

Forest Reranking

Discriminative Parsing with Non-Local Features

Liang Huang
University of Pennsylvania

ACL 2008 talk, Columbus, OH, June 2008

Is Supervised Parsing Done?

is it a done area?

Bod (2007)

**Is the End of Supervised
Parsing in Sight?**

Is Supervised Parsing Done?

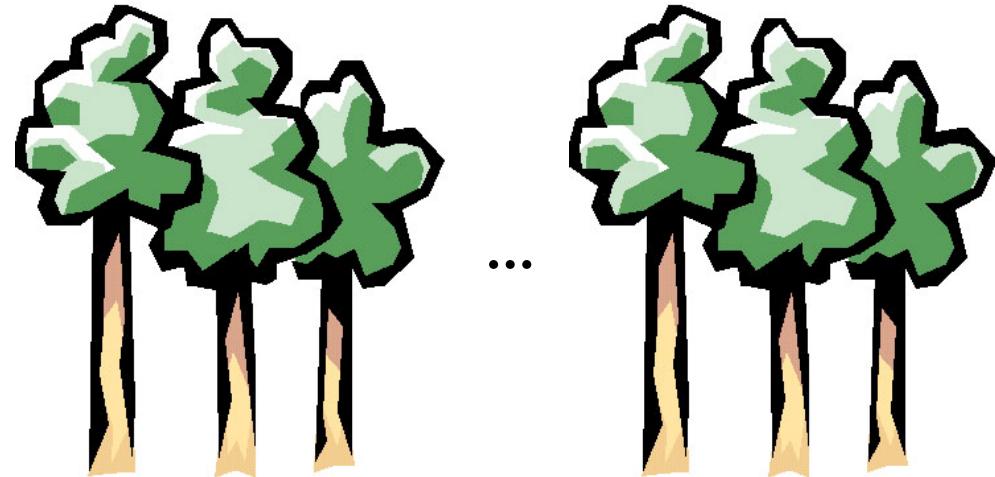
is it a done area?

Bod (2007)

**Is the End of Supervised
Parsing in Sight?**

- motivation: use **non-local** features
 - linguistically-motivated features for n -best reranking (Charniak and Johnson, 2005; Collins, 2000)
 - but can we integrate them back into **chart parsing**?
 - YES: using a **packed forest**!
- result: best whole Treebank parsing accuracy to date

Why is n -best list a bad idea?



- too few variations (limited scope)
 - 41% correct parses are not in ~30-best (Collins, 2000)
 - worse for longer sentences; tiny fraction of whole space
- too many redundancies
 - 50-best usually encodes 5-6 binary decisions ($2^5 < 50 < 2^6$)

Why is n -best list a bad idea?

packed forest

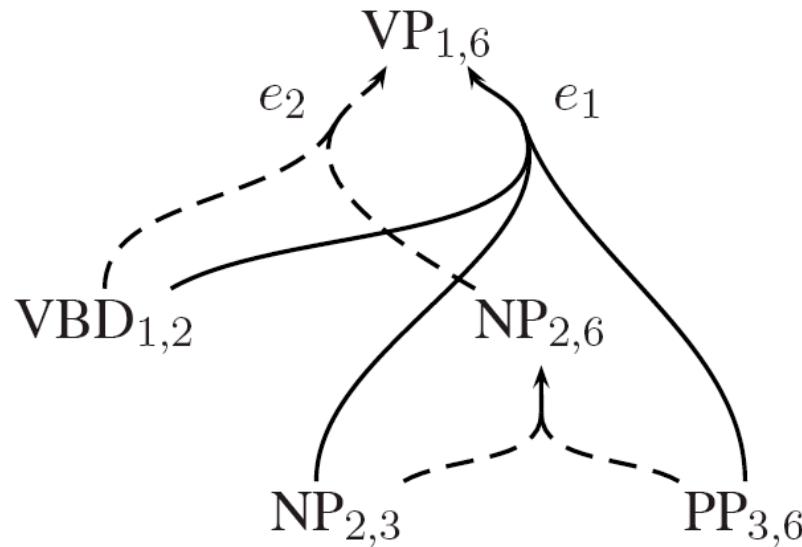
- too few variations (limited scope)
 - 41% correct parses are not in ~ 30 -best (Collins, 2000)
 - worse for longer sentences; tiny fraction of whole space
- too many redundancies
 - 50-best usually encodes 5-6 binary decisions ($2^5 < 50 < 2^6$)

Outline

- Packed Forest and General Idea
- Forest Reranking and Non-Local Features
 - Perceptron for Generic Reranking
 - Local vs. Non-Local Features
 - Incremental Computation of Non-Local Features
- Decoding Algorithm
- Experiments

Packed Forest

- a compact representation of many parses
 - by sharing common sub-derivations
 - polynomial-space encoding of exponentially large set

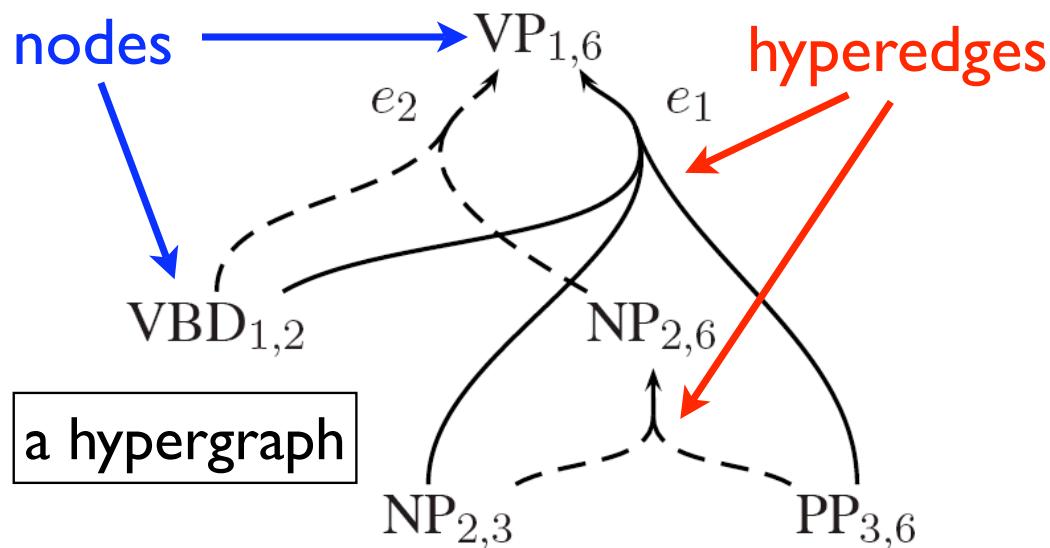


0 I 1 saw 2 him 3 with 4 a 5 mirror 6

(Klein and Manning, 2001; Huang and Chiang, 2005)

Packed Forest

- a compact representation of many parses
 - by sharing common sub-derivations
 - polynomial-space encoding of exponentially large set



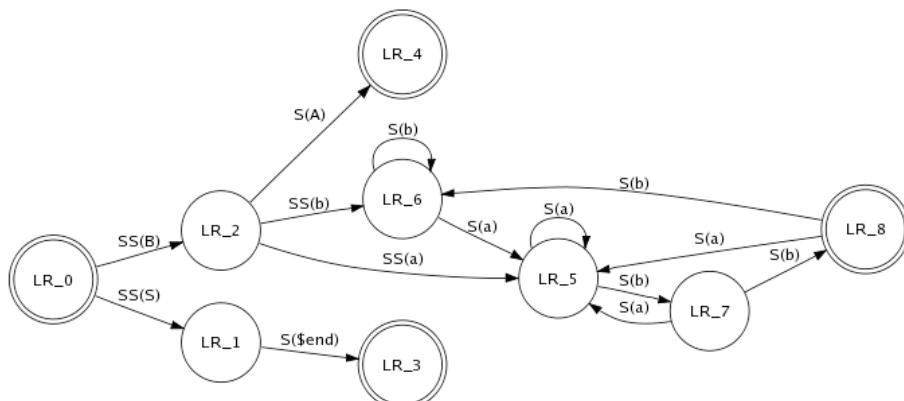
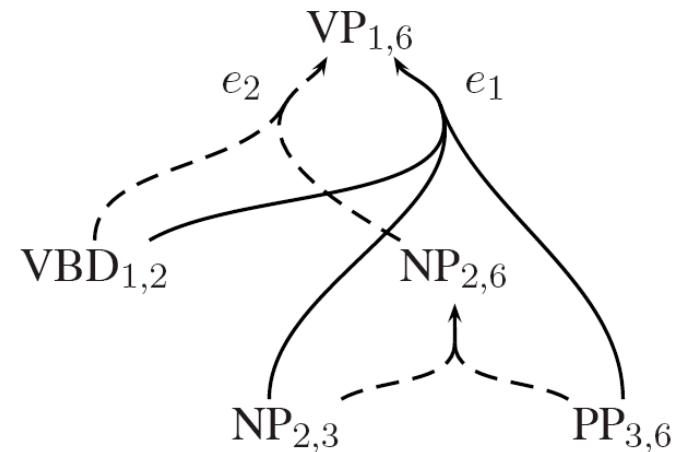
$$e_1 \frac{\text{VBD}_{1,2} \quad \text{NP}_{2,3} \quad \text{PP}_{3,6}}{\text{VP}_{1,6}}$$

0 I 1 saw 2 him 3 with 4 a 5 mirror 6

(Klein and Manning, 2001; Huang and Chiang, 2005)

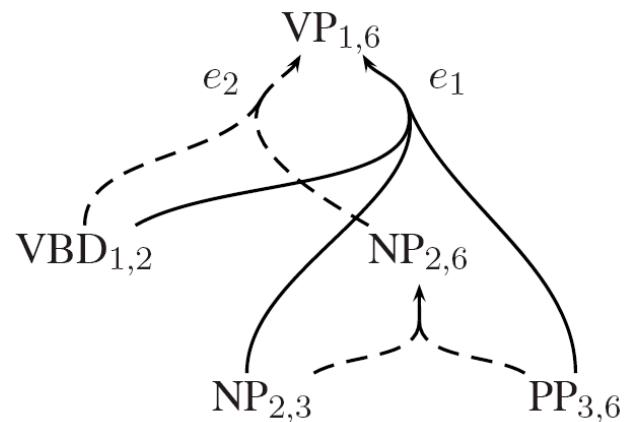
Lattices vs. Forests

- forest generalizes “lattice” from finite-state world
 - both are compact encodings of exponentially many derivations (paths or trees)
 - graph => hypergraph; regular grammar => CFG



Reranking on a Forest?

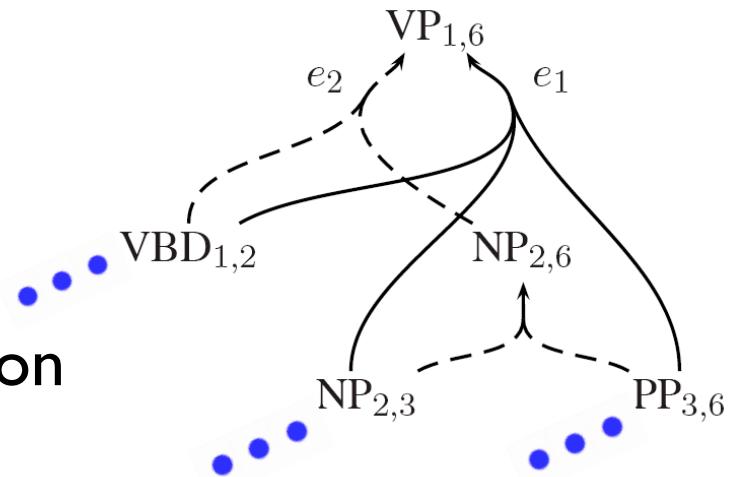
- with only local features
 - dynamic programming, tractable
(Taskar et al. 2004; McDonald et al., 2005)
- with non-local features
 - intractable, so we do approximation
 - on-the-fly reranking at internal
 - use non-locales as early and as much as possible!



<i>methods \ features</i>	<i>local</i>	<i>non-local</i>
<i>n-best</i> reranking		only at the root node
DP-based discrim. parsing	exact	N/A
forest reranking	exact	on-the-fly

Reranking on a Forest?

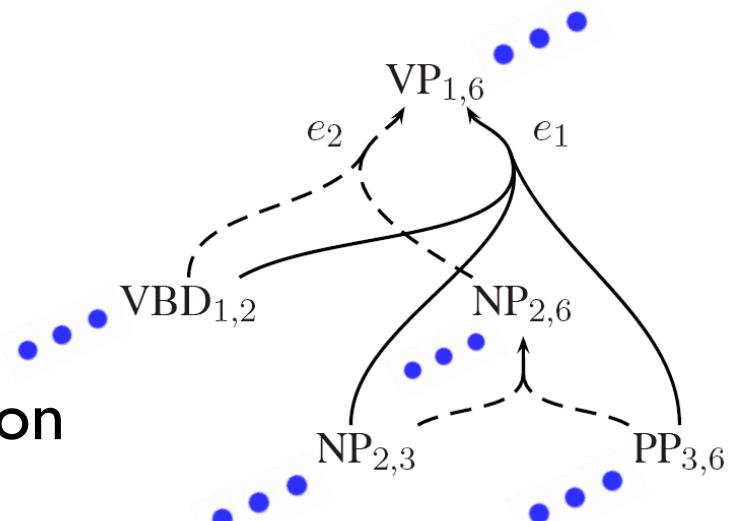
- with only local features
 - dynamic programming, tractable
(Taskar et al. 2004; McDonald et al., 2005)
- with non-local features
 - intractable, so we do approximation
 - on-the-fly reranking at internal
 - use non-locales as early and as much as possible!



<i>methods \ features</i>	<i>local</i>	<i>non-local</i>
<i>n</i> -best reranking		only at the root node
DP-based discrim. parsing	exact	N/A
forest reranking	exact	on-the-fly

Reranking on a Forest?

- with only local features
 - dynamic programming, tractable
(Taskar et al. 2004; McDonald et al., 2005)
- with non-local features
 - intractable, so we do approximation
 - on-the-fly reranking at internal
 - use non-locales as early and as much as possible!



<i>methods \ features</i>	<i>local</i>	<i>non-local</i>
<i>n</i> -best reranking		only at the root node
DP-based discrim. parsing	exact	N/A
forest reranking	exact	on-the-fly

Outline

- Packed Forest and General Idea
- Forest Reranking and Non-Local Features
 - Perceptron for Generic Reranking
 - Local vs. Non-Local Features
 - Incremental Computation of Non-Local Features
- Decoding Algorithm
- Experiments

Generic Reranking by Perceptron

- for each sentence s_i , we have a set of candidates $cand(s_i)$
 - and an **oracle** tree y_i^+ , among the candidates
 - a feature mapping from tree y to vector $\mathbf{f}(y)$

```
1: Input: Training examples  $\{cand(s_i), y_i^+\}_{i=1}^N$ 
2:  $\mathbf{w} \leftarrow \mathbf{0}$                                  $\triangleright$  initial weights
3: for  $t \leftarrow 1 \dots T$  do                   $\triangleright T$  iterations
4:   for  $i \leftarrow 1 \dots N$  do
5:      $\hat{y} = \operatorname{argmax}_{y \in cand(s_i)} \mathbf{w} \cdot \mathbf{f}(y)$ 
6:     if  $\hat{y} \neq y_i^+$  then
7:        $\mathbf{w} \leftarrow \mathbf{w} + \mathbf{f}(y_i^+) - \mathbf{f}(\hat{y})$ 
8: return  $\mathbf{w}$ 
```

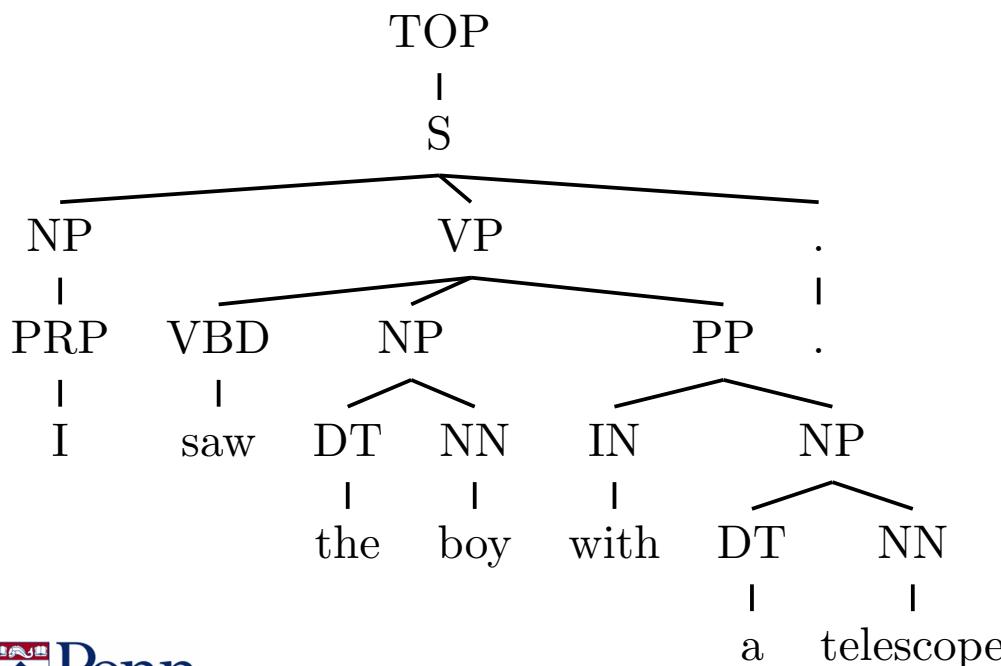
Generic Reranking by Perceptron

- for each sentence s_i , we have a set of candidates $cand(s_i)$
 - and an **oracle** tree y_i^+ , among the candidates
 - a feature mapping from tree y to vector $\mathbf{f}(y)$

```
1: Input: Training examples  $\{cand(s_i), y_i^+\}_{i=1}^N$ 
2:  $\mathbf{w} \leftarrow \mathbf{0}$                                 ▷ initial weights
3: for  $t \leftarrow 1 \dots T$  do                  ▷  $T$  iterations
4:   for  $i \leftarrow 1 \dots N$  do          “decoder”
5:      $\hat{y} = \operatorname{argmax}_{y \in cand(s_i)} \mathbf{w} \cdot \mathbf{f}(y)$       feature
6:     if  $\hat{y} \neq y_i^+$  then          representation
7:        $\mathbf{w} \leftarrow \mathbf{w} + \mathbf{f}(y_i^+) - \mathbf{f}(\hat{y})$ 
8: return  $\mathbf{w}$ 
```

