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Is Supervised Parsing Done!

Bod (2007)

is it a done area? Is the End of Supervised
Parsing in Sight?
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Is Supervised Parsing Done!

Bod (2007)

is it a done area? Is the End of Supervised
Parsing in Sight?

® motivation: use non-local features

® linguistically-motivated features for n-best reranking

® but can we integrate them back into chart parsing?
® YES: using a packed forest!

® result: best whole Treebank parsing accuracy to date
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Why is n-best list a bad idea!?

® too few variations (limited scope)
® 4|% correct parses are not in ~30-best (Collins, 2000)
® worse for longer sentences; tiny fraction of whole space
® too many redundancies

® 50-best usually encodes 5-6 binary decisions (2°<50<26)
&Penn :
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Outline

® Packed Forest and General Idea
® Forest Reranking and Non-Local Features

® Perceptron for Generic Reranking

® | ocal vs. Non-Local Features

® |ncremental Computation of Non-Local Features
® Decoding Algorithm

® Experiments
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Packed Forest

® a compact representation of many parses
® by sharing common sub-derivations

® polynomial-space encoding of exponentially large set
VP 6
A
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NP5 3 PPs ¢
ol saw , him ; with 42 s mirror

% Penn (Klein and Manning, 2001; Huang and Chiang, 2005)




Packed Forest

® a compact representation of many parses
® by sharing common sub-derivations

® polynomial-space encoding of exponentially large set
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Lattices vs. Forests

® forest generalizes “lattice” from finite-state world

® both are compact encodings of exponentially many
derivations (paths or trees)

® graph => hypergraph; regular grammar => CFG
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Reranking on a Forest!?

® with only local features

® dynamic programming, tractable
(Taskar et al. 2004; McDonald et al., 2005)

® with non-local features

® intractable, so we do approximation

NP3

® on-the-fly reranking at internal

® use non-locals as early and as much as possible!

methods \ features non-local

n-best reranking only at the root node

DP-based discrim. parsing exact N/A

forest reranking exact on-the-fly
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Reranking on a Forest!?

“

® with only local features vp. . ®
1,6
VP

€1

® dynamic programming, tractable
(Taskar et al. 2004; McDonald et al., 2005)

® with non-local features o
® intractable, so we do approximation N
. . ¢ °
® on-the-fly reranking at internal ® °

® use non-locals as early and as much as possible!

methods \ features non-local

n-best reranking only at the root node

DP-based discrim. parsing exact N/A

forest reranking exact on-the-fly
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Outline

® Forest Reranking and Non-Local Features

® Perceptron for Generic Reranking

® | ocal vs. Non-Local Features

® |ncremental Computation of Non-Local Features
® Decoding Algorithm

® Experiments
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Generic Reranking by Perceptron

® for each sentence s;, we have a set of candidates cand(sj)

® and an oracle tree y;", among the candidates

® a feature mapping from tree y to vector f(y)

1: Imput: Training examples {@and(s@ Y Y
2: w0 > initial weights
3: fort«<— 1...7 do > [ 1terations
4. for:«— 1...N do
5: y = argmax, c .unacs,) W £(y)
6: if  # y;” then
7: w —w+ f(y") — £(9)
8. return w
& Penn (Collins, 2002) 9
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Features

® a feature fis a function from tree y to a real number
® fi(y)=log Pr(y) is the log Prob from generative parser

® every other feature counts the number of times a
particular configuration occurs in y

TOP our features are from

| (Charniak & Johnson, 2005)
(Collins, 2000)

NP VP :
| —_— |
PRP VBD NP PP .
I saw DT NN IN NP
| | | —
the boy with DT NN
| |
a telescope
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Features

® a feature fis a function from tree y to a real number
® fi(y)=log Pr(y) is the log Prob from generative parser

® every other feature counts the number of times a
particular configuration occurs in y

TOP our features are from

é (Charniak & Johnson, 2005)
(Collins, 2000)
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L ocal vs. Non-Local Features

® a feature is local iff. it can be factored among local
productions of a tree (i.e., hyperedges in a forest)

® |ocal features can be pre-computed on each hyperedge
in the forest; non-locals can not

TOP
I

NP VP :
I - I
PRP VBD NP PP

I saw DT NN IN NP

I I I —
the boy with DT NN
I I
a telescope
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L ocal vs. Non-Local Features

® a feature is local iff. it can be factored among local
productions of a tree (i.e., hyperedges in a forest)

® |ocal features can be pre-computed on each hyperedge
in the forest; non-locals can not

TOP
|
S ParentRule is non-local
N
NP VP .
| - — |
PRP VBD | NP PP . ,
| | o~ — Rule is local
I  saw |DT NN | IN NP

