Tree-based and Forest-Based Translation

Joint work with Kevin Knight (ISI), Aravind Joshi (Penn), Haitao Mi and Qun Liu (ICT)

UC Berkeley, Feb 6, 2009

self help terminal device

help oneself terminating machine

or even...

or even...

clear evidence that MT is used in real life.

How do people translate?

- I. understand the source language sentence
- 2. generate the target language translation

布什	与	沙龙	举行	了	会谈
Bùshí	yu	Shalóng	juxíng	le	huìtán
Bush	and/ with	Sharon	hold	[þast.]	meeting

How do people translate?

- I. understand the source language sentence
- 2. generate the target language translation

布什	与	沙龙	举行	了	会谈
Bùshí	yu	Shalóng	juxíng	le	huìtán
Bush	and/ with	Sharon	hold	[þast.]	meeting

How do people translate?

- I. understand the source language sentence
- 2. generate the target language translation

"Bush held a meeting with Sharon"

- I. parse high-level language program into a syntax tree
- 2. generate intermediate or machine code accordingly

x3 = y + 3;

- I. parse high-level language program into a syntax tree
- 2. generate intermediate or machine code accordingly

- I. parse high-level language program into a syntax tree
- 2. generate intermediate or machine code accordingly

- I. parse high-level language program into a syntax tree
- 2. generate intermediate or machine code accordingly

- I. parse the source-language sentence into a tree
- 2. recursively convert it into a target-language sentence

BùshíyǔShālóngjǔxínglehuìtánBushand/
withSharon
withhold[past.]meetingoogle(Irons 1961; Lewis, Stearns 1968; Aho, Ullman 1972)==>(Huang, Knight, Joshi 2006)

7

- I. parse the source-language sentence into a tree
- 2. recursively convert it into a target-language sentence

recursively solve unfinished subproblems

(Huang, Knight, Joshi 2006); rules from (Galley et al., 04)

recursively solve unfinished subproblems

(Huang, Knight, Joshi 2006); rules from (Galley et al., 04)

recursively solve unfinished subproblems

recursively solve unfinished subproblems

recursively solve unfinished subproblems

(Huang, Knight, Joshi 2006); rules from (Galley et al., 04)

continue pattern-matching

(Huang, Knight, Joshi 2006); rules from (Galley et al., 04)

continue pattern-matching

Bush held a meeting with Sharon

continue pattern-matching

Bush held a meeting with Sharon

- simple architecture: separate parsing and translation
- efficient linear-time dynamic programming
 - "soft decision" at each node on which rule to use
 - (trivial) depth-first traversal with memoization
- expressive multi-level rules for syntactic divergence IP
 (beyond CFG)

(Huang, Knight, Joshi 2006); rules from (Galley et al., 04)

- simple architecture: separate parsing and translation
- efficient linear-time dynamic programming
 - "soft decision" at each node on which rule to use
 - (trivial) depth-first traversal with memoization
- expressive multi-level rules for syntactic divergence (beyond CFG)

- simple architecture: separate parsing and translation
- efficient linear-time dynamic programming
 - "soft decision" at each node on which rule to use
 - (trivial) depth-first traversal with memoization
- expressive multi-level rules for syntactic divergence (beyond CFG)

- simple architecture: separate parsing and translation
- efficient linear-time dynamic programming
 - "soft decision" at each node on which rule to use
 - (trivial) depth-first traversal with memoization

Cons: Parsing Errors

- ambiguity is a fundamental problem in natural languages
 - probably will never have perfect parsers (unlike compiling)
- parsing errors affect translation quality!

Cons: Parsing Errors

• ambiguity is a fundamental problem in natural languages

- probably will never have perfect parsers (unlike compiling)
- parsing errors affect translation quality!

Cons: Parsing Errors

• ambiguity is a fundamental problem in natural languages

- probably will never have perfect parsers (unlike compiling)
- parsing errors affect translation quality!

emergency exit
or "safe exports"?

mind your head or "meet cautiously"?

I saw her duck.

I saw her duck.

- how about...
 - I saw her duck with a telescope.

• I saw her duck with a telescope in the garden...