Features

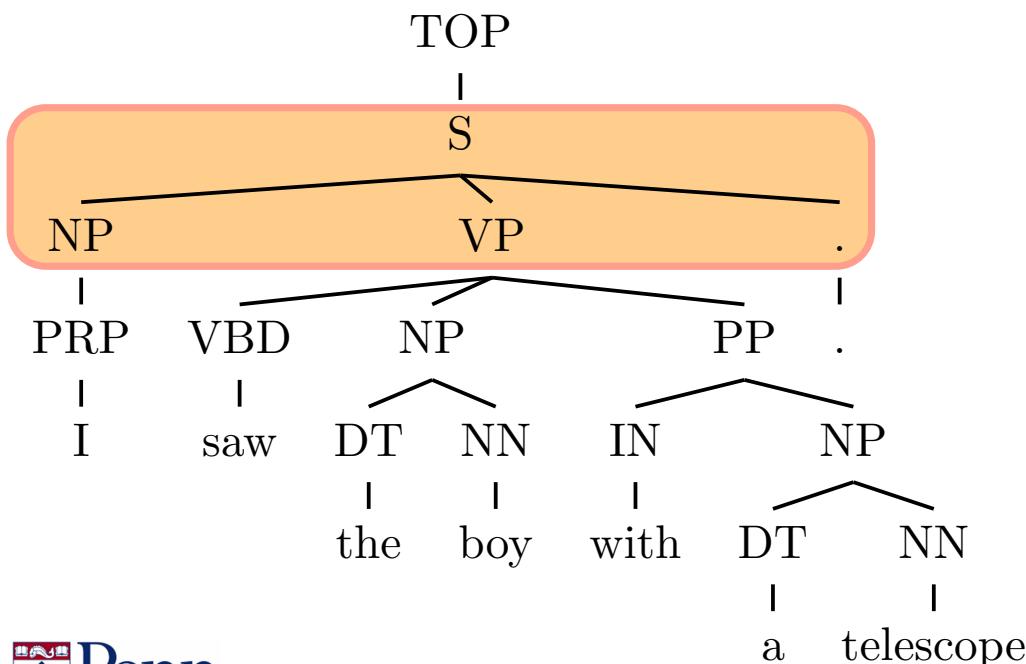
- a feature f is a function from tree y to a real number
 - $f_1(y) = \log \Pr(y)$ is the log Prob from generative parser
 - every other feature *counts* the number of times a particular configuration occurs in y



our features are from
(Charniak & Johnson, 2005)
(Collins, 2000)

Features

- a feature f is a function from tree y to a real number
- $f_1(y) = \log \Pr(y)$ is the log Prob from generative parser
- every other feature *counts* the number of times a particular configuration occurs in y



our features are from
(Charniak & Johnson, 2005)
(Collins, 2000)

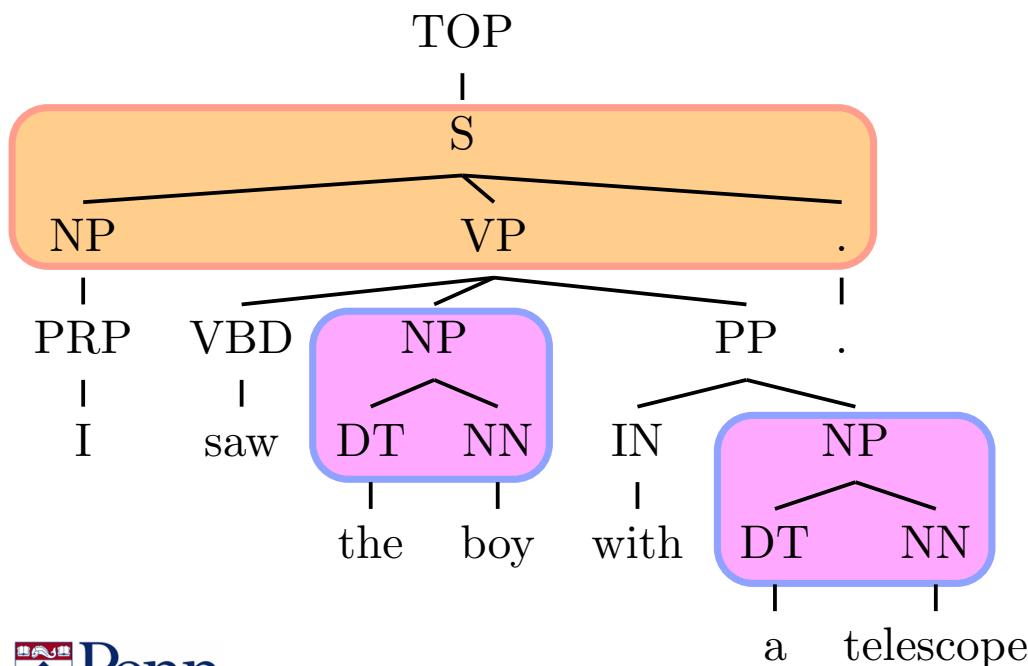
instances of Rule feature

$$f_{100}(y) = f_{S \rightarrow NP VP.}(y) = 1$$

$$f_{200}(y) = f_{NP \rightarrow DT NN}(y) = 2$$

Features

- a feature f is a function from tree y to a real number
- $f_1(y) = \log \Pr(y)$ is the log Prob from generative parser
- every other feature *counts* the number of times a particular configuration occurs in y



our features are from
(Charniak & Johnson, 2005)
(Collins, 2000)

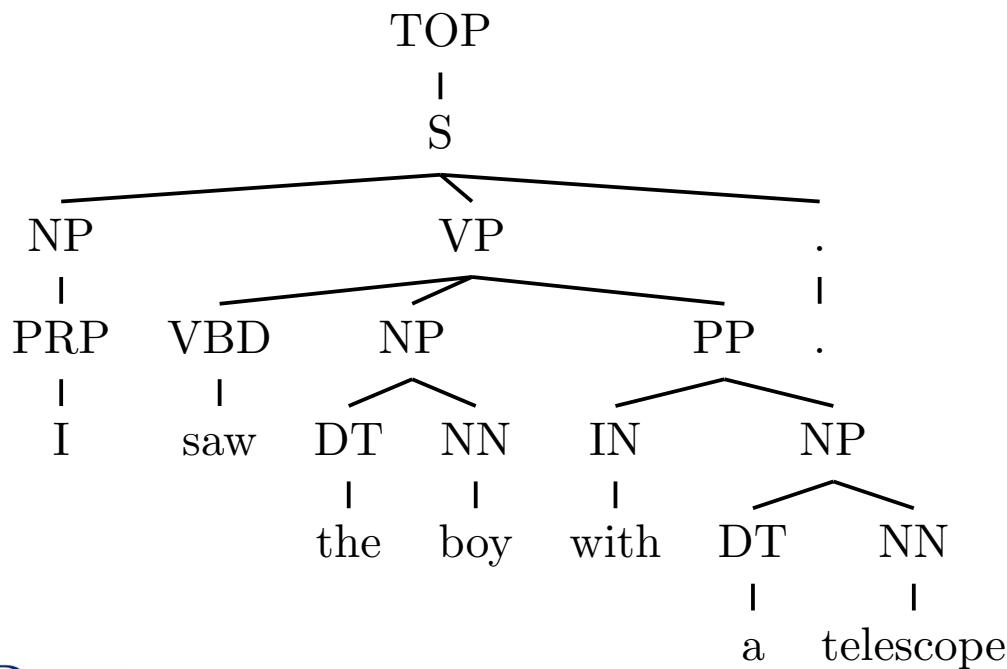
instances of Rule feature

$$f_{100}(y) = f_{S \rightarrow NP VP.}(y) = 1$$

$$f_{200}(y) = f_{NP \rightarrow DT NN}(y) = 2$$

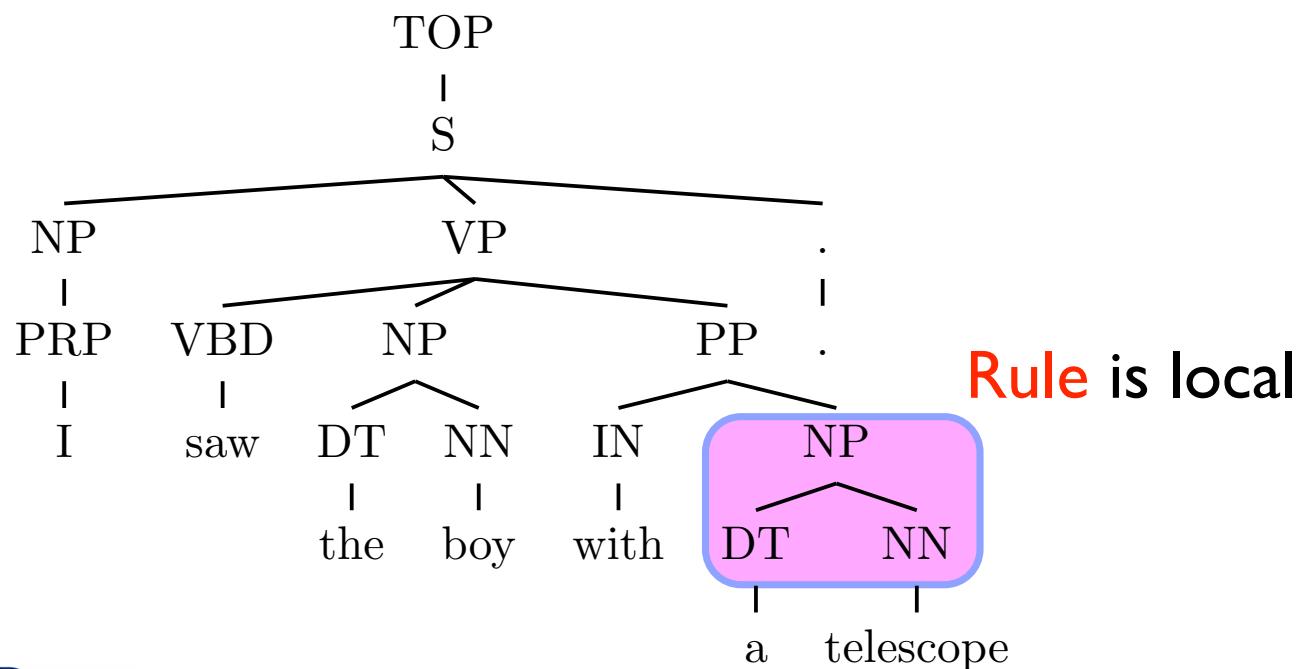
Local vs. Non-Local Features

- a feature is **local** iff. it can be factored among local productions of a tree (i.e., hyperedges in a forest)
- local features can be pre-computed on each hyperedge in the forest; non-locals can not



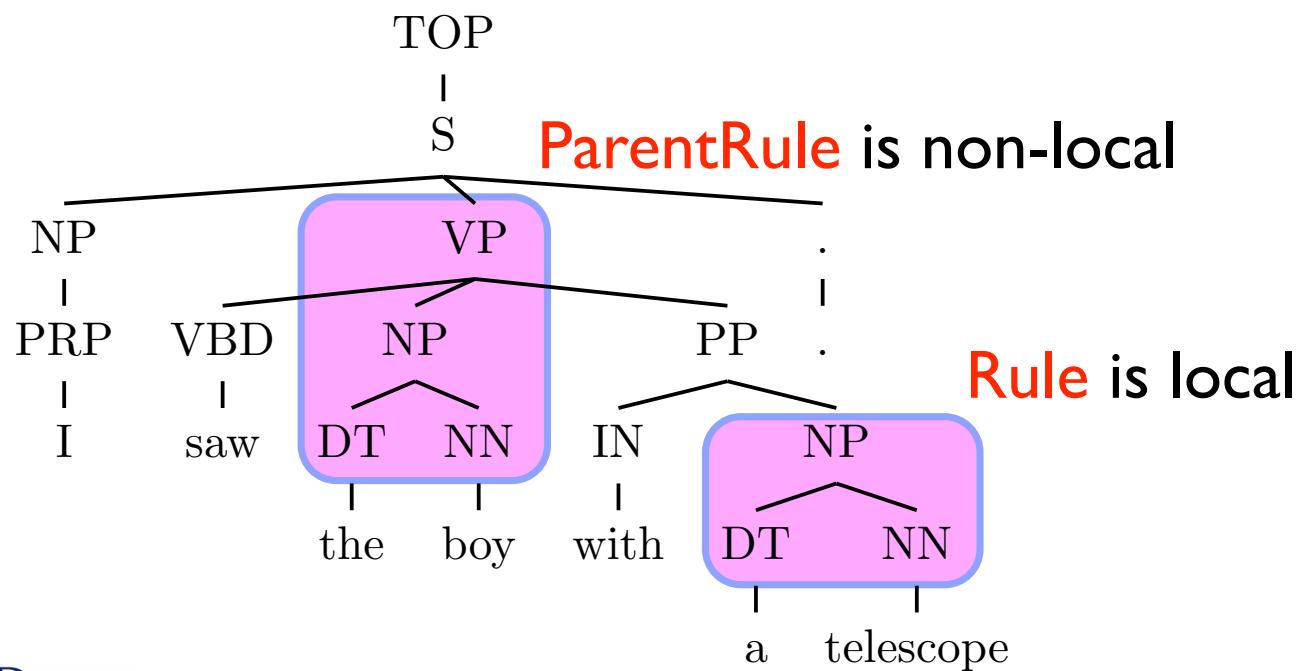
Local vs. Non-Local Features

- a feature is **local** iff. it can be factored among local productions of a tree (i.e., hyperedges in a forest)
- local features can be pre-computed on each hyperedge in the forest; non-locals can not



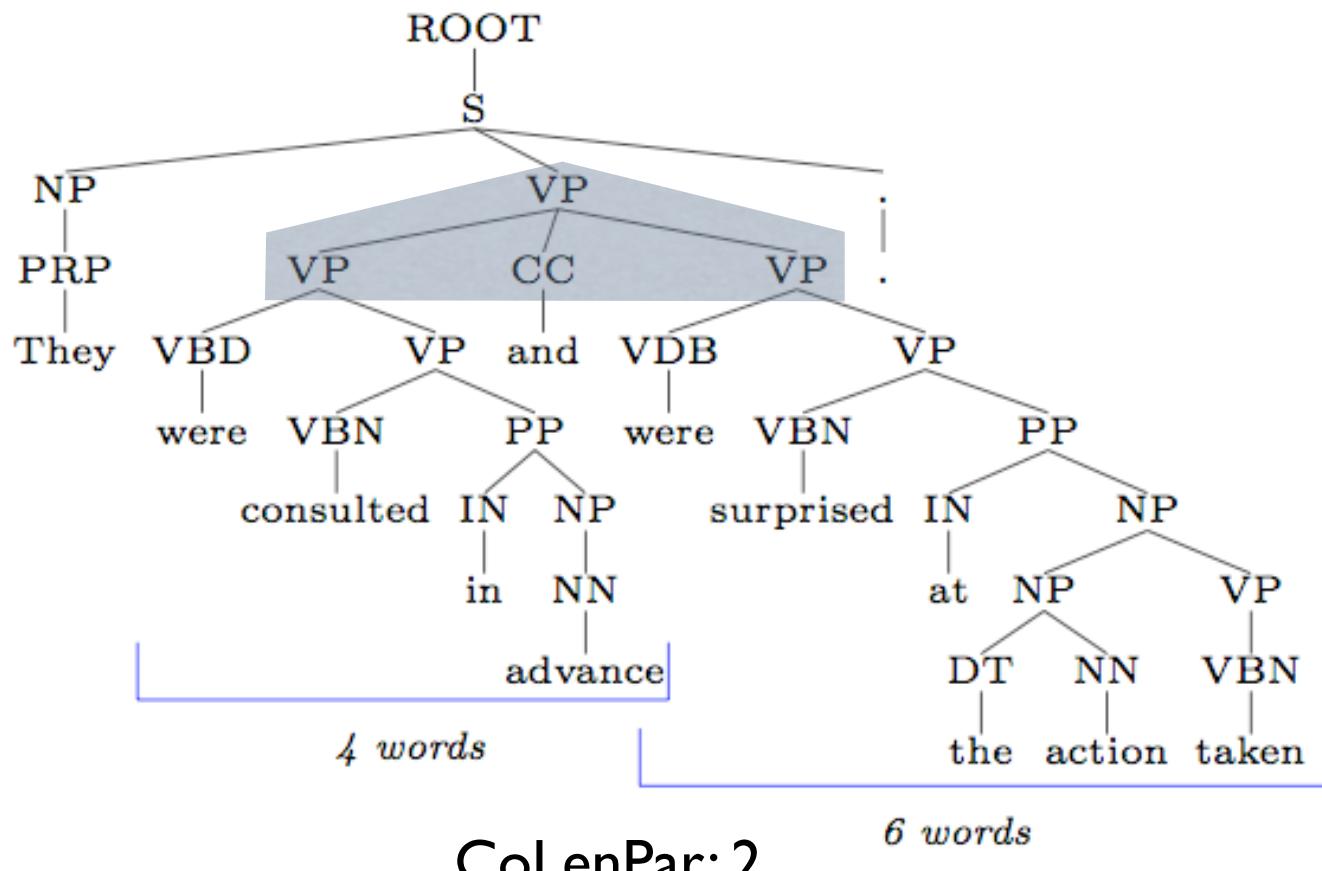
Local vs. Non-Local Features

- a feature is **local** iff. it can be factored among local productions of a tree (i.e., hyperedges in a forest)
- local features can be pre-computed on each hyperedge in the forest; non-locales can not