I I | —
the boy with [DT NN
I I
a telescope
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Local vs. Non-Local: Examples

® ColenPar feature captures the difference in lengths
of adjacent conjuncts (Charniak and Johnson, 2005)

RD|DT
8
__—————_______ .“H ______—————___
NP T .
| e s s e
PRP VP CC VP
| _— — | —
They v1|3 VP and VL|:~J3 VP
were V]jx ﬁP were VEEI Ij'x
consulted IN NP  surprised IN NP
| | | T T~
in NN at NP VP
| s e |
advance, DT N|N VBN
| |
4 words | the action taken
6 words

ColLenPar: 2
& Penn 12
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Local vs. Non-Local: Examples

® CoPar feature captures the depth to which adjacent
conjuncts are isomorphic (Charniak and Johnson, 2005)

ROOT
é _ Isomorphic trees to depth 4
SR Chb bt
— d g e T———
N|P P VP . |
PRP VP N O VB
They [ VBD VP “and VDB VP
were V ﬁN /IEF\ Were V ]|ij HlahP -H.-h"‘ﬁ-m_.
consulted, IN NP surpris&{ IN N
I e
in NN at NP VP
| ,-f’ff\\\
advance DT NN VBN

the action taken

6 words

CoPar: 4
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Local vs. Non-Local: Examples

® CoPar feature captures the depth to which adjacent
conjuncts are isomorphic (Charniak and Johnson, 2005)
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Factorizing non-local features

® going bottom-up, at each node

® compute (partial values of) feature instances that
become computable at this level

® postpone those uncomputable to ancestors

unit instance of ParentRule
feature at VP node

VBD NP PP
I S — —
saw DT NN IN NP
I I I —

the boy with DT NN
I I
a telescope
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Factorizing non-local features

® going bottom-up, at each node

® compute (partial values of) feature instances that
become computable at this level

® postpone those uncomputable to ancestors

‘ unit instance of ParentRule
o feature at S node
NP VP .
| e T Bt T |
PRP VBD NP PP .
I sasw DT NN 1IN NP

I I I —
the boy with DT NN

| |
- a telescope
& Penn P 5




Factorizing non-local features

® going bottom-up, at each node

® compute (partial values of) feature instances that
become computable at this level
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< feature at TOP node
NP VP

I — I
PRP VBD NP PP

I saw DT NN IN NP

| | | —
the boy with DT NN

| |
a telescope

8 UNIVERSITY 0f PENNSYLVANIA




Factorizing non-local features

® going bottom-up, at each node

® compute (partial values of) feature instances that
become computable at this level

® postpone those uncomputable to ancestors

TOP
g unit instance of ParentRule

< feature at TOP node
NP VP

I — I
PRP VBD NP PP

I saw DT NN IN NP

| | | —
the boy with DT NN

| |
a telescope

8 UNIVERSITY 0f PENNSYLVANIA




Factorizing non-local features

® going bottom-up, at each node

® compute (partial values of) feature instances that
become computable at this level

® postpone those uncomputable to ancestors

TOP
S unit instance of ParentRule
< feature at TOP node
NP VP :
| ]
PRP VBD NP PP . non-local features factor
I I /\ /\ M
I w DT NN IN NP across nodes dynamically
| | | _—
the boy with DT NN local features factor
| | across statically
a telescope
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NGramTree

® an NGramTree captures the smallest tree fragment
that contains a bigram (two consecutive words)

® unit instances are boundary words between subtrees

TOP
|
S
N7 |
| |
PRP VBD NP PP |
| | S SR .
I saw DT | NN IN NP
| I I —
the boy with DT NN
| |
a telescope
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NGramTree

® an NGramTree captures the smallest tree fragment
that contains a bigram (two consecutive words)

® unit instances are boundary words between subtrees

i
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I I
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NGramTree

® an NGramTree captures the smallest tree fragment
that contains a bigram (two consecutive words)

® unit instances are boundary words between subtrees

TOP B
NP B; €
| _ /\ /\
PRP VBD NP PP

Wi ... Wj—1 Wj...WE-1

N — 0
DT NN IN NP
—

I I I
the boy with DT N

a ( telescope ‘
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Outline

® Packed Forest and General Idea
® Forest Reranking and Non-Local Features

® Perceptron for Generic Reranking

® | ocal vs. Non-Local Features

® |ncremental Computation of Non-Local Features
® Decoding Algorithm the argmax operator

. ) — . f
e Experiments § = argmaxyceana(s,) W £(y)

UNIVERSITY of PENNSYLVANIA
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General Idea of Decoding
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General Idea of Decoding

® bottom-up (chart parsing)
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General Idea of Decoding

® bottom-up (chart parsing)
® keep top k trees at each node

® combine top subtrees

® score unit non-local features
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General Idea of Decoding