- how about...
 - I saw her duck with a telescope.

• I saw her duck with a telescope in the garden...

- how about...
 - I saw her duck with a telescope.

I saw her duck with a telescope in the garden...
 I saw her duck with a telescope in the garden...

- simplest idea: take top-k trees rather than I-best parse
 - but only covers tiny fraction of the exponential space
 - and these k-best trees are very similar
 - e.g., 50-best trees ~ 5-6 binary ambiguities (2⁵ < 50 < 2⁶)
 - very inefficient to translate on these very similar trees

- simplest idea: take top-k trees rather than I-best parse
 - but only covers tiny fraction of the exponential space
 - and these k-best trees are very similar
 - e.g., 50-best trees ~ 5-6 binary ambiguities (2⁵ < 50 < 2⁶)
 - very inefficient to translate on these very similar trees
- most ambitious idea: combining parsing and translation
 - start from the input string, rather than 1-best tree
 - essentially considering all trees (search space too big)

- simplest idea: take top-k trees rather than I-best parse
 - but only covers tiny fraction of the exponential space
 - and these k-best trees are very similar
 - e.g., 50-best trees ~ 5-6 binary ambiguities (2⁵ < 50 < 2⁶)
 - very inefficient to translate on these very similar trees
- most ambitious idea: combining parsing and translation
 - start from the input string, rather than 1-best tree
 - essentially considering all trees (search space too big)
- our approach: packed forest (poly. encoding of exp. space)

• almost as fast as I-best, almost as good as combined

Outline

- Overview: Tree-based Translation
- Forest-based Translation
 - Packed Forest
 - Translation on a Forest
 - Experiments
- Forest-based Rule Extraction
 - Large-scale Experiments

From Lattices to Forests

- common theme: polynomial encoding of exponential space
 - forest generalizes "lattice/graph" from finite-state world
 - paths => trees (in DP: knapsack vs. matrix-chain multiplication)
 - graph => hypergraph; regular grammar => CFG

(Earley 1970; Billot and Lang 1989)

Packed Forest

- a compact representation of many many parses
 - by sharing common sub-derivations
 - polynomial-space encoding of exponentially large set

0 I 1 saw 2 him 3 with 4 a 5 mirror 6

(Klein and Manning, 2001; Huang and Chiang, 2005)

Packed Forest

- a compact representation of many many parses
 - by sharing common sub-derivations
 - polynomial-space encoding of exponentially large set

 $_{0}$ I $_{1}$ saw $_{2}$ him $_{3}$ with $_{4}$ a $_{5}$ mirror $_{6}$

The Whole Pipeline

(Huang and Chiang, 2005; 2007; Chiang, 2007)

The Whole Pipeline

(Huang and Chiang, 2005; 2007; Chiang, 2007)

Parse Forest Pruning

- prune unpromising hyperedges
- principled way: inside-outside
 - first compute Viterbi inside β, outside α
- then $\alpha\beta(e) = \alpha(v) + c(e) + \beta(u) + \beta(w)$
 - cost of best deriv that traverses e
 - similar to "expected count" in EM
- prune away hyperedges that have
 αβ(e) αβ(TOP) > p
 for some threshold p

Small-Scale Experiments

- Chinese-to-English translation
 - on a tree-to-string system similar to (Liu et al, 2006)
- 31k sentences pairs (0.8M Chinese & 0.9M English words)
- GIZA++ aligned
- trigram language model trained on the English side
- dev: NIST 2002 (878 sent.); test: NIST 2005 (1082 sent.)
- Chinese-side parsed by the parser of Xiong et al. (2005)
 - modified to output a forest for each sentence (Huang 2008)
- BLEU score: I-best baseline: 0.2430 vs. Pharaoh: 0.2297

k-best trees vs. forest-based

BLEU score

27

forest as virtual ∞-best list

how often is the *i*th-best tree picked by the decoder?