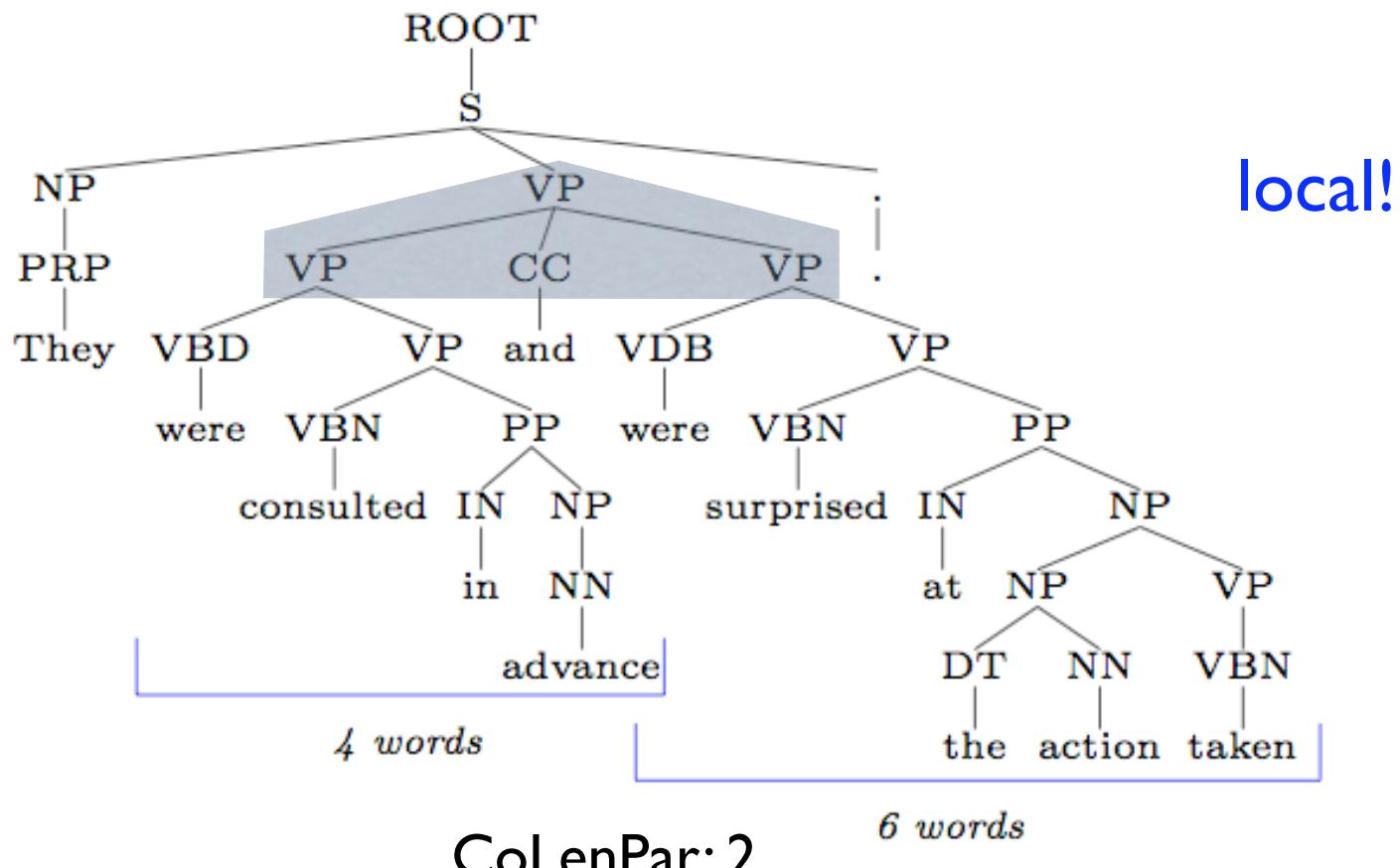
Local vs. Non-Local: Examples

- **CoLenPar** feature captures the difference in lengths of adjacent conjuncts (Charniak and Johnson, 2005)



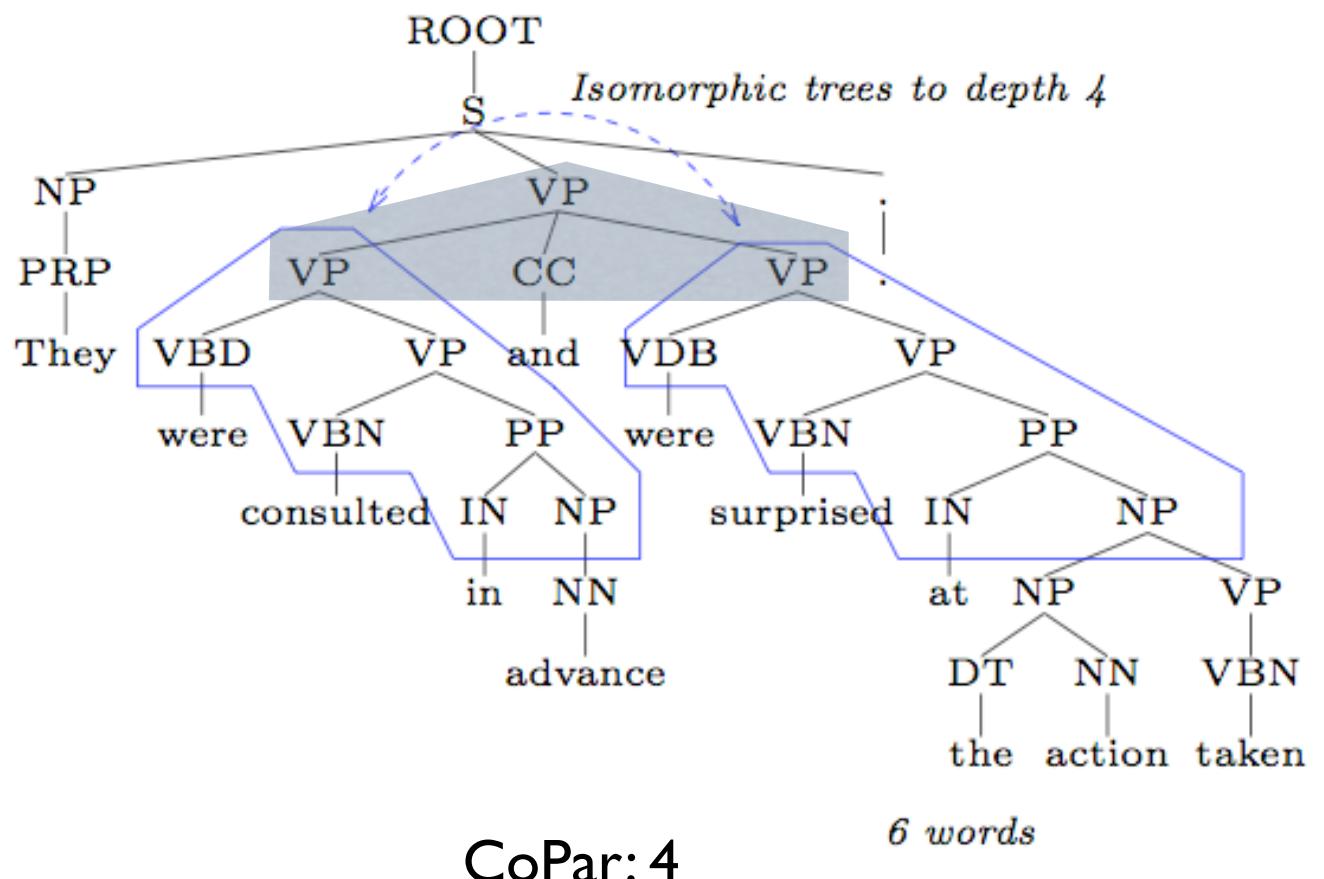
Local vs. Non-Local: Examples

- **CoLenPar** feature captures the difference in lengths of adjacent conjuncts (Charniak and Johnson, 2005)



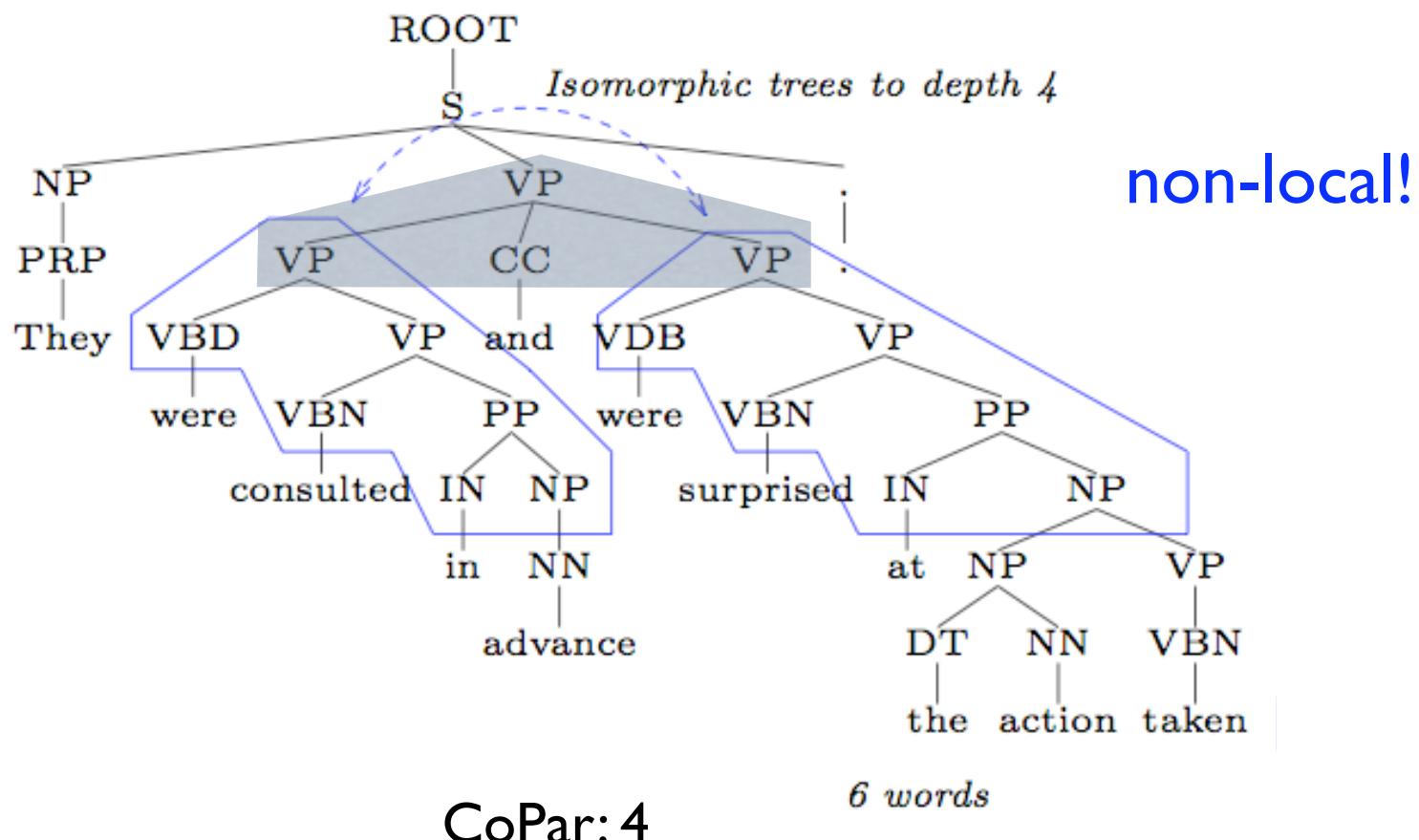
Local vs. Non-Local: Examples

- **CoPar** feature captures the depth to which adjacent conjuncts are isomorphic (Charniak and Johnson, 2005)



Local vs. Non-Local: Examples

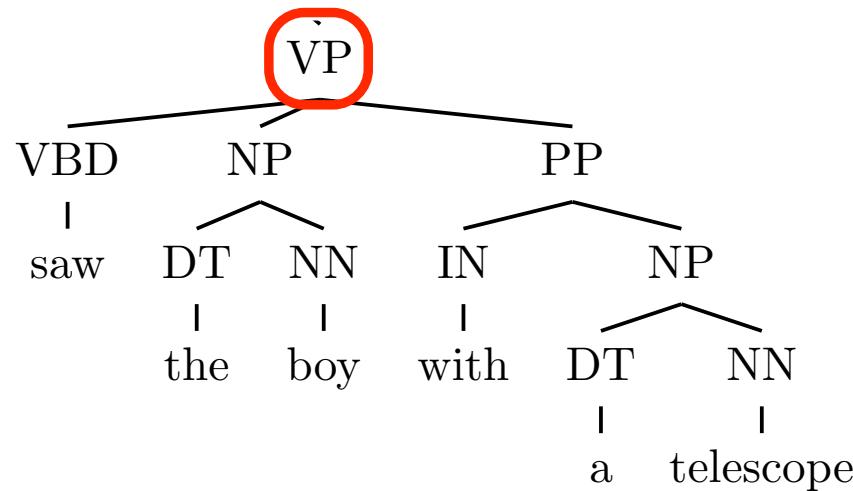
- **CoPar** feature captures the depth to which adjacent conjuncts are isomorphic (Charniak and Johnson, 2005)



Factorizing non-local features

- going bottom-up, at each node
 - compute (partial values of) feature instances that become computable at this level
 - postpone those uncomputable to ancestors

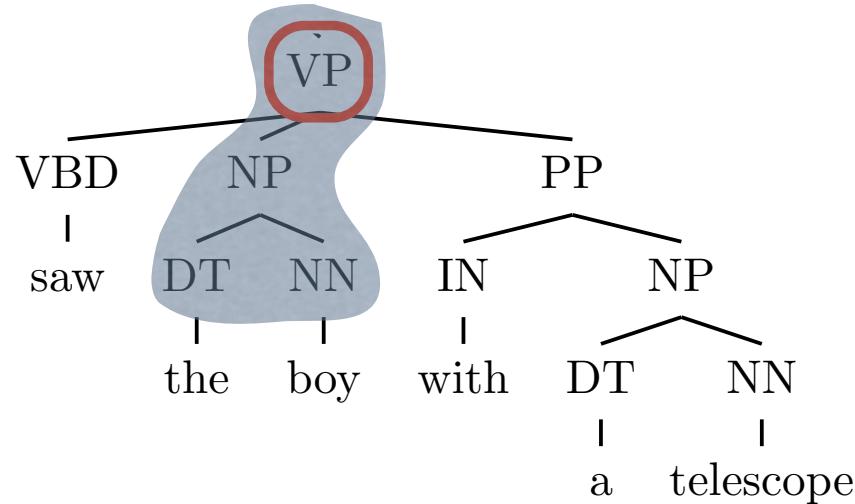
unit instance of ParentRule
feature at VP node



Factorizing non-local features

- going bottom-up, at each node
 - compute (partial values of) feature instances that become computable at this level
 - postpone those uncomputable to ancestors

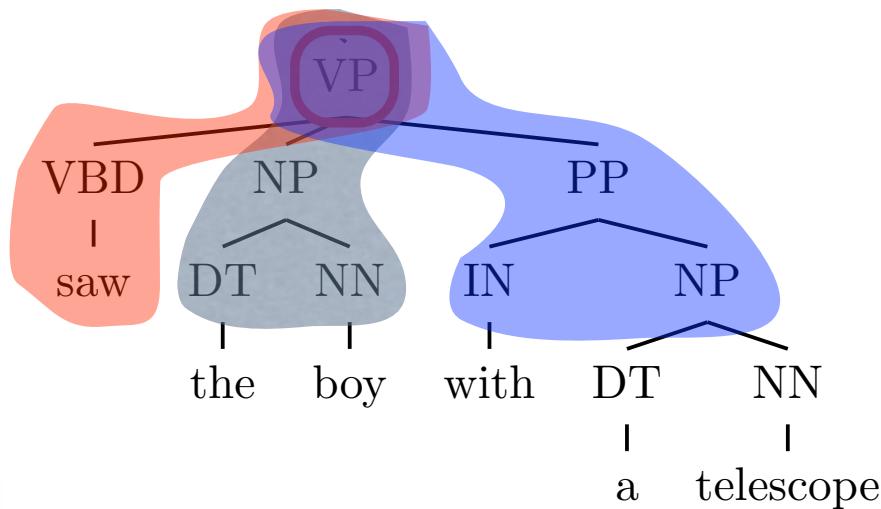
unit instance of ParentRule
feature at VP node



Factorizing non-local features

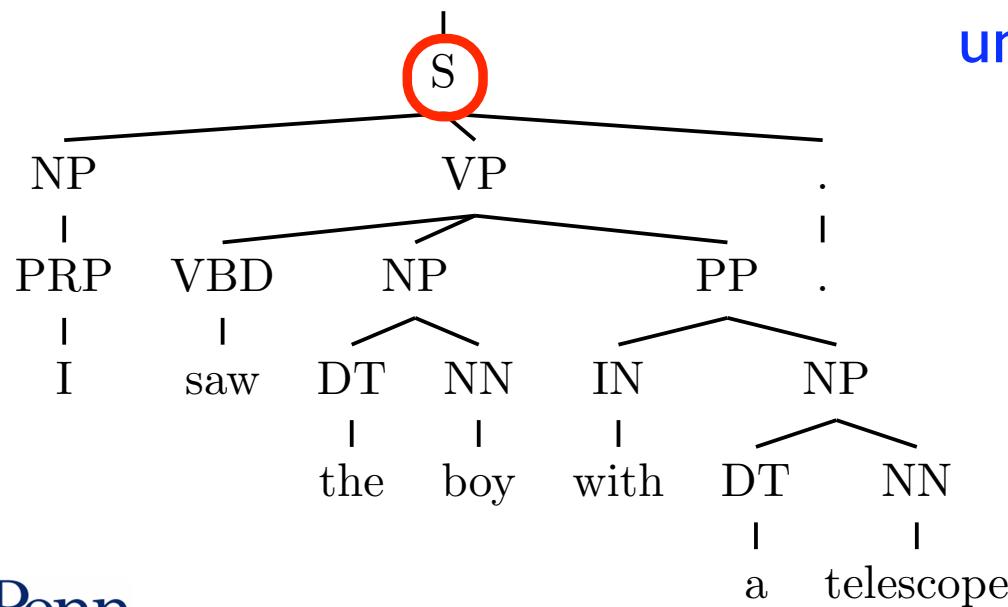
- going bottom-up, at each node
 - compute (partial values of) feature instances that become computable at this level
 - postpone those uncomputable to ancestors

unit instance of ParentRule
feature at VP node



Factorizing non-local features

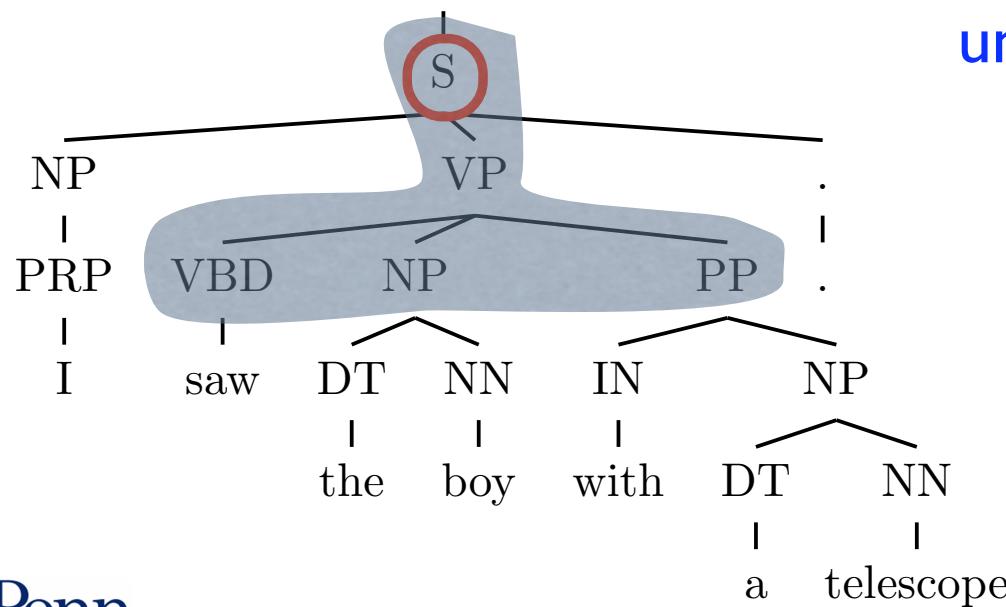
- going bottom-up, at each node
 - compute (partial values of) feature instances that become computable at this level
 - postpone those uncomputable to ancestors