® bottom-up (chart parsing)
® keep top k trees at each node

® combine top subtrees

® score unit non-local features

® similar to machine translation decoding
with integrated language models

® non-local features <=> LM combo

® so we use forest rescoring from MT
(Chiang 2007; Huang and Chiang 2007)

to speed up the computation
#Penn 2
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General Idea of Decoding

® bottom-up (chart parsing)

® keep top k trees at each node
® combine top subtrees
® score unit non-local features

® similar to machine translation decoding
with integrated language models e oyees

® non-local features <=> LM combo /\ AN

Wi... Wj—1 Wj...WE-1

® so we use forest rescoring from MT
(Chiang 2007; Huang and Chiang 2007)

to speed up the computation
#Penn

VP3, 6

held ... .. Sharon

PPy, 3
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Faster Decoding

® best-first exploration of hyperedges simultaneously!
significant savings of computation

® most of the item combinations are neglected

“cube-pruning”

W’ g

®

MR 4N
... ‘ I lI I
‘ UNIVERSITY 0f PENNSYLVANIA

(Huang and Chiang, 2005, 2007; Chiang, 2007) 23




Experiments

scaled to the whole Penn Treebank




Data Preparation

® use Charniak parser as baseline
® standard split: train: sec 02-21, dev: sec 22, test: sec 23
® training set split into 20 fold (cross-validation style)
® modify Charniak parser to output forests!
® pruned by an Inside-Outside style algorithm

® use |5 features templates from
; 800, 582 feature instances (~70% local)

® both n-best and forest reranking systems implemented
in pure Python, on 64-bit Dual-core 3.0 GHz machines

& Penn 25




Forest vs. n-best Oracles

® forests enjoy higher oracle scores than n-best lists

® a dynamic programming algorithm for forest oracle

Parseval F-score (%)

®loun

90, +o986 ' B

- £97.8 R IR x ]
97.0 I I)/:H,n ———————— n=50 n=100 -
5.0 [ %210 96.7 97.2~
930 B rfi( —_
91.0 B I forest oracle ‘ 7

I n-best oracle ---%---

89.0 Lr1-best &y’ | . ._

0 500 1000 1500 2000

average # of hyperedges or brackets per sentence
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Main Results

® forest reranking outperforms both 50-best and

| 00-best reranking

® and can be trained on the whole treebank in ~| day

even with a pure Python implementation!

baseline: |-best Charniak parser

89.72

approach training time
50-best reranking 4 x 0.3h 91.43
|00-best reranking 4 x 0.7h 21.49
forest reranking 4 x 6.1h 921.69

L7 1
& 'CINN

details in the paper.
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Comparison with Others

approach  system
Collins (2000)
Charniak and Johnson (2005)
dynamic Petrov and Klein (2008)

LIRS this work

Bod (2000)
Petrov and Klein (2007)

reranking

generative

21.0
88.3

McClosky et al. (2006)

92.1

UNIVERSITY of PENNSYLVANIA

28




Conclusion

® A Framework for Reranking on Packed Forests

® forests have more variations and smaller sizes

® dynamic programming algorithm for forest oracles
® Two Key ldeas that made it work

® incremental, recursive computation of features

® forest rescoring for approximate decoding
® Discriminative training scaled to the whole PTB

® better than both 50-best and |100-best reranking

® better than any previous results trained on PTB
& Penn




® more a

Conclusion

kin to traditional chart parsing, not reranking!

® multi

pass search (Goodman, 1997)

non-local features in the pruned forest

but

® bette

without blowing up the forest

r search algorithms should help!

® could in principle incorporate fancier features

® also applicable to other problems involving forest

® sequence segmentation/labeling, dependency parsing,

mach
& Penn

ine translation, generation, ...
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Forest is your friend. Save the forest.

Thank you!

Forest-dumping Charniak parser —
will be available online.

Penn
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Global Feature - RightBranch

® length of rightmost (non-punctuation) path

® English has a right-branching tendency

ROOT
! can not be factored anywhere
AN have to wait till root
NP VP |
WDT v?”f‘; PP .
That went IN NP
over NTi PP
D|F_I_‘__-__- jJ NN IN NP
the permissible line for ADJ NN&)
—

JJ  CC JJ feelings

warm and fuzzy

@PGIIH (Charniak and Johnson, 2005) 33




WordEdges

® a\VordEdges feature classifies a node by its label,
(binned) span length, and surrounding words

® a POSEdges feature uses surrounding POS tags

TCI)P WordEdges is local

f 400 (y) = f nP2sawwith (¥) = |

NP VP .
| - |
PRP VBD NP PP .
| I S — —
I saw DT NN IN NP
I I I —
the boy | with' DT NN

| 2 words | |
a telescope

& Penn 34
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TCI)P WordEdges is local
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WordEdges

