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Goal: Designing Stable mRNAs
• mRNA vaccine (and therapeutics) has many advantages, but suffers from instability

• mRNA molecules degrade easily => lower protein expression => lower immunogenicity

• question: how to design more stable & efficient mRNA sequences computationally?
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mRNA Design: the Mathematical Problem

3

• mRNA design: inverse problem of protein translation

• exploit redundancy in the genetic code

• each amino acid can be translated by multiple codons

• exponentially many synonymous mRNA sequences for a protein

• Moderna: stable mRNAs => high protein yield (Mauger et al, PNAS 2019)

• Q: how to find the most stable sequence in this huge space?
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AAU AAC Asn
GAU GAC Asp
UGU UGC Cys
CAA CAG Gln
GAA GAG Glu
GGU GGC GGA GGG Gly
CAU CAC His
AUU AUC AUA Ile
CUU CUC CUA CUG UUA UUG Leu
AAA AAG Lys
AUG Met
UUU UUC Phe
CCU CCC CCA CCG Pro
UCU UCC UCA UCG AGC AGU Ser
ACU ACC ACA ACG Thr
UAU UAC Tyr
UGG Trp
GUU GUC GUA GUG Val
UAA UAG UGA Stop
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Conventional Objective (MFE) & LinearDesign
• stability metric: minimum free energy (MFE) 

• among all mRNAs encoding the protein, 
find the one with the minimum MFE

• this is a minimization over a minimization

4

• it can be solved by dynamic programming, e.g., via lattice parsing in LinearDesign (Nature, 2023)

mRNA design space is 
exponentially large
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• represent mRNA design space as a lattice (finite-state automata)

• compact (polynomial-sized) representation of exponentially many alternatives

• big question: how to find the most stable (lowest energy) path in this lattice?
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Bar-Hillel, et al. (1961). Zeitschrift für Phonetik, Sprachwissenschaft und Kommunikationsforschung, 14 (2).
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From LinearDesign to EnsembleDesign



From Single MFE Structure to Whole Ensemble
• an RNA folds into millions of alternative structures in equilibrium 

(much more flexible than protein)

• an mRNA needs to constantly unfold and refold as ribosome goes 
through it in translation

• an ideal mRNA should be stable and flexible: with many stable 
structures but flatter energy landscape 

• optimize “ensemble stability” instead of “MFE stability”

9



New Objective: Ensemble Free Energy (EFE)

• ensemble stability of mRNA across all conformations

• Classical MFE Objective (most stable structure) 

• Proposed EFE Objective (sum over all structures) 

partition function Q(x)

10

Q(x)



New Objective: Ensemble Free Energy (EFE)

• ensemble stability of mRNA across all conformations

• Classical MFE Objective (most stable structure) 

• Proposed EFE Objective (sum over all structures) 

partition function Q(x)

10

Q(x)

min over min 
dynamic program

min over log sum 
beyond DP, likely NP-hard



Discrete Optimization => Continuous Optimization

11

• LinearDesign:                                                      

• EnsembleDesign:                                                               

• instead use a probabilistic distribution over all designs

partition  
function 

Q(x)

min over min 
dynamic programming 
via lattice parsing

min over log sum 
likely NP-hard
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over whole distribution
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Discrete Optimization => Continuous Optimization
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• LinearDesign:                                                      

• EnsembleDesign:                                                               

• instead use a probabilistic distribution over all designs
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Distribution on Lattice: Probabilistic Lattice
• each (branching) node in the lattice has a local distribution

• sequence distribution  via product and weighted sum of local distributions

• optimize expected ensemble free energy (  [EFE]) by gradient descent

•                       

• distribution gradually shrinks in entropy and converges to one-hot

𝔻

𝔼
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EnsembleDesign via Probabilistic Lattice Parsing
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EnsembleDesign via Probabilistic Lattice Parsing

• the continuous version is still hard to minimize, due to  over 𝔼 log
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EnsembleDesign via Probabilistic Lattice Parsing

• the continuous version is still hard to minimize, due to  over 𝔼 log

• further apply Jensen's inequality to swap the order b/w  and 𝔼 log

13

Jensen’s inequality≈𝔼 [EFE] :



EnsembleDesign via Probabilistic Lattice Parsing

• the continuous version is still hard to minimize, due to  over 𝔼 log

• further apply Jensen's inequality to swap the order b/w  and 𝔼 log

• minimizing this surrogate <=> maximizing expected partition function: 
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EnsembleDesign via Probabilistic Lattice Parsing

• the continuous version is still hard to minimize, due to  over 𝔼 log

• further apply Jensen's inequality to swap the order b/w  and 𝔼 log

• minimizing this surrogate <=> maximizing expected partition function: 
 

• (weighted) sum over sum can be efficiently solved by extending LinearDesign in two steps

• inner sum (over all structures): partition function (not MFE) version of LinearDesign

• outer weighted sum (over all seqs): weighted version of LinearDesign: probabilistic lattice parsing

13

Jensen’s inequality≈

sum over sum

𝔼 [EFE] :



Main Evaluation Results
• EnsembleDesign consistently finds sequences with lower (better) ensemble free energy

• bigger advantage on longer proteins over random walk baseline

• substantially better ensemble stability with negligible sacrifice on MFE stability

• data: 20 UniProt proteins (50~350 aa) and SARS-CoV-2 spike protein (1273 aa)
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Byproducts: Flatter Distribution and Lower AUP
• optimizing ensemble stability also results in

•  flatter energy landscape

•  higher positional entropy (more structural flexibility)

•  lower average unpaired probability (“AUP”)

• AUP is related to RNA degradation (…)

15
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Thank you!
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