unit instance of ParentRule
feature at S node

Factorizing non-local features

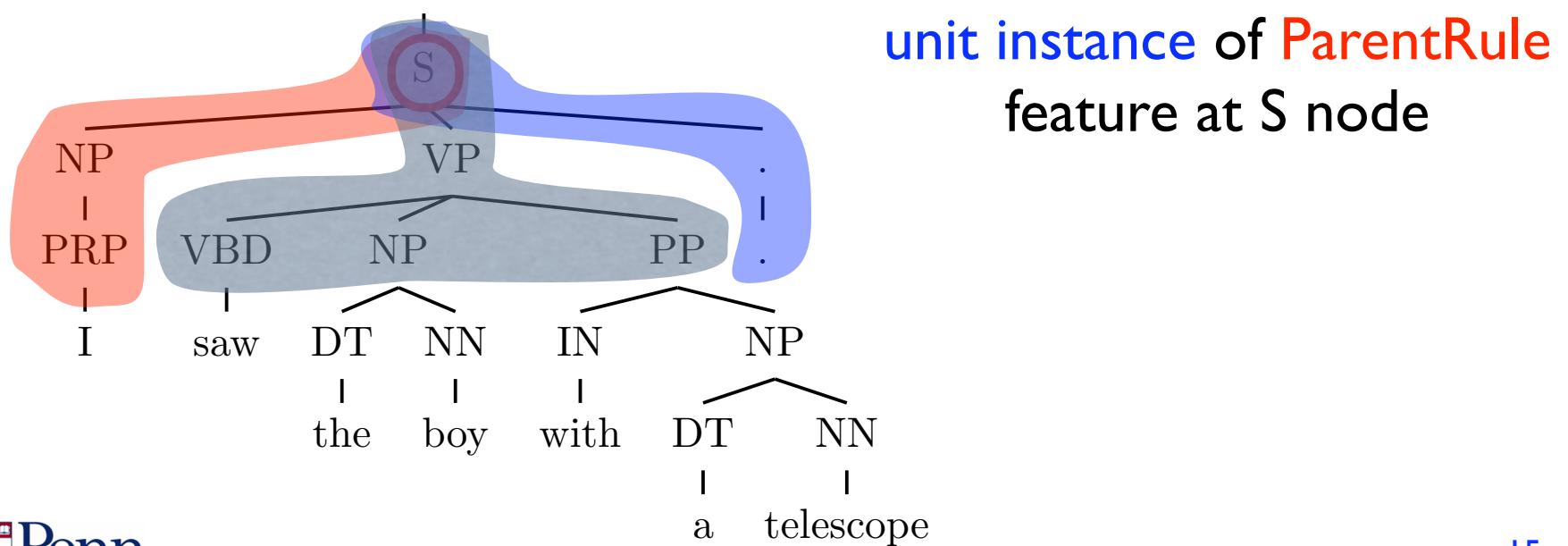
- going bottom-up, at each node
 - compute (partial values of) feature instances that become computable at this level
 - postpone those uncomputable to ancestors



unit instance of ParentRule
feature at S node

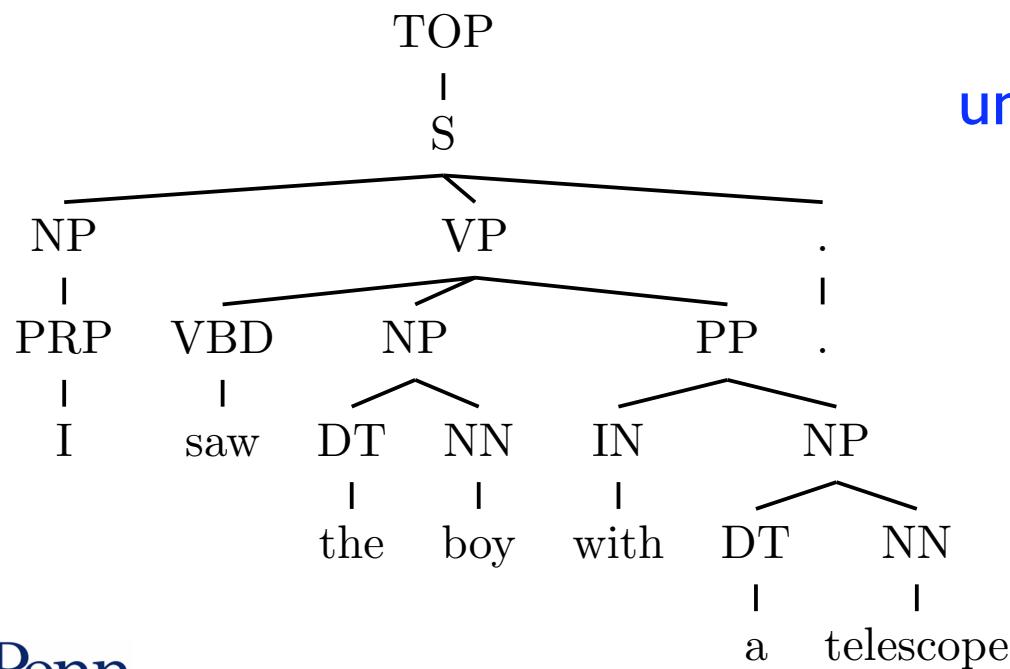
Factorizing non-local features

- going bottom-up, at each node
 - compute (partial values of) feature instances that become computable at this level
 - postpone those uncomputable to ancestors



Factorizing non-local features

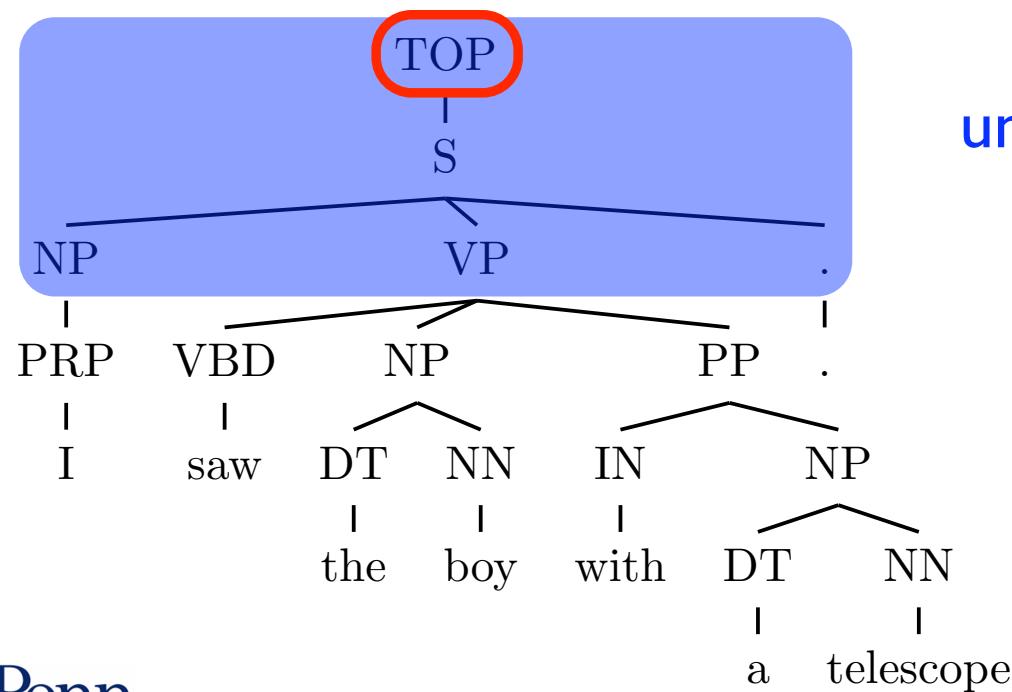
- going bottom-up, at each node
 - compute (partial values of) feature instances that become computable at this level
 - postpone those uncomputable to ancestors



unit instance of ParentRule
feature at TOP node

Factorizing non-local features

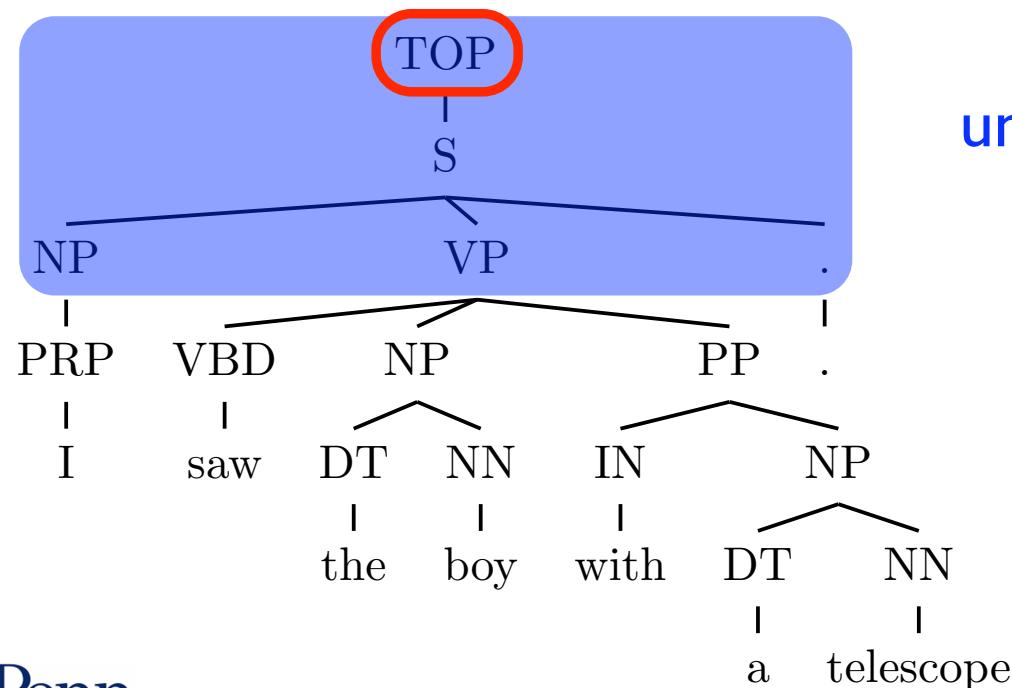
- going bottom-up, at each node
 - compute (partial values of) feature instances that become computable at this level
 - postpone those uncomputable to ancestors



unit instance of ParentRule
feature at TOP node

Factorizing non-local features

- going bottom-up, at each node
 - compute (partial values of) feature instances that become computable at this level
 - postpone those uncomputable to ancestors



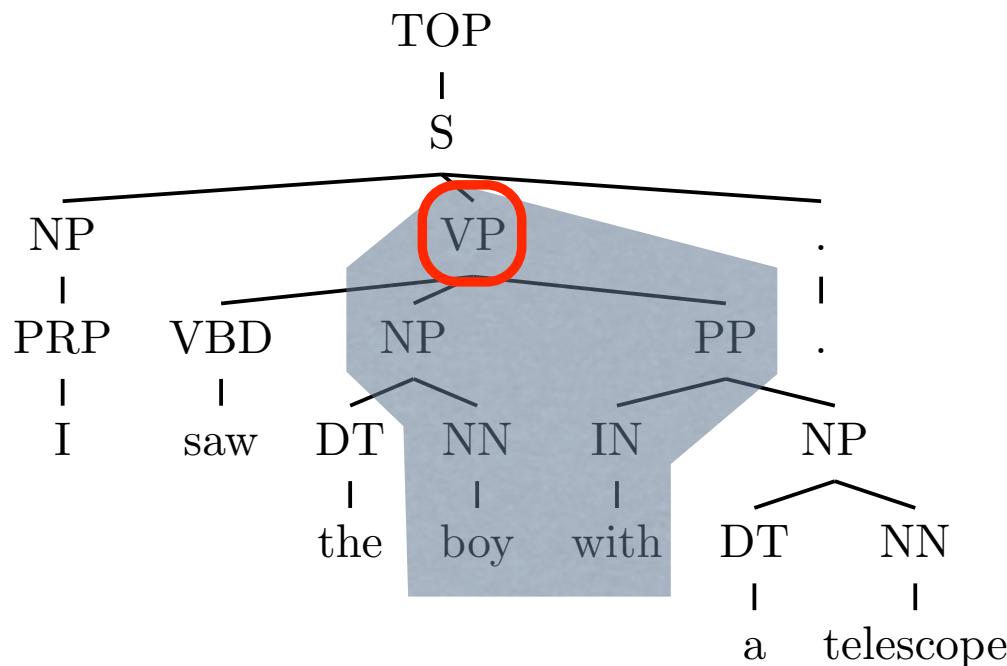
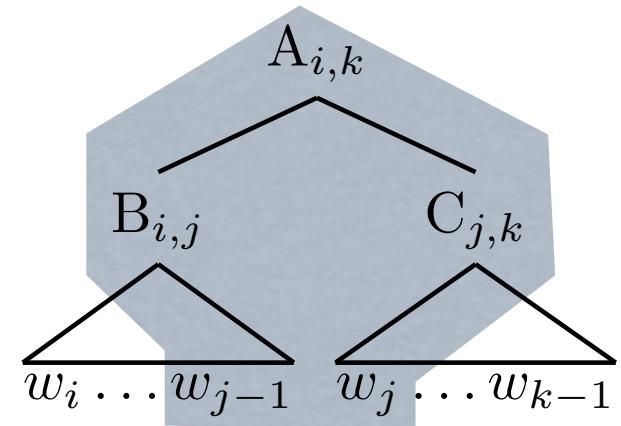
unit instance of ParentRule
feature at TOP node

non-local features factor
across nodes dynamically

local features factor
across hyperedges statically

NGramTree (C&J 05)

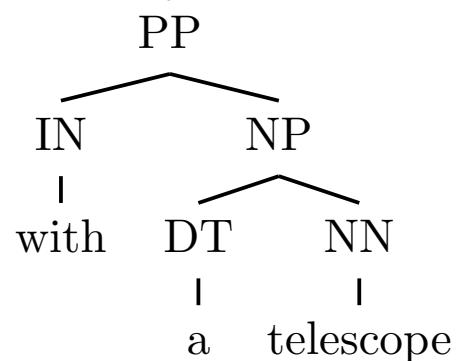
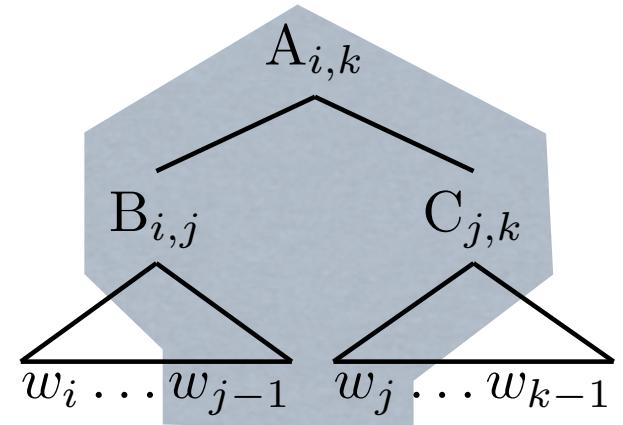
- an **NGramTree** captures the smallest tree fragment that contains a bigram (two consecutive words)
- unit instances are **boundary words** between subtrees



unit instance of node A

NGramTree (C&J 05)

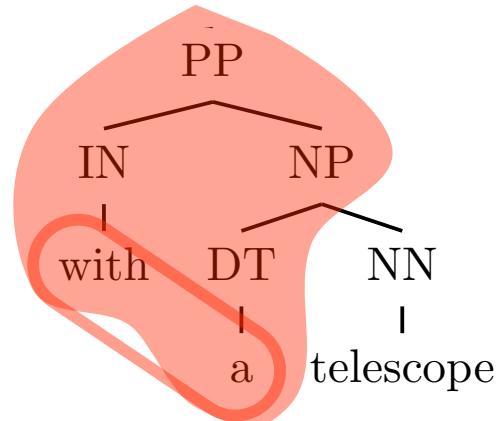
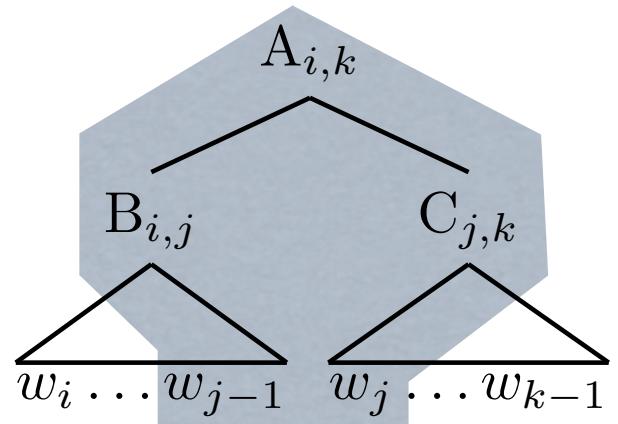
- an **NGramTree** captures the smallest tree fragment that contains a bigram (two consecutive words)
- unit instances are **boundary words** between subtrees



unit instance of node A

NGramTree (C&J 05)

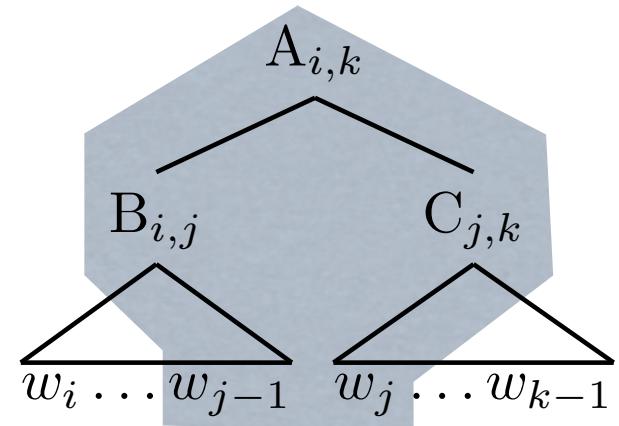
- an **NGramTree** captures the smallest tree fragment that contains a bigram (two consecutive words)
- unit instances are **boundary words** between subtrees



unit instance of node A

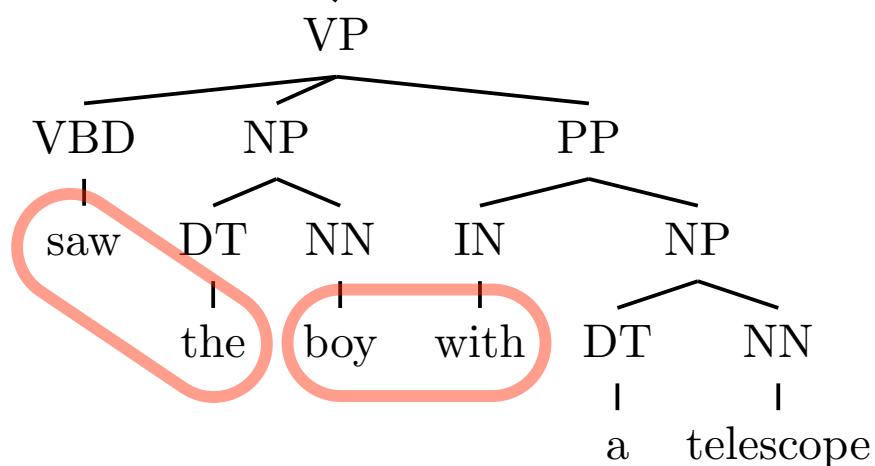
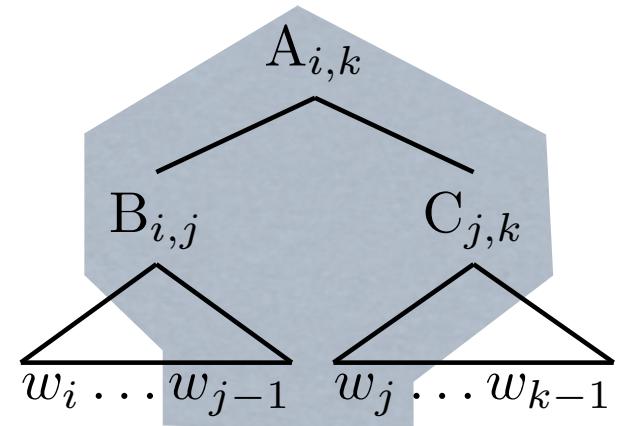
NGramTree (C&J 05)