® a\VordEdges feature classifies a node by its label,
(binned) span length, and surrounding words

® a POSEdges feature uses surrounding POS tags

TOP WordEdges is local
|
S\ f 400 (y) = f NP 2 saw with (y) = |
NP VP :
| — | POSEdges is non-local
PRP VBD NP PP .
! ! = — 800 (¥) = [ NP2VBD IN = |
I saw DT NN IN NP f (y) f (y)
| | | —
the boy with DT NN | I f ,
| | ocal Teatures comprise
| 2 words

a telescope ~70% of all instances!
#&Penn 34




Heads

® head-to-head lexical dependencies
® we percolate heads bottom-up

® unit instances are between the head word of the
head child and the head words of non-head children

TOP/SaW
|
S/saw
N
NP/I VP/saW /
| —_ — — |
PRP/1 VBD/saw  NP/qje PP/ ith
I saw DT /ipe NN/boy IN/with NP/a
| I | —_—
the boy with  DT/a NN/telescope

I |
E@EPQDH a telescope
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Heads

® head-to-head lexical dependencies
® we percolate heads bottom-up

® unit instances are between the head word of the
head child and the head words of non-head children

TOP/SaW ..
unit instances at VP node
S/ saw saw - the; saw - with

NP /1 /.

| — - |
PRP/; VBD saw NP PPYith

|

I saw DT/gpe NN/pow IN/iw  NP/a

the boy with  DT/a  NN/iclescope

| I
E@:‘Penn a telescope 35




Approximate Decoding

® bottom-up, keeps top k derivations at each node

® forest rescoring from MT (Chiang 2007; Huang and Chiang 07)
® priority queue for next-best (Huang and Chiang, 2005)

® each iteration pops the best and pushes successors

® unit non-local feature costs as a non- monotonic cost

/\ " o W’W

3.0
/\ /\ {,\ ol 25

- Wj—1 Wy .

held ... .. Sharon
VP3,6 PPi,3

8 gR 4N
l ..
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Approximate Decoding

® bottom-up, keeps top k derivations at each node

® forest rescoring from MT (Chiang 2007; Huang and Chiang 2007)
® priority queue for next-best (Huang and Chiang, 2005)

® each iteration pops the best and pushes successors

® unit non-local feature costs as a hon-monotonic cost

held ... .. Sharon
VP3,6 PPi,3

8 gR 4N
l ..
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Approximate Decoding

® process all hyperedges simultaneously!

significant savings of computation
“cube-pruning”

hyperedge ?
/ \
L]

complexity: O(E + V U k log k),
bottom-neck: the time for on-the-fly extraction

PGI]II (Huang and Chiang, 2005; 2007; Chiang, 2007) 39




the candidate tree that is closest to gold-standard

LT ¥ |
...
& eI,Hl

Forest Oracle

40




Optimal Parseval F-score

® find the tree in the forest with highest F-score

® Parseval Fi-score is the harmonic mean between
labeled precision and labeled recall

® can not optimize F-scores on sub-forests separately
® can not optimize precision and recall simultaneously
® we instead use dynamic programming

® optimizes the number of matched brackets per given
number of test brackets

® “when the test (sub-) parse has 5 brackets, what is
the max. number of matched brackets?”

@ UNIVERSITY 0f PENNSYLVANIA




Combining Oracle Functions

® to combine two nodes along a hyperedge, we need to
distribute test brackets between the two, and optimize
the number of matches (4 ) 2 max f(t1) + g(t2)

A A pﬁﬂ

& Penn 4
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® to combine two nodes along a hyperedge, we need to
distribute test brackets between the two, and optimize

the number of matches (4 ) 2 jmax f(t1) + g(t2)

ora[w]




Combining Oracle Functions

® to combine two nodes along a hyperedge, we need to
distribute test brackets between the two, and optimize
the number of matches (4 ) 2 max f(t1) + g(t2)

A A pﬁﬁ;ﬂ

F nal answer:

2-0ra|TOP|(t
Fly*,y) = max, 2252010

ora[w]

this node matched?




Forest vs. n-best Oracles

® forests enjoy higher oracle scores than n-best lists

® a dynamic programming algorithm for forest oracle

Parseval F-score (%)

®loun

90, +o986 ' B

- £97.8 R IR x ]
97.0 I I)/:H,n ———————— n=50 n=100 -
5.0 [ %210 96.7 97.2~
930 B rfi( —_
91.0 B I forest oracle ‘ 7

I n-best oracle ---%---

89.0 Lr1-best &y’ | . ._

0 500 1000 1500 2000

average # of hyperedges or brackets per sentence
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