Research 🔘

wait a sec... where are the rules from?

wait a sec... where are the rules from?

xiǎoxīn $1 \le X <=>$ be careful not to X

wait a sec... where are the rules from?

xiǎoxīn $1 \le X \le be careful not to X$

wait a sec... where are the rules from?

xiǎoxīn xiǎoxīn gǒu 小心狗 <=> be aware of dog

小心 X <=> be careful not to X

Outline

- Overview: Tree-based Translation
- Forest-based Translation
- Forest-based Rule Extraction
 - background: tree-based rule extraction (Galley et al., 2004)
 - extension to forest-based
 - large-scale experiments

source parse tree, target sentence, and alignment

- source parse tree, target sentence, and alignment
- well-formed fragment: contiguous and faithful t-span

- source parse tree, target sentence, and alignment
- well-formed fragment: contiguous and faithful t-span

- source parse tree, target sentence, and alignment
- well-formed fragment: contiguous and faithful t-span

- source parse tree, target sentence, and alignment
- well-formed fragment: contiguous and faithful t-span

- source parse tree, target sentence, and alignment
- well-formed fragment: contiguous and faithful t-span

same cut set computation; different fragmentation

34

same cut set computation; different fragmentation

also in (Wang, Knight, Marcu, 2007)

same cut set computation; different fragmentation

also in (Wang, Knight, Marcu, 2007)

same cut set computation; different fragmentation

35

same admissible set definition; different fragmentation

 $IP(x_1:NPB \ x_2:VP) \to x_1 \ x_2$

same admissible set definition; different fragmentation

IP(x_1 :NPB x_2 :VP) $\rightarrow x_1 x_2$

same admissible set definition; different fragmentation

same admissible set definition; different fragmentation

forest can extract smaller chunks of rules

forest can extract smaller chunks of rules

forest can extract smaller chunks of rules

The Forest² Pipeline

The Forest² Pipeline

Forest vs. k-best Extraction

I.0 Bleu improvement over I-best, twice as fast as 30-best extraction 0.254 $\sim 10^8$ trees $p_e=8$ 0.252 **BLEU** score 0.250 $p_e=5$ k=30 0.248 *p_e*=2 0.246 0.244 forest extraction 0.242 1-best k-best extraction 0.2401 2 3 5 6 4 0

average extracting time (secs/1000 sentences)

Forest²

- FBIS: 239k sentence pairs (7M/9M Chinese/English words)
- forest in both extraction and decoding
- forest² results is 2.5 points better than 1-best²
 - and outperforms Hiero (Chiang 2007) by quite a bit

translating on ...

rules from		l-best tree	forest
	l-best tree	0.2560	0.2674
	30-best trees	0.2634	0.2767
	forest	0.2679	0.2816
V	Hiero	0.2738	

Translation Examples

- SrC 鲍威尔 说 与 阿拉法特 会谈 很 重要
 Bàowēir shūo yǔ Alāfǎtè huìtán hěn zhòngyào
 Powell say with Arafat talk very important
- I-best² Powell said the very important talks with Arafat
- forest² Powell said his meeting with Arafat is very important
- hiero Powell said very important talks with Arafat

Conclusions

- main theme: efficient syntax-directed translation
- forest-based translation
 - forest = "underspecified syntax": polynomial vs. exponential
 - still fast (with pruning), yet does not commit to 1-best tree
 - translating millions of trees is faster than just on top-k trees
- forest-based rule extraction: improving rule set quality
- very simple idea, but works well in practice
 - significant improvement over I-best syntax-directed
 - final result outperforms hiero by quite a bit

Forest is your friend in machine translation.

help save the forest.

More "forest-based" algorithms in my thesis (this talk is about Chap. 6).

self-service terminals

carefully slide

http://translate.google.com

self-service terminals

carefully slide

http://translate.google.com

self-service terminals

http://translate.google.com

Larger Decoding Experiments (ACL)

- 2.2M sentence pairs (57M Chinese and 62M English words)
- larger trigram models (1/3 of Xinhua Gigaword)
- also use bilingual phrases (BP) as flat translation rules
 - phrases that are consistent with syntactic constituents
- forest enables larger improvement with BP

	T2S	T2S+BP
I-best tree	0.2666	0.2939
30-best trees	0.2755	0.3084
forest	0.2839	0.3149
improvement	1.7	2.1