- an **NGramTree** captures the smallest tree fragment that contains a bigram (two consecutive words)
- unit instances are **boundary words** between subtrees



NGramTree (C&J 05)

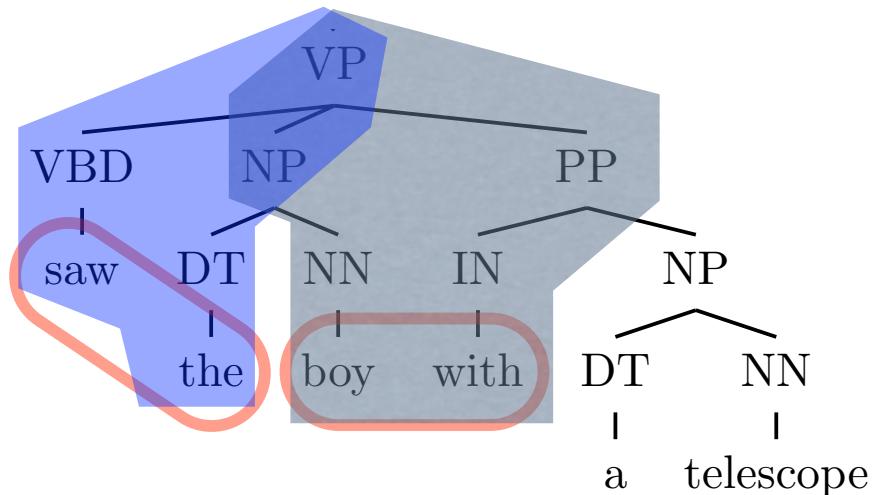
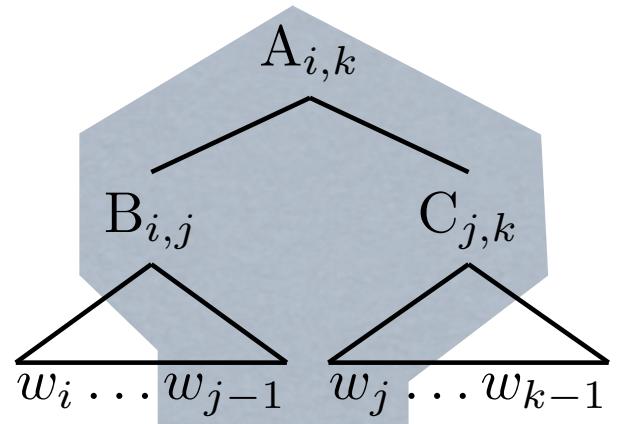
- an **NGramTree** captures the smallest tree fragment that contains a bigram (two consecutive words)
- unit instances are **boundary words** between subtrees



unit instance of node A

NGramTree (C&J 05)

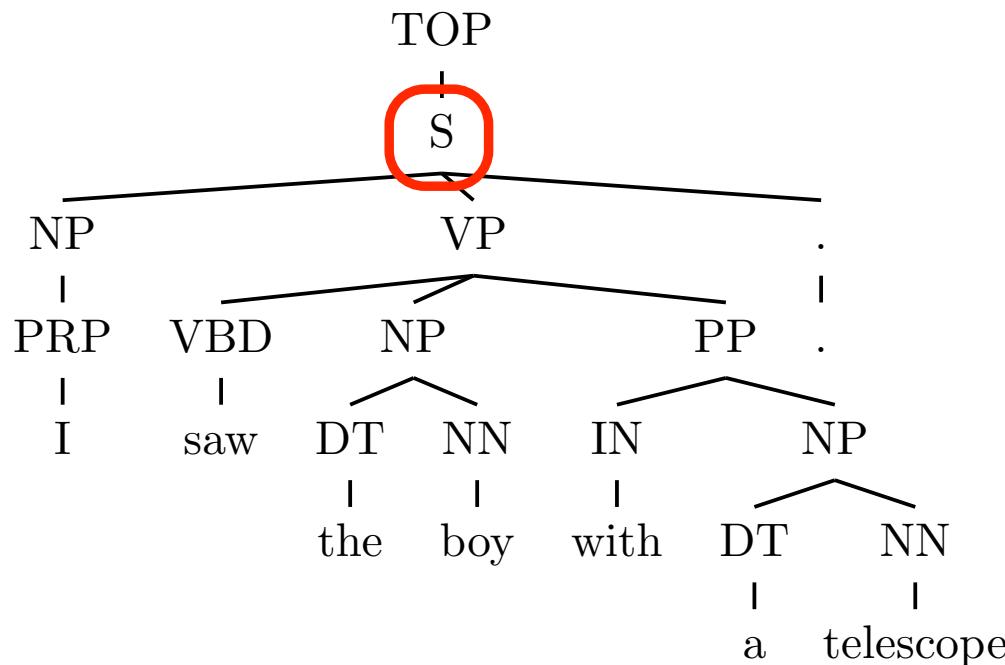
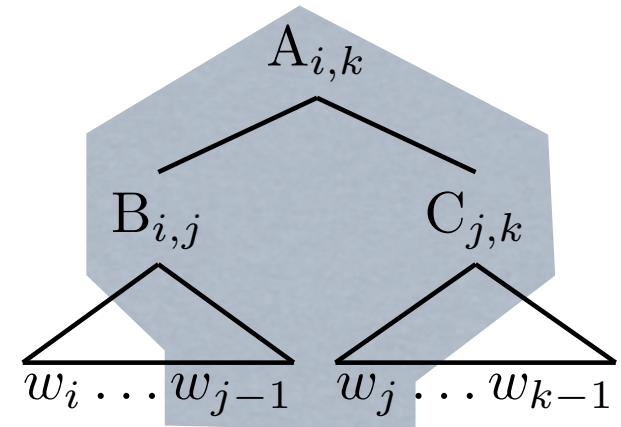
- an **NGramTree** captures the smallest tree fragment that contains a bigram (two consecutive words)
- unit instances are **boundary words** between subtrees



unit instance of node A

NGramTree (C&J 05)

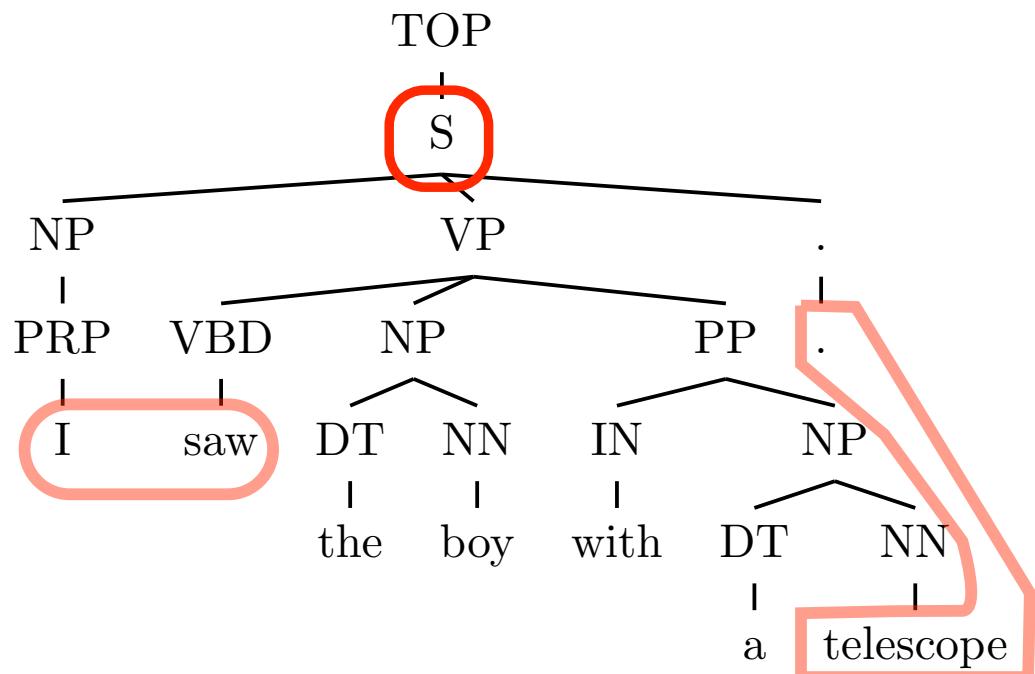
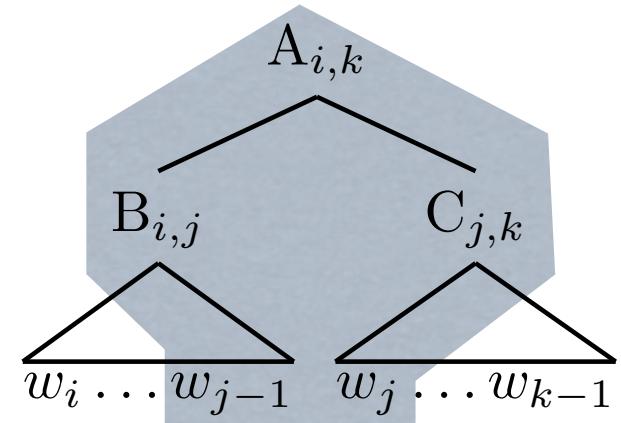
- an **NGramTree** captures the smallest tree fragment that contains a bigram (two consecutive words)
- unit instances are **boundary words** between subtrees



unit instance of node A

NGramTree (C&J 05)

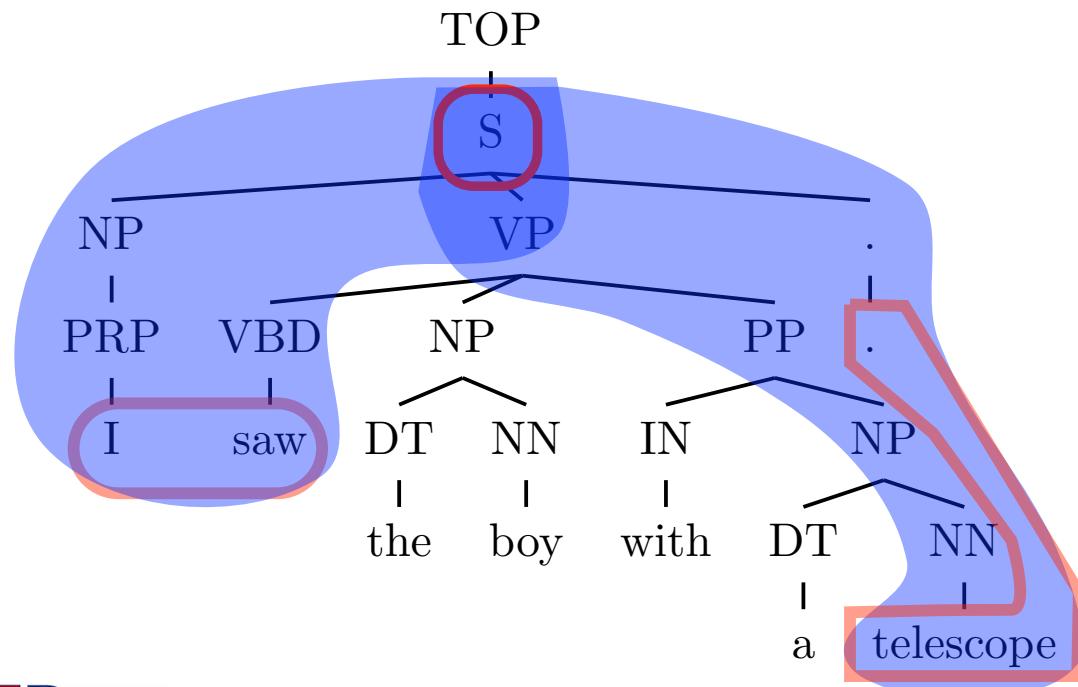
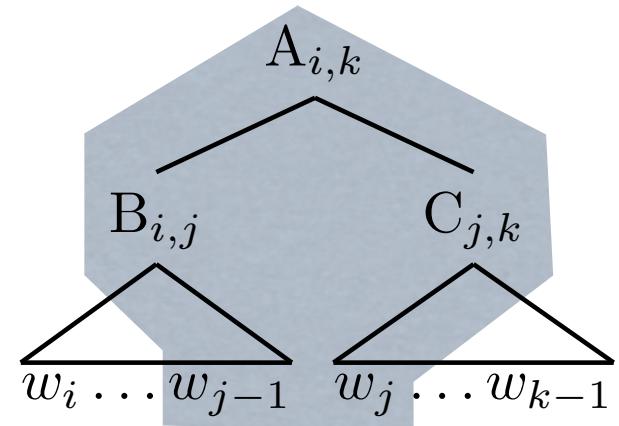
- an **NGramTree** captures the smallest tree fragment that contains a bigram (two consecutive words)
- unit instances are **boundary words** between subtrees



unit instance of node A

NGramTree (C&J 05)

- an **NGramTree** captures the smallest tree fragment that contains a bigram (two consecutive words)
- unit instances are **boundary words** between subtrees



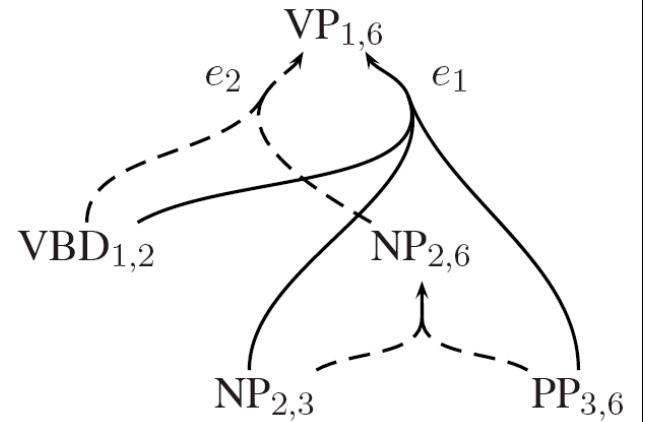
unit instance of node A

Outline

- Packed Forest and General Idea
- Forest Reranking and Non-Local Features
 - Perceptron for Generic Reranking
 - Local vs. Non-Local Features
 - Incremental Computation of Non-Local Features
- Decoding Algorithm the argmax operator
- Experiments

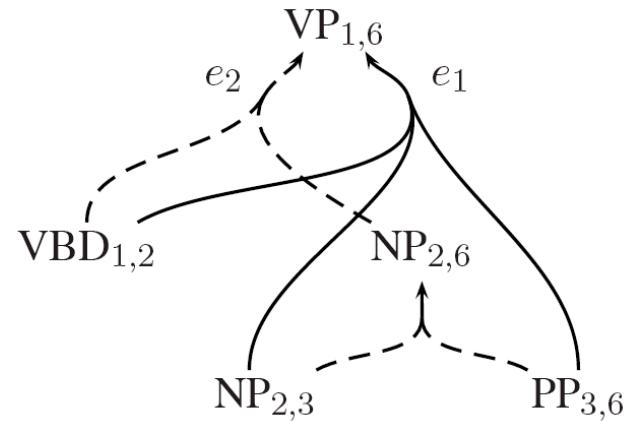
$$\hat{y} = \operatorname{argmax}_{y \in \text{cand}(s_i)} \mathbf{w} \cdot \mathbf{f}(y)$$

General Idea of Decoding



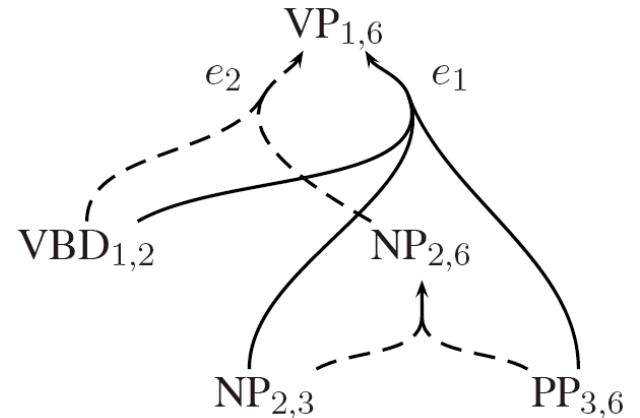
General Idea of Decoding

- bottom-up (chart parsing)



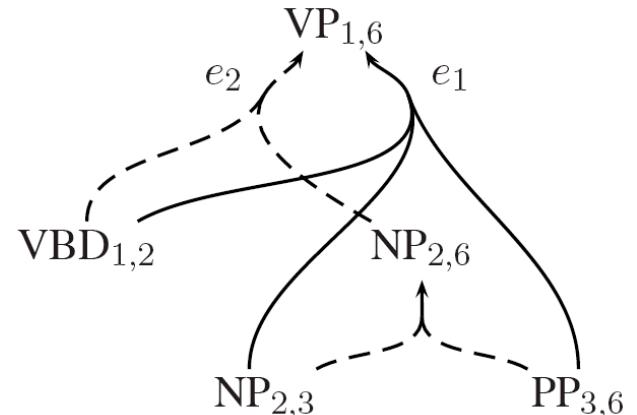
General Idea of Decoding

- bottom-up (chart parsing)
- keep top k trees at each node
 - combine top subtrees
 - score unit non-local features



