
1. understand the source language sentence

2. generate the target language translation
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How do people translate?
1. understand the source language sentence

2. generate the target language translation

5

Bush holdand/
with

meetingSharon [past.]

“Bush   held   a  meeting   with   Sharon”

布什 举行与 会谈沙龙 了

Bùshí juxíngyu huìtánShalóng le



How do compilers translate?
1. parse high-level language program into a syntax tree

2. generate intermediate or machine code accordingly
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How do compilers translate?
1. parse high-level language program into a syntax tree

2. generate intermediate or machine code accordingly

6

x3 = y + 3;

LD     R1,  id2
ADDF   R1,  R1, #3.0  // add float
RTOI   R2,  R1        // real to int
ST     id1, R2

syntax-directed translation (~1960)



Syntax-Directed Machine Translation

1. parse the source-language sentence into a tree

2. recursively convert it into a target-language sentence
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Syntax-Directed Machine Translation?

• continue pattern-matching
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Bush held witha meeting Sharon

(Huang, Knight, Joshi 2006); rules from (Galley et al., 04)



Pros: simple, fast, and expressive
• simple architecture: separate parsing and translation

• efficient linear-time dynamic programming

• “soft decision” at each node on which rule to use

• (trivial) depth-first traversal with memoization

• expressive multi-level rules for syntactic divergence
                                              (beyond CFG)
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Cons: Parsing Errors
• ambiguity is a fundamental problem in natural languages

• probably will never have perfect parsers (unlike compiling)

• parsing errors affect translation quality!

13

emergency exit
or “safe exports”?

mind your head
or “meet cautiously”?
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Exponential Explosion of Ambiguity

• how about...

• I saw her duck with a telescope.

• I saw her duck with a telescope in the garden...
14

...

I saw her duck.

NLP == dealing with ambiguities.
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Tackling Ambiguities in Translation
• simplest idea: take top-k trees rather than 1-best parse

• but only covers tiny fraction of the exponential space

• and these k-best trees are very similar

• e.g., 50-best trees ~ 5-6 binary ambiguities (25 < 50 <26)

• very inefficient to translate on these very similar trees

• most ambitious idea: combining parsing and translation

• start from the input string, rather than 1-best tree

• essentially considering all trees (search space too big)

• our approach:  packed forest (poly. encoding of exp. space) 

• almost as fast as 1-best,   almost as good as combined
15



Outline

• Overview: Tree-based Translation

• Forest-based Translation

• Packed Forest

• Translation on a Forest

• Experiments

• Forest-based Rule Extraction

• Large-scale Experiments

16



From Lattices to Forests
• common theme: polynomial encoding of exponential space

• forest generalizes “lattice/graph” from finite-state world

• paths => trees  (in DP: knapsack vs. matrix-chain multiplication)

• graph => hypergraph;   regular grammar => CFG

17

(Earley 1970; Billot and Lang 1989)



Packed Forest

• a compact representation of many many parses

• by sharing common sub-derivations

• polynomial-space encoding of exponentially large set

18
(Klein and Manning, 2001; Huang and Chiang, 2005)
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Packed Forest

• a compact representation of many many parses

• by sharing common sub-derivations

• polynomial-space encoding of exponentially large set

18
(Klein and Manning, 2001; Huang and Chiang, 2005)

0  I 1 saw  2  him  3  with 4 a 5 mirror 6

nodes hyperedges

a hypergraph
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Translation Forest

22

“held a meeting”

“Sharon”“Bush”

“Bush held a meeting with Sharon”



The Whole Pipeline
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Alg. 3
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parse forest

translation forest

translation+LM forest

parser

pattern-matching w/
translation rules (exact)

integrating language models
                   (cube pruning)

pa
ck

ed
 fo

re
st

s

(Huang and Chiang, 2005; 2007; Chiang, 2007)

input sentence

1-best translation k-best translations

pruned forest

forest pruning

Alg. 3



Parse Forest Pruning

• prune unpromising hyperedges

• principled way: inside-outside

• first compute Viterbi inside β, outside α

• then αβ(e) = α(v) + c(e) + β(u) + β(w)