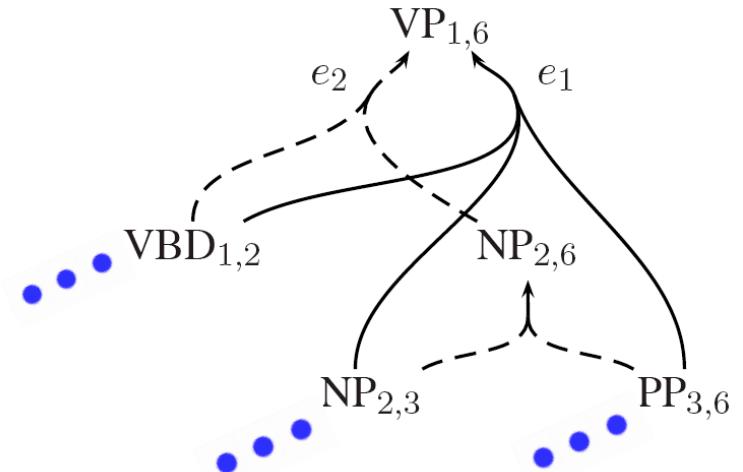
General Idea of Decoding

- bottom-up (chart parsing)
- keep top k trees at each node
 - combine top subtrees
 - score unit non-local features
- similar to machine translation decoding with integrated language models
 - non-local features \Leftrightarrow LM combo
 - so we use forest rescoring from MT
([Chiang 2007](#); [Huang and Chiang 2007](#)) to speed up the computation



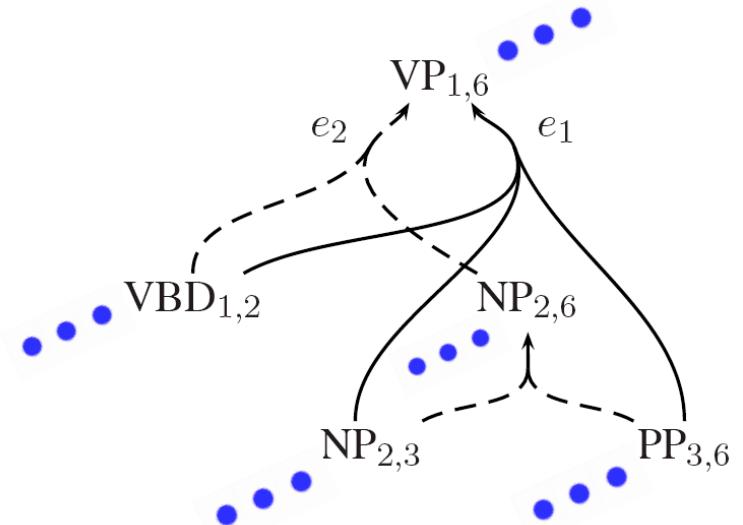
General Idea of Decoding

- bottom-up (chart parsing)
- keep top k trees at each node
 - combine top subtrees
 - score unit non-local features
- similar to machine translation decoding with integrated language models
 - non-local features \Leftrightarrow LM combo
 - so we use forest rescoring from MT
([Chiang 2007](#); [Huang and Chiang 2007](#)) to speed up the computation



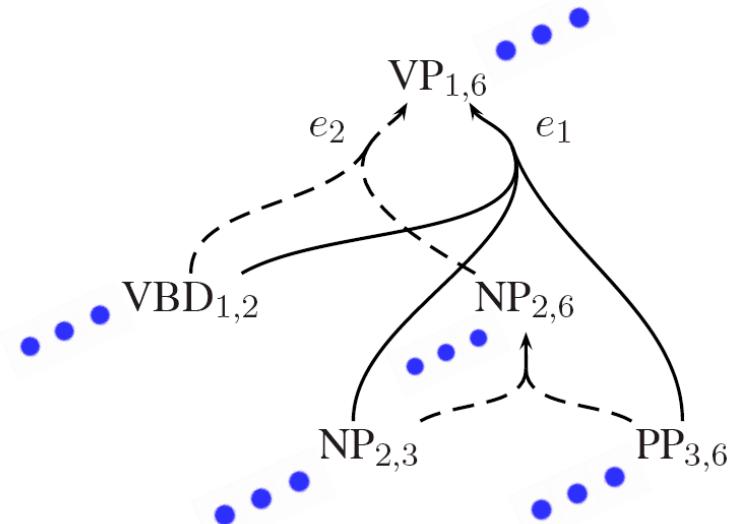
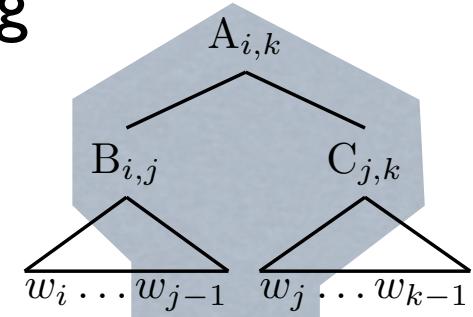
General Idea of Decoding

- bottom-up (chart parsing)
- keep top k trees at each node
 - combine top subtrees
 - score unit non-local features
- similar to machine translation decoding with integrated language models
 - non-local features \Leftrightarrow LM combo
 - so we use forest rescoring from MT
(Chiang 2007; Huang and Chiang 2007) to speed up the computation



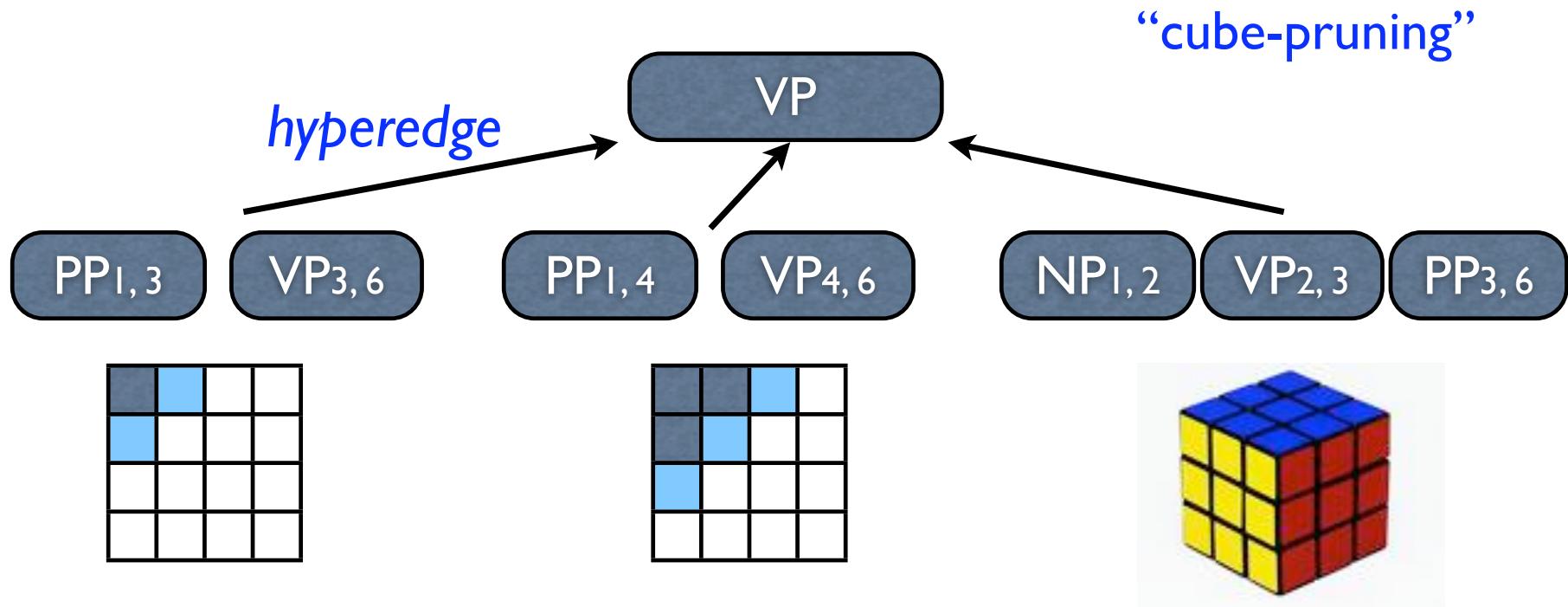
General Idea of Decoding

- bottom-up (chart parsing)
- keep top k trees at each node
 - combine top subtrees
 - score unit non-local features
- similar to machine translation decoding with integrated language models
 - non-local features \Leftrightarrow LM combo
 - so we use forest rescoring from MT (Chiang 2007; Huang and Chiang 2007) to speed up the computation



Faster Decoding

- best-first exploration of hyperedges **simultaneously!**
significant savings of computation
- most of the item combinations are neglected



Experiments

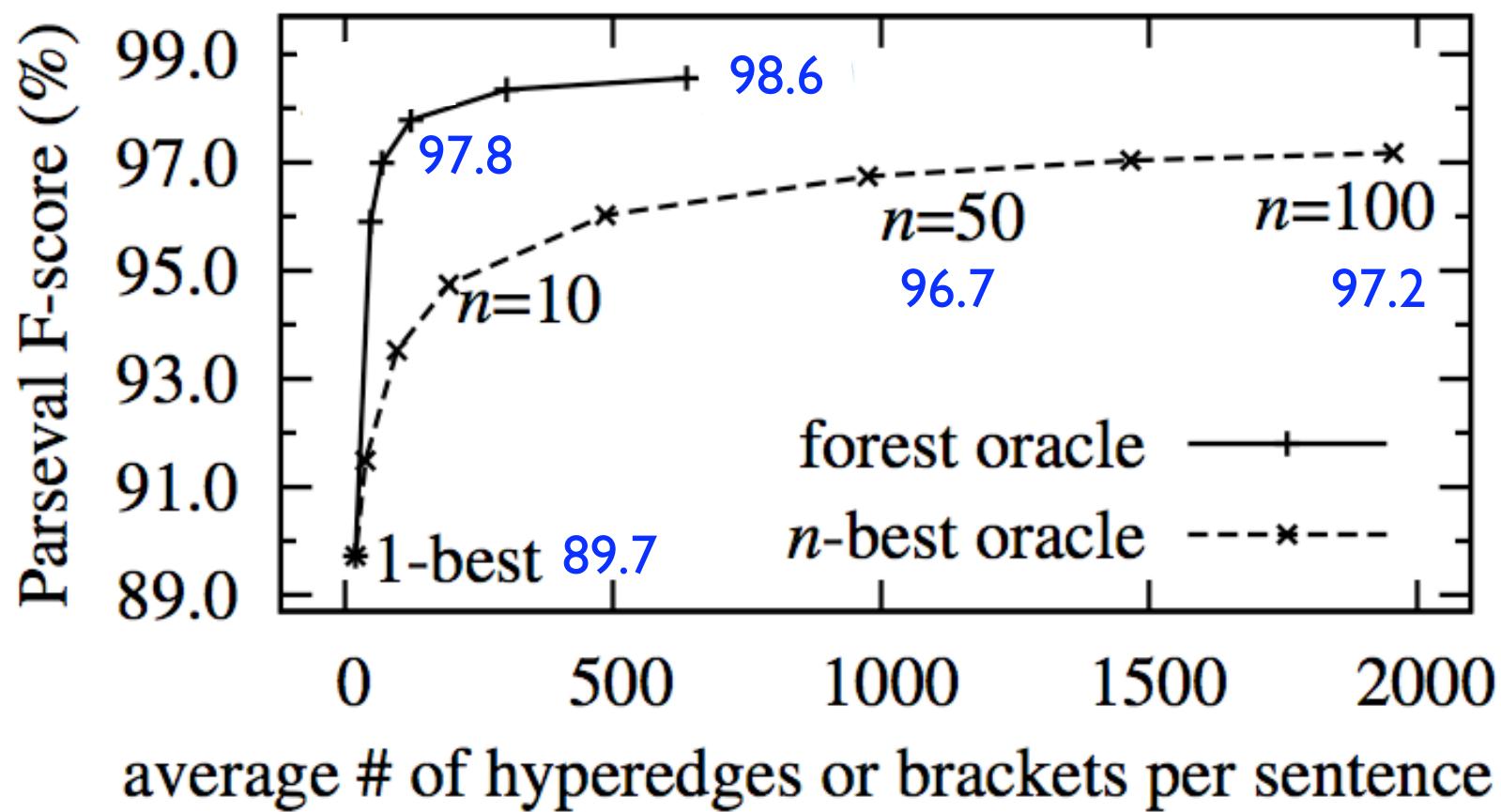
scaled to the whole Penn Treebank

Data Preparation

- use Charniak parser as baseline
- standard split: train: sec 02-21, dev: sec 22, test: sec 23
- training set split into 20 fold (cross-validation style)
- modify Charniak parser to output forests!
 - pruned by an Inside-Outside style algorithm
- use 15 features templates from (Charniak and Johnson, 2005; Collins, 2000); 800,582 feature instances (~70% local)
- both n -best and forest reranking systems implemented in pure Python, on 64-bit Dual-core 3.0 GHz machines

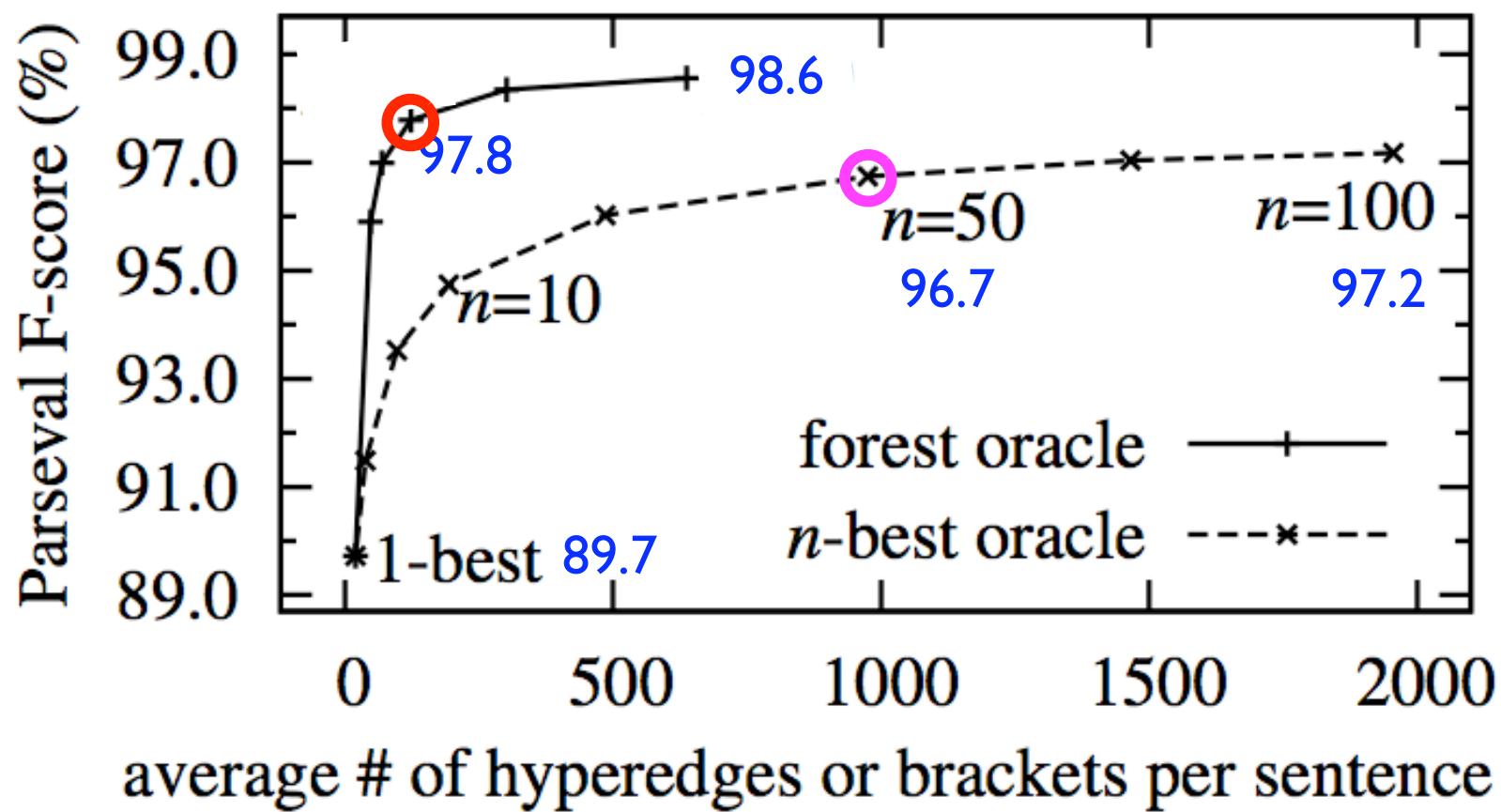
Forest vs. n-best Oracles

- forests enjoy higher oracle scores than n -best lists
 - a **dynamic programming** algorithm for forest oracle



Forest vs. n-best Oracles

- forests enjoy higher oracle scores than n -best lists
 - a **dynamic programming** algorithm for forest oracle



Main Results

- forest reranking outperforms both 50-best and 100-best reranking
- and can be trained on the whole treebank in ~ 1 day even with a pure Python implementation!

baseline: 1-best Charniak parser		89.72
approach	training time	F1%
50-best reranking	4 \times 0.3h	91.43
100-best reranking	4 \times 0.7h	91.49
forest reranking	4 \times 6.1h	91.69

details in the paper.

Comparison with Others

approach	system	F ₁ %
reranking	Collins (2000)	89.7
	Charniak and Johnson (2005)	91.0
dynamic programming	Petrov and Klein (2008)	88.3
	<i>this work</i>	91.7
generative	Bod (2000)	90.7
	Petrov and Klein (2007)	90.1
semi-supervised	McClosky et al. (2006)	92.1

Conclusion

- A Framework for Reranking on Packed Forests
 - forests have more variations and smaller sizes
 - dynamic programming algorithm for forest oracles
- Two Key Ideas that made it work
 - incremental, recursive computation of features
 - forest rescore for approximate decoding
- Discriminative training scaled to the whole PTB
 - better than both 50-best and 100-best reranking
 - better than any previous results trained on PTB

Conclusion

- more akin to traditional chart parsing, not reranking!
 - multipass search (Goodman, 1997)
 - non-local features in the pruned forest
 - but without blowing up the forest
 - better search algorithms should help!
 - could in principle incorporate fancier features
- also applicable to other problems involving forest
 - sequence segmentation/labeling, dependency parsing, machine translation, generation, ...

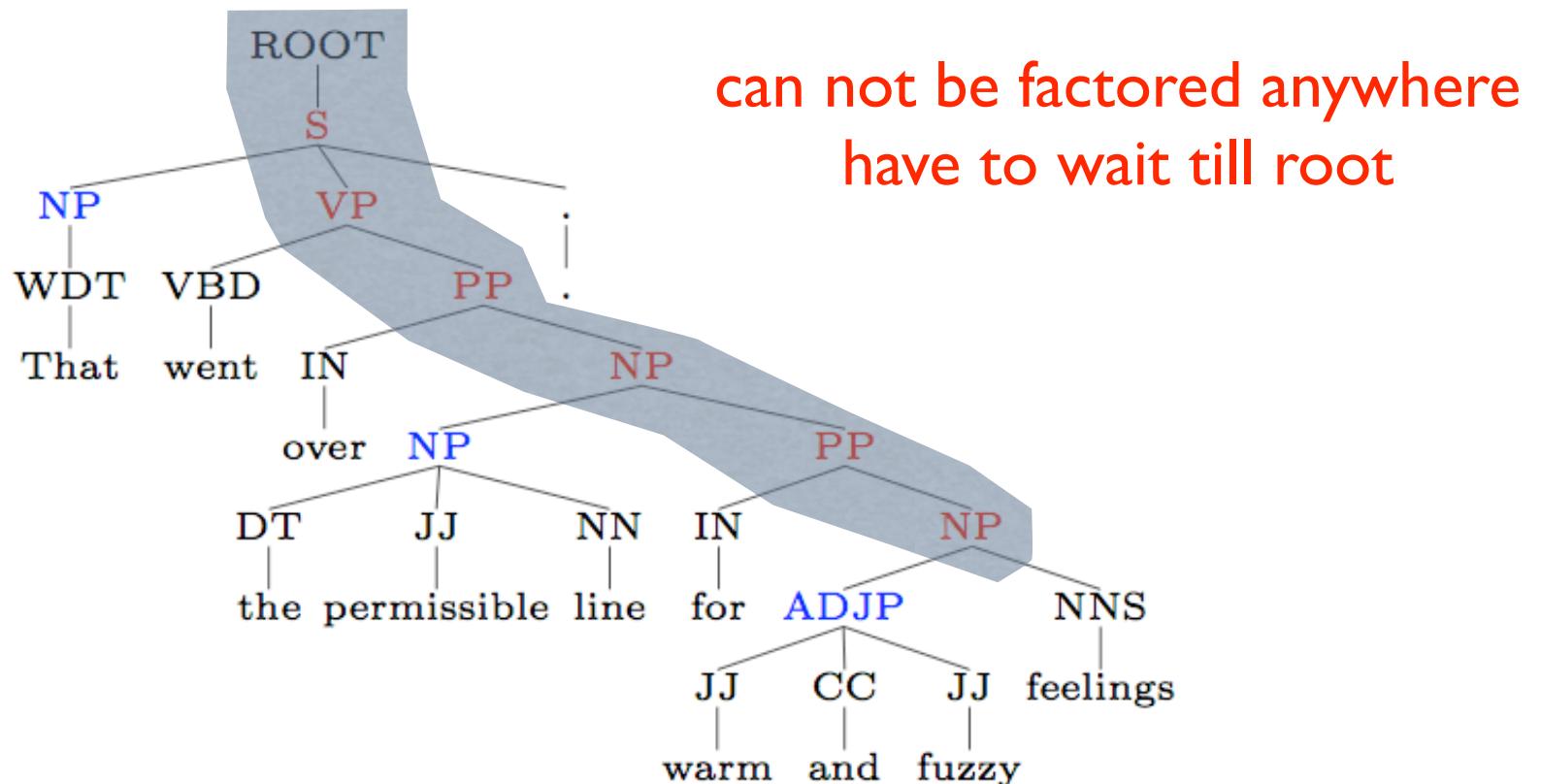
Forest is your friend. Save the forest.

Thank you!

Forest-dumping Charniak parser
will be available online.

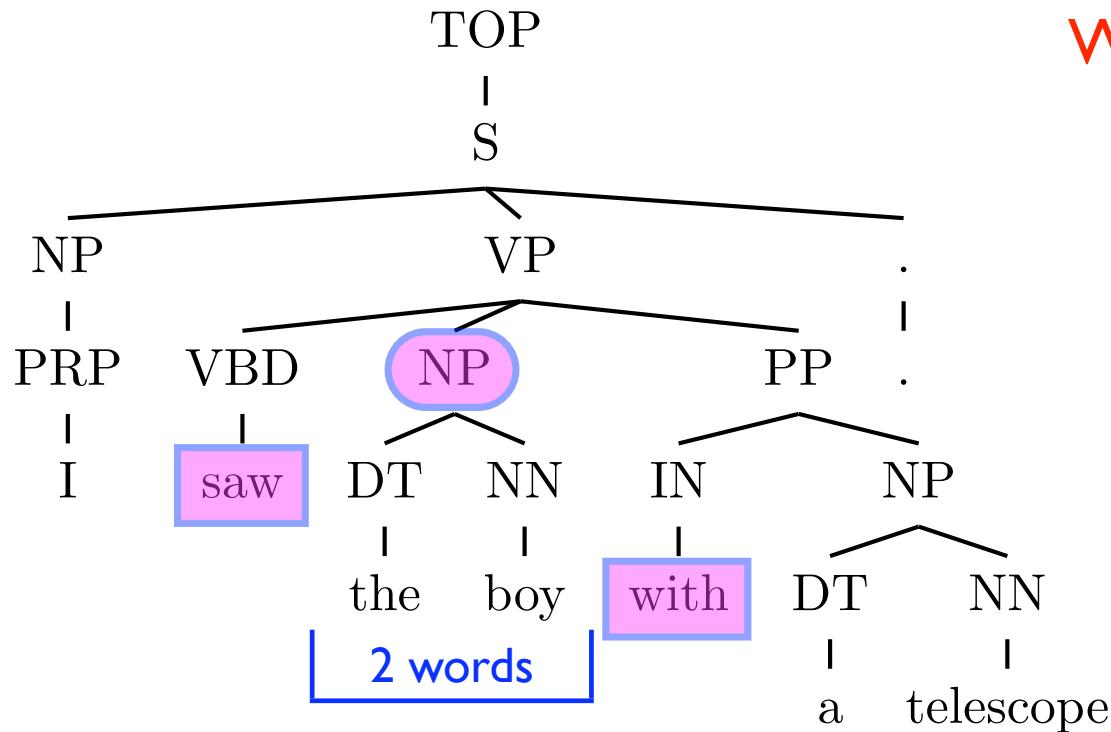
Global Feature - RightBranch

- length of rightmost (non-punctuation) path
 - English has a right-branching tendency



WordEdges (C&J 05)

- a **WordEdges** feature classifies a node by its label, (binned) span length, and surrounding words
- a **POSEdges** feature uses surrounding POS tags

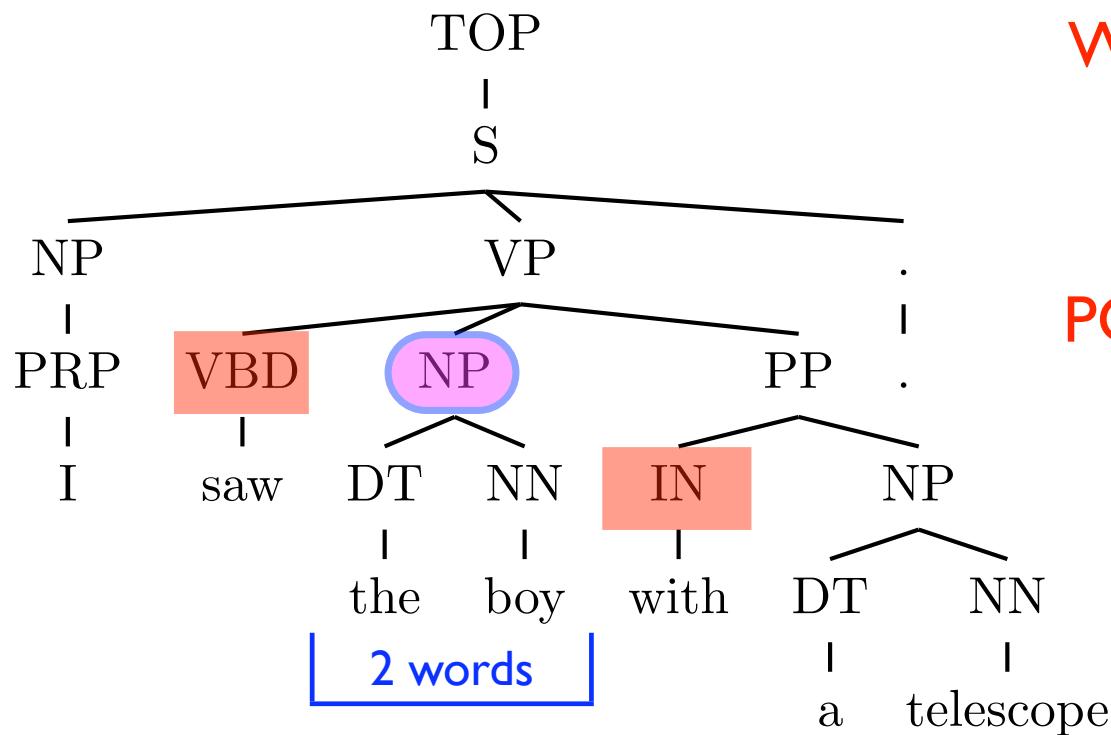


WordEdges is local

$$f_{400}(y) = f_{NP \ 2 \ saw \ with}(y) = 1$$

WordEdges (C&J 05)

- a **WordEdges** feature classifies a node by its label, (binned) span length, and surrounding words
- a **POSEdges** feature uses surrounding POS tags



WordEdges is local

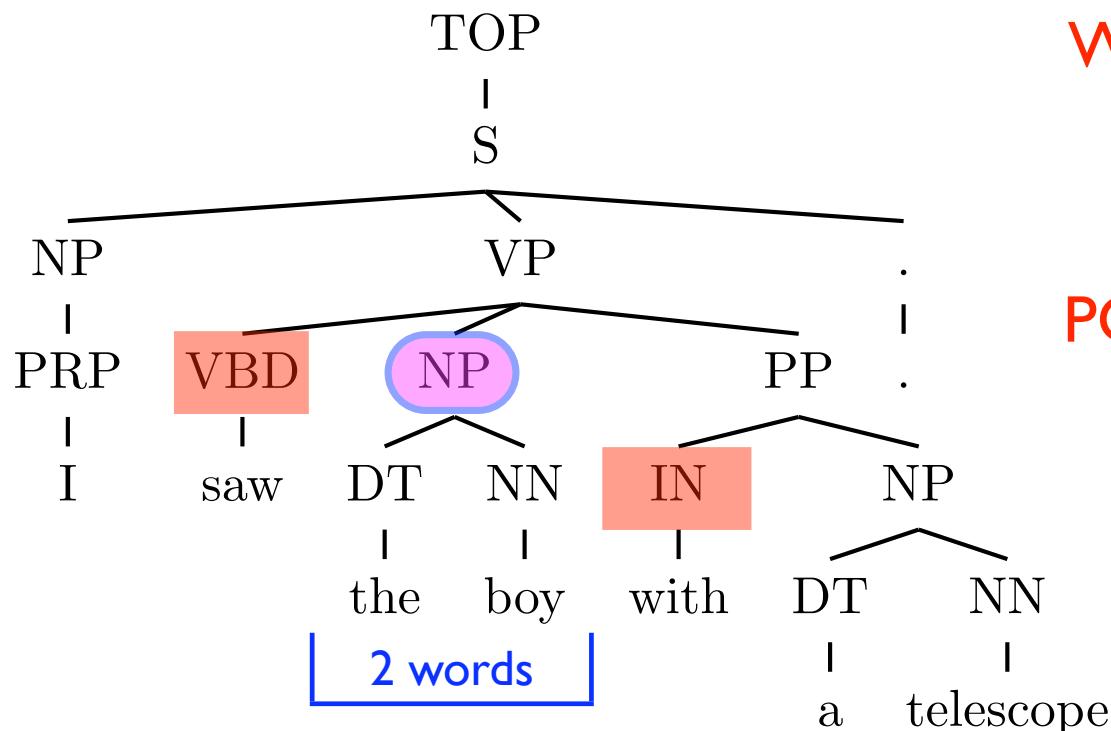
$$f_{400}(y) = f_{NP \ 2 \ saw \ with}(y) = 1$$

POSEdges is non-local

$$f_{800}(y) = f_{NP \ 2 \ VBD \ IN}(y) = 1$$

WordEdges (C&J 05)

- a **WordEdges** feature classifies a node by its label, (binned) span length, and surrounding words
- a **POSEdges** feature uses surrounding POS tags



WordEdges is local

$$f_{400}(y) = f_{NP \ 2 \ saw \ with}(y) = 1$$

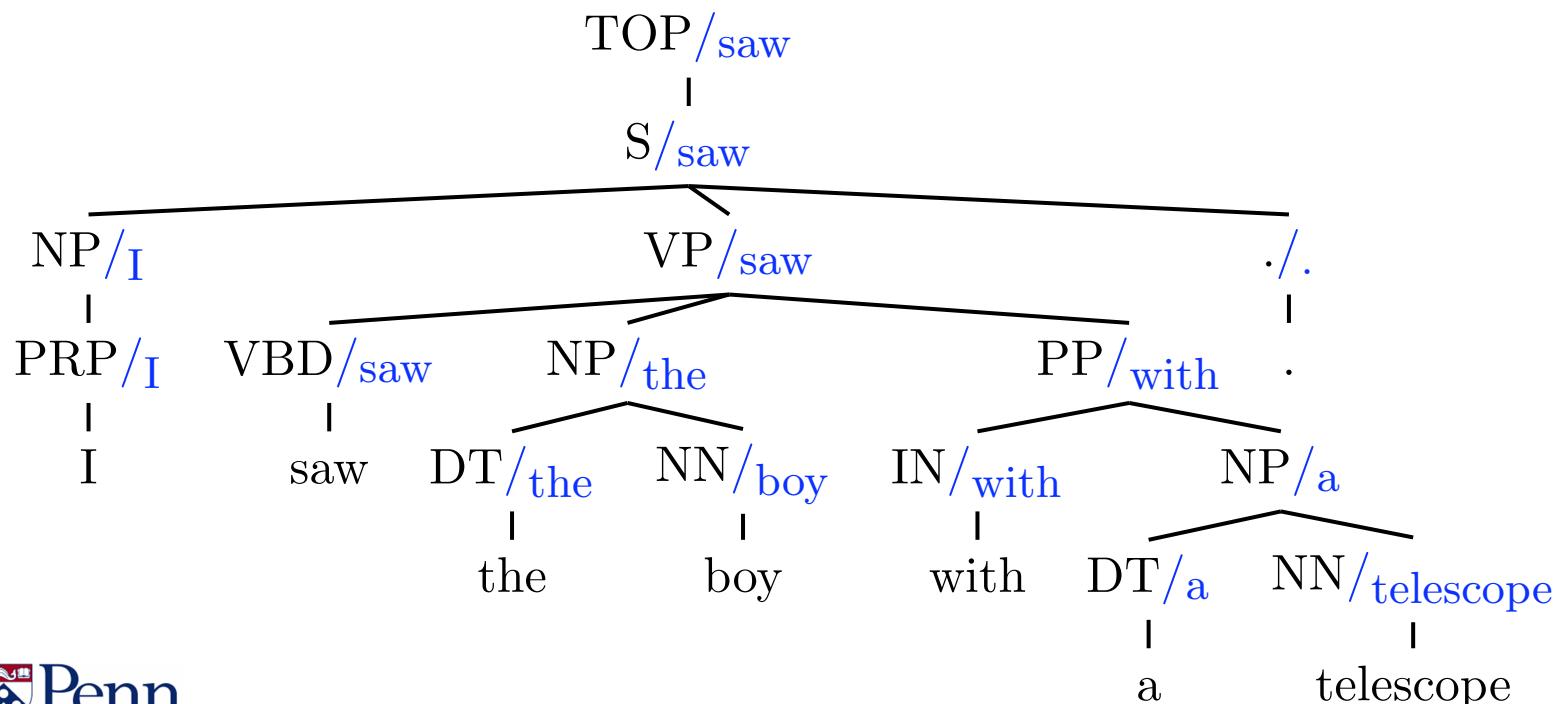
POSEdges is non-local

$$f_{800}(y) = f_{NP \ 2 \ VBD \ IN}(y) = 1$$

local features comprise
~70% of all instances!

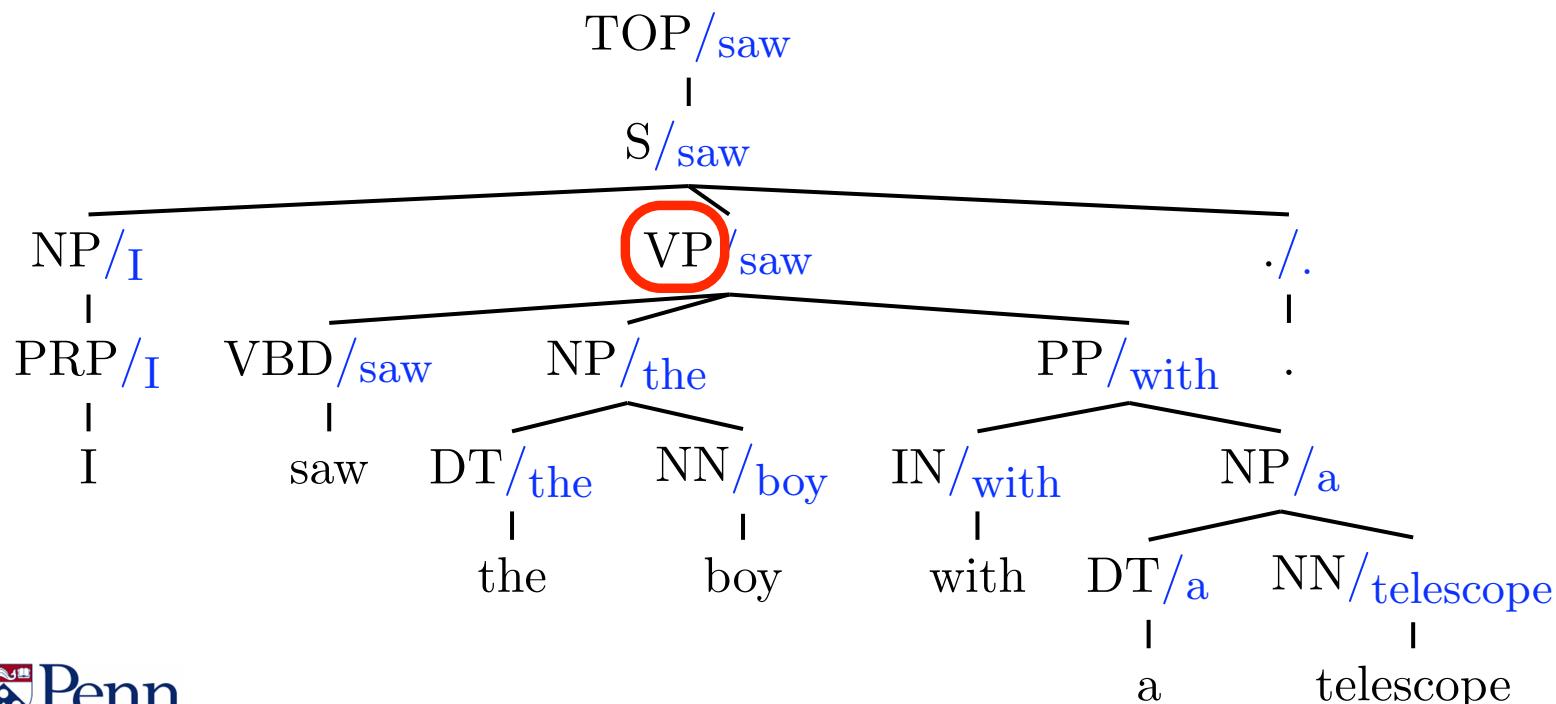
Heads (C&J 05, Collins 00)