• cost of best deriv that traverses e

• similar to “expected count” in EM

• prune away hyperedges that have
     αβ(e) - αβ(TOP) > p

for some threshold p

25

...

v
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outside
α(v)

β(u)
inside

β(w)
insideJonathan Graehl: relatively useless pruning



Small-Scale Experiments

• Chinese-to-English translation

• on a tree-to-string system similar to (Liu et al, 2006)

• 31k sentences pairs (0.8M Chinese & 0.9M English words)

• GIZA++ aligned

• trigram language model trained on the English side

• dev: NIST 2002 (878 sent.); test: NIST 2005 (1082 sent.)

• Chinese-side parsed by the parser of Xiong et al. (2005)

• modified to output a forest for each sentence (Huang 2008)

• BLEU score: 1-best baseline: 0.2430  vs.   Pharaoh: 0.2297

26



k-best trees vs. forest-based

27

1.7 Bleu improvement over 1-best, 
0.8 over 30-best, and even faster!

k = ~6.1×108  trees

~2×104  trees



forest as virtual ∞-best list

• how often is the ith-best tree picked by the decoder?
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wait a sec... where are the rules from?

xiǎoxīn
 小心  X   <=>  be careful not to X

  小心 VP   <=>  be careful not to VP

  小心 NP  <=>  be careful of NP 

                  . . .
xiǎoxīn  gǒu

 小心  狗  <=>  be aware of  dog



Outline

• Overview: Tree-based Translation

• Forest-based Translation

• Forest-based Rule Extraction

• background: tree-based rule extraction (Galley et al., 2004)

• extension to forest-based

• large-scale experiments
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Where are the rules from?
• source parse tree, target sentence, and alignment

• compute target spans
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The Forest2 Pipeline

source sentence

training time

target sentence

aligner word alignment

ru
le
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tr
ac

to
r

translation 
ruleset

translation time

pattern-
matcher

target sentence

parser
1-best/
forest

source sentence parser 1-best/forest



Forest vs. k-best Extraction

39

1.0 Bleu improvement over 1-best,
twice as fast as 30-best extraction

~108  trees



Forest2

• FBIS: 239k sentence pairs (7M/9M Chinese/English words)

• forest in both extraction and decoding

• forest2 results is 2.5 points better than 1-best2

• and outperforms Hiero (Chiang 2007) by quite a bit

40

1-best tree forest
1-best tree

30-best trees
forest
Hiero

0.2560 0.2674
0.2634 0.2767
0.2679 0.2816

0.2738

rules from
 ...

translating on ...



Translation Examples

• src      鲍威尔    说     与     阿拉法特  会谈     很     重要

            Bàowēir   shūo  yǔ      Alāfǎtè    huìtán   hěn    zhòngyào
            Powell    say   with   Arafat    talk     very   important

• 1-best2  Powell said the very important talks with Arafat 

• forest2  Powell said his meeting with Arafat is very important 

• hiero    Powell said very important talks with Arafat

41



Conclusions

• main theme: efficient syntax-directed translation

• forest-based translation

• forest = “underspecified syntax”:  polynomial vs. exponential

• still fast (with pruning), yet does not commit to 1-best tree

• translating millions of trees is faster than just on top-k trees

• forest-based rule extraction: improving rule set quality

• very simple idea, but works well in practice

• significant improvement over 1-best syntax-directed

• final result outperforms hiero by quite a bit

42



Forest is your friend in machine translation.

help save the forest.

More “forest-based” algorithms in my thesis (this talk is about Chap. 6).
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Larger Decoding Experiments (ACL)

• 2.2M sentence pairs (57M Chinese and 62M English words)

• larger trigram models (1/3 of Xinhua Gigaword)

• also use bilingual phrases (BP) as flat translation rules

• phrases that are consistent with syntactic constituents

• forest enables larger improvement with BP

45

T2S T2S+BP
1-best tree

30-best trees
forest

improvement

0.2666 0.2939

0.2755 0.3084

0.2839 0.3149

1.7 2.1