- head-to-head lexical dependencies
- we percolate heads bottom-up
- unit instances are between the head word of the head child and the head words of non-head children



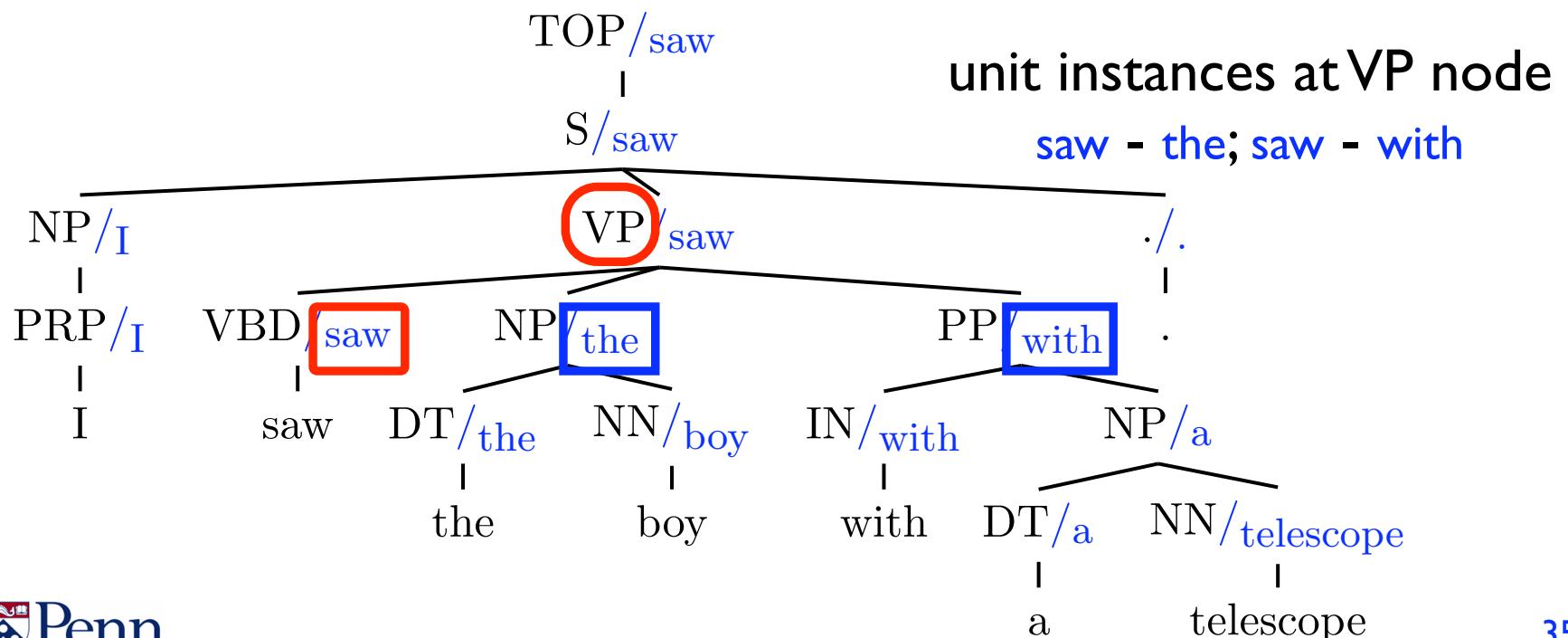
Heads (C&J 05, Collins 00)

- head-to-head lexical dependencies
- we percolate heads bottom-up
- unit instances are between the head word of the head child and the head words of non-head children



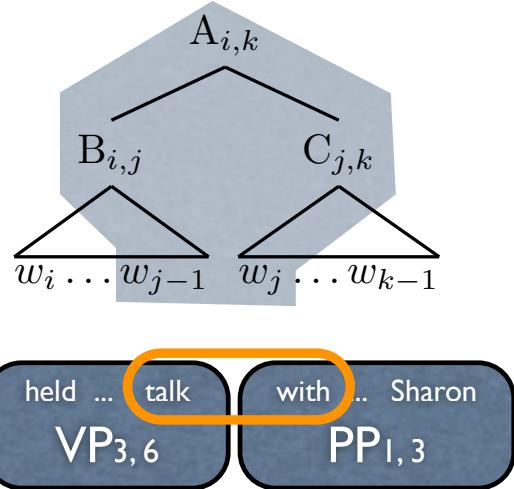
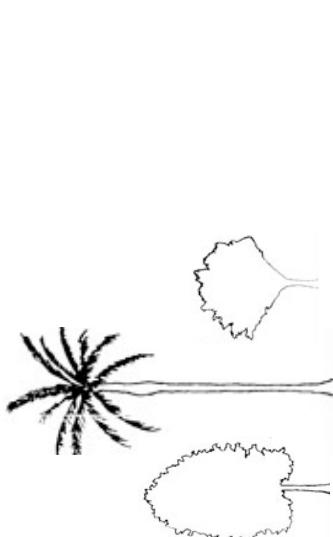
Heads (C&J 05, Collins 00)

- head-to-head lexical dependencies
- we percolate heads bottom-up
- unit instances are between the head word of the head child and the head words of non-head children



Approximate Decoding

- bottom-up, keeps top k derivations at each node
 - forest rescoring from MT (Chiang 2007; Huang and Chiang 07)
- priority queue for next-best (Huang and Chiang, 2005)
 - each iteration pops the best and pushes successors
 - unit non-local feature costs as a non-monotonic cost



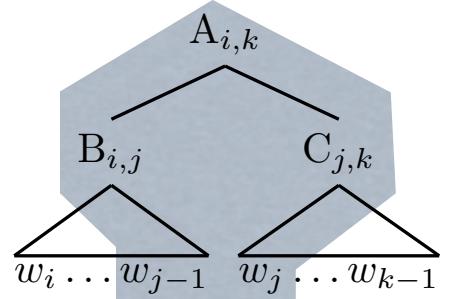
A 4x4 grid of numbers representing feature costs. The numbers are arranged as follows:

	1.0	3.0	8.0
1.0	2.5	9.0	9.5
1.1	2.4	9.5	9.4
3.5	5.1	17.0	12.1

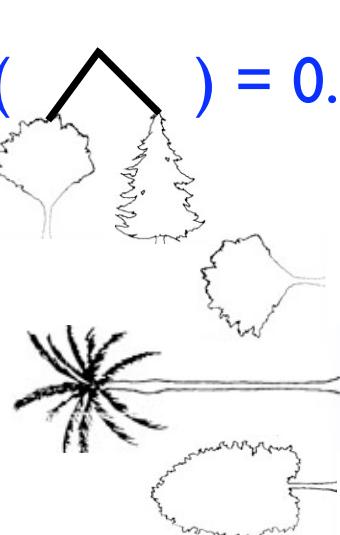
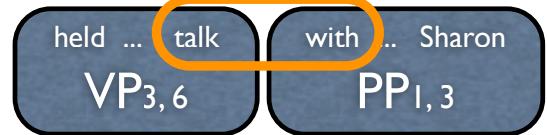
Some cells in the grid are highlighted in blue: the cell (1,1), the cell (1,2), and the cell (2,1).

Approximate Decoding

- bottom-up, keeps top k derivations at each node
 - forest rescoring from MT (Chiang 2007; Huang and Chiang 07)
- priority queue for next-best (Huang and Chiang, 2005)
 - each iteration pops the best and pushes successors
 - unit non-local feature costs as a non-monotonic cost



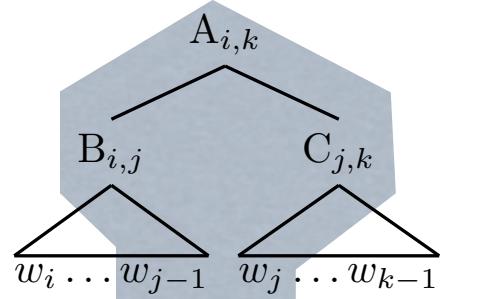
$$\mathbf{w} \cdot \mathbf{f}_N(\text{tree}) = 0.5$$



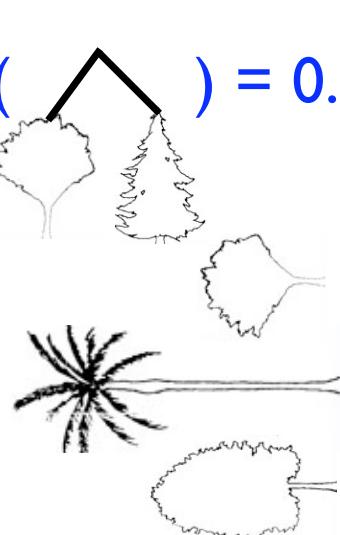
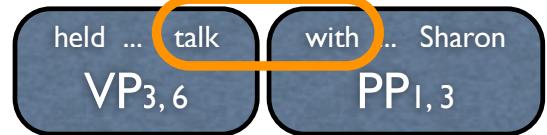
	1.0	3.0	8.0
1.0	2.5	9.0	9.5
1.1	2.4	9.5	9.4
3.5	5.1	17.0	12.1

Approximate Decoding

- bottom-up, keeps top k derivations at each node
 - forest rescoring from MT (Chiang 2007; Huang and Chiang 2007)
- priority queue for next-best (Huang and Chiang, 2005)
 - each iteration pops the best and pushes successors
 - unit non-local feature costs as a non-monotonic cost



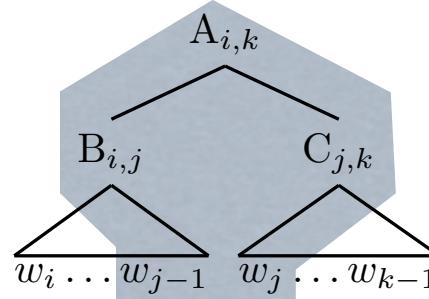
$$\mathbf{w} \cdot \mathbf{f}_N(\text{tree}) = 0.5$$



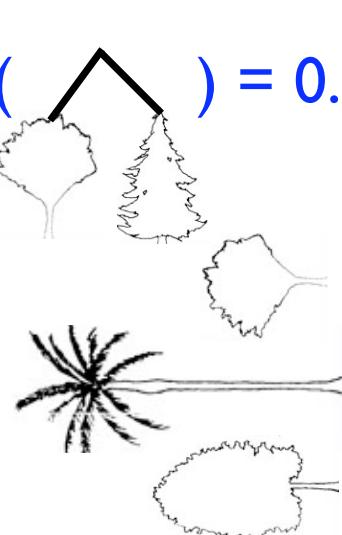
	1.0	3.0	8.0
1.0	2.5	9.0	9.5
1.1	2.4	9.5	9.4
3.5	5.1	17.0	12.1

Approximate Decoding

- bottom-up, keeps top k derivations at each node
 - forest rescoring from MT (Chiang 2007; Huang and Chiang 2007)
- priority queue for next-best (Huang and Chiang, 2005)
 - each iteration pops the best and pushes successors
 - unit non-local feature costs as a non-monotonic cost

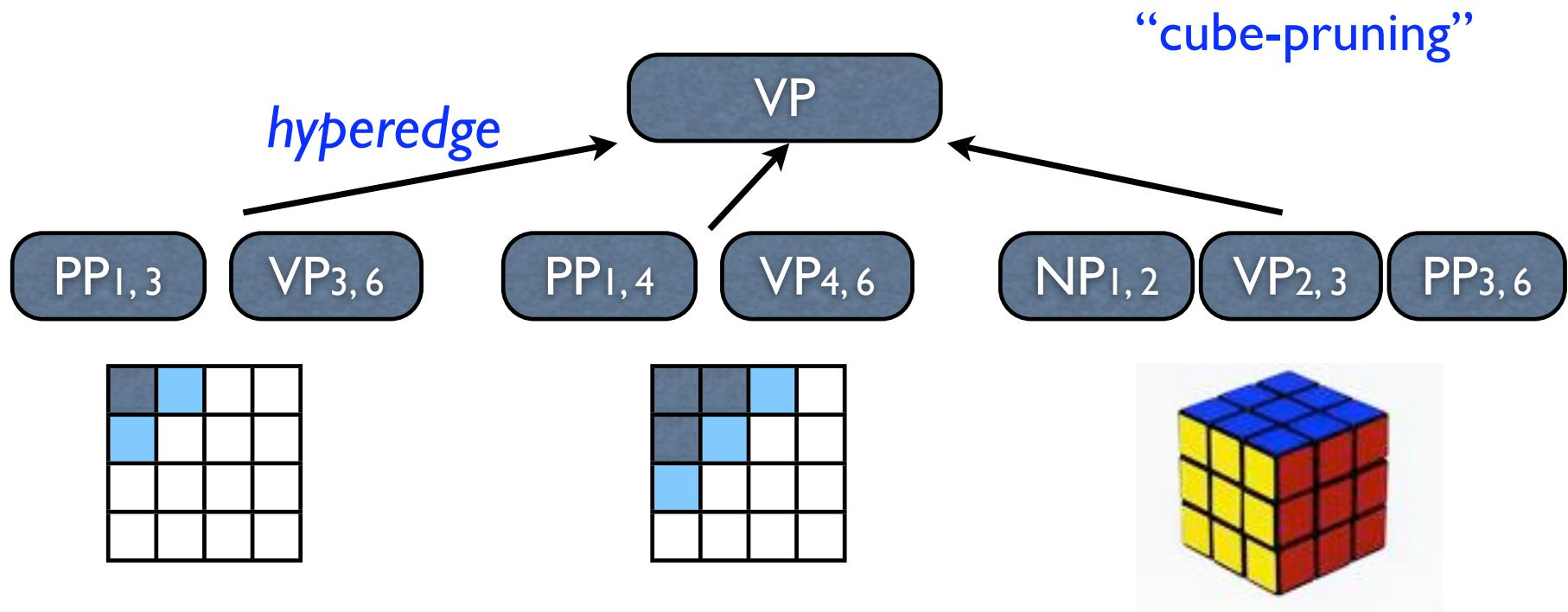


$$\mathbf{w} \cdot \mathbf{f}_N(\text{tree}) = 0.5$$



Approximate Decoding

- process all hyperedges **simultaneously!**
significant savings of computation



complexity: $O(E + V \mathbf{U} k \log k)$,
bottom-neck: the time for on-the-fly extraction

Forest Oracle

the candidate tree that is closest to gold-standard

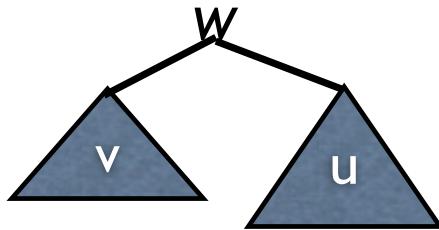
Optimal Parseval F-score

- find the tree in the forest with highest F-score
- Parseval F_1 -score is the harmonic mean between labeled precision and labeled recall
 - can not optimize F-scores on sub-forests separately
 - can not optimize precision and recall simultaneously
- we instead use **dynamic programming**
 - optimizes the number of matched brackets per given number of test brackets
 - “when the test (sub-) parse has 5 brackets, what is the max. number of matched brackets?”

Combining Oracle Functions

- to combine two nodes along a hyperedge, we need to **distribute** test brackets between the two, and **optimize** the number of matches

$$(f \otimes g)(t) \triangleq \max_{t_1+t_2=t} f(t_1) + g(t_2)$$

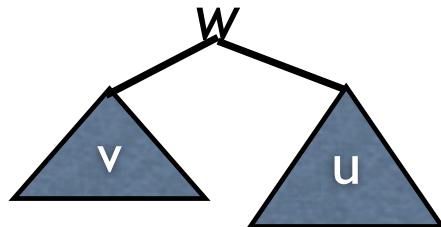


$$\begin{array}{|c|c|} \hline t & f(t) \\ \hline 2 & 1 \\ \hline 3 & 2 \\ \hline \end{array} \otimes \begin{array}{|c|c|} \hline t & g(t) \\ \hline 4 & 4 \\ \hline 5 & 4 \\ \hline \end{array} = \begin{array}{|c|c|} \hline t & (f \otimes g)(t) \\ \hline 6 & 5 \\ \hline 7 & 6 \\ \hline 8 & 6 \\ \hline \end{array}$$

Combining Oracle Functions

- to combine two nodes along a hyperedge, we need to **distribute** test brackets between the two, and **optimize** the number of matches

$$(f \otimes g)(t) \triangleq \max_{t_1+t_2=t} f(t_1) + g(t_2)$$



$$\begin{array}{|c|c|} \hline t & f(t) \\ \hline 2 & 1 \\ \hline 3 & 2 \\ \hline \end{array} \otimes \begin{array}{|c|c|} \hline t & g(t) \\ \hline 4 & 4 \\ \hline 5 & 4 \\ \hline \end{array} = \begin{array}{|c|c|} \hline t & (f \otimes g)(t) \\ \hline 6 & 5 \\ \hline 7 & 6 \\ \hline 8 & 6 \\ \hline \end{array}$$

N

t	$(f \otimes g) \uparrow_{(1,0)} (t)$
7	5
8	6
9	6

Y

t	$(f \otimes g) \uparrow_{(1,1)} (t)$
7	6
8	7
9	7

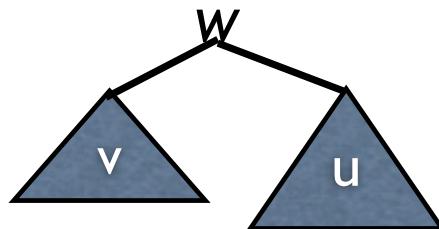
ora[w]

this node matched?

Combining Oracle Functions

- to combine two nodes along a hyperedge, we need to **distribute** test brackets between the two, and **optimize** the number of matches

$$(f \otimes g)(t) \triangleq \max_{t_1+t_2=t} f(t_1) + g(t_2)$$



final answer:

$$F(y^+, y^*) = \max_t \frac{2 \cdot ora[\text{TOP}](t)}{t + |y^*|}$$

N

t	$(f \otimes g) \uparrow_{(1,0)} (t)$
7	5
8	6
9	6

Y

t	$(f \otimes g) \uparrow_{(1,1)} (t)$
7	6
8	7
9	7

ora[w]

this node matched?

Forest vs. n -best Oracles

- forests enjoy higher oracle scores than n -best lists
 - a **dynamic programming** algorithm for forest oracle

