
Forest Reranking 
Discriminative Parsing with Non-Local Features

Liang Huang
University of Pennsylvania

ACL 2008 talk, Columbus, OH, June 2008



Is Supervised Parsing Done?

2

Bod (2007)
Is the End of Supervised 

Parsing in Sight?
is it a done area?



Is Supervised Parsing Done?

• motivation: use non-local features

• linguistically-motivated features for n-best reranking 
(Charniak and Johnson, 2005; Collins, 2000)

• but can we integrate them back into chart parsing?

• YES: using a packed forest! 

• result: best whole Treebank parsing accuracy to date
2

Bod (2007)
Is the End of Supervised 

Parsing in Sight?
is it a done area?



Why is n-best list a bad idea?

• too few variations (limited scope)

• 41% correct parses are not in ~30-best  (Collins, 2000)

• worse for longer sentences; tiny fraction of whole space

• too many redundancies

• 50-best usually encodes 5-6 binary decisions (25<50<26)

...

3



Why is n-best list a bad idea?

• too few variations (limited scope)

• 41% correct parses are not in ~30-best  (Collins, 2000)

• worse for longer sentences; tiny fraction of whole space

• too many redundancies

• 50-best usually encodes 5-6 binary decisions (25<50<26)

...

3

packed forest



Outline

• Packed Forest and General Idea

• Forest Reranking and Non-Local Features

• Perceptron for Generic Reranking

• Local vs. Non-Local Features

• Incremental Computation of Non-Local Features

• Decoding Algorithm

• Experiments

4



Packed Forest
• a compact representation of many parses

• by sharing common sub-derivations

• polynomial-space encoding of exponentially large set

(Klein and Manning, 2001; Huang and Chiang, 2005)

0  I 1 saw  2  him  3  with 4 a 5 mirror 6

5



Packed Forest
• a compact representation of many parses

• by sharing common sub-derivations

• polynomial-space encoding of exponentially large set

(Klein and Manning, 2001; Huang and Chiang, 2005)

0  I 1 saw  2  him  3  with 4 a 5 mirror 6

nodes hyperedges

a hypergraph

5



Lattices vs. Forests
• forest generalizes “lattice” from finite-state world

• both are compact encodings of exponentially many 
derivations (paths or trees)

• graph => hypergraph;   regular grammar => CFG

6



Reranking on a Forest?
• with only local features

• dynamic programming, tractable 
(Taskar et al. 2004; McDonald et al., 2005)

• with non-local features

• intractable, so we do approximation

• on-the-fly reranking at internal 

• use non-locals as early and as much as possible!

methods \ features local non-local

n-best reranking

DP-based discrim. parsing

forest reranking

only at the root node

exact N/A

exact on-the-fly

7



Reranking on a Forest?
• with only local features

• dynamic programming, tractable 
(Taskar et al. 2004; McDonald et al., 2005)

• with non-local features

• intractable, so we do approximation

• on-the-fly reranking at internal 

• use non-locals as early and as much as possible!

methods \ features local non-local

n-best reranking

DP-based discrim. parsing

forest reranking

only at the root node

exact N/A

exact on-the-fly

7



Reranking on a Forest?
• with only local features

• dynamic programming, tractable 
(Taskar et al. 2004; McDonald et al., 2005)

• with non-local features

• intractable, so we do approximation

• on-the-fly reranking at internal 

• use non-locals as early and as much as possible!

methods \ features local non-local

n-best reranking

DP-based discrim. parsing

forest reranking

only at the root node

exact N/A

exact on-the-fly

7



Outline

• Packed Forest and General Idea

• Forest Reranking and Non-Local Features

• Perceptron for Generic Reranking

• Local vs. Non-Local Features

• Incremental Computation of Non-Local Features

• Decoding Algorithm

• Experiments

8



Generic Reranking by Perceptron
• for each sentence si, we have a set of candidates cand(si)

• and an oracle tree yi
+, among the candidates

• a feature mapping from tree y to vector f(y)

(Collins, 2002) 9



Generic Reranking by Perceptron
• for each sentence si, we have a set of candidates cand(si)

• and an oracle tree yi
+, among the candidates

• a feature mapping from tree y to vector f(y)

“decoder”
feature 

representation

(Collins, 2002) 9



Features

• a feature f is a function from tree y to a real number

• f1(y)=log Pr(y) is the log Prob from generative parser

• every other feature counts the number of times a 
particular configuration occurs in y

TOP

S

NP

PRP

I

VP

VBD

saw

NP

DT

the

NN

boy

PP

IN

with

NP

DT

a

NN

telescope

.

.

our features are from 
(Charniak & Johnson, 2005)

(Collins, 2000)

10



Features

• a feature f is a function from tree y to a real number

• f1(y)=log Pr(y) is the log Prob from generative parser

• every other feature counts the number of times a 
particular configuration occurs in y

instances of Rule feature

f 100 (y) = f  S  → NP  VP . (y) = 1
f 200 (y) = f NP → DT NN (y) = 2

TOP

S

NP

PRP

I

VP

VBD

saw

NP

DT

the

NN

boy

PP

IN

with

NP

DT

a

NN

telescope

.

.

our features are from 
(Charniak & Johnson, 2005)

(Collins, 2000)

10



Features

• a feature f is a function from tree y to a real number

• f1(y)=log Pr(y) is the log Prob from generative parser

• every other feature counts the number of times a 
particular configuration occurs in y

instances of Rule feature

f 100 (y) = f  S  → NP  VP . (y) = 1
f 200 (y) = f NP → DT NN (y) = 2

TOP

S

NP

PRP

I

VP

VBD

saw

NP

DT

the

NN

boy

PP

IN

with

NP

DT

a

NN

telescope

.

.

our features are from 
(Charniak & Johnson, 2005)

(Collins, 2000)

10



Local vs. Non-Local Features

• a feature is local iff. it can be factored among local 
productions of a tree (i.e., hyperedges in a forest)

• local features can be pre-computed on each hyperedge 
in the forest;  non-locals can not

TOP

S

NP

PRP

I

VP

VBD

saw

NP

DT

the

NN

boy

PP

IN

with

NP

DT

a

NN

telescope

.

.

11



Local vs. Non-Local Features

• a feature is local iff. it can be factored among local 
productions of a tree (i.e., hyperedges in a forest)

• local features can be pre-computed on each hyperedge 
in the forest;  non-locals can not

Rule is local

TOP

S

NP

PRP

I

VP

VBD

saw

NP

DT

the

NN

boy

PP

IN

with

NP

DT

a

NN

telescope

.

.

11



Local vs. Non-Local Features

• a feature is local iff. it can be factored among local 
productions of a tree (i.e., hyperedges in a forest)

• local features can be pre-computed on each hyperedge 
in the forest;  non-locals can not

Rule is local

ParentRule is non-local

TOP

S

NP

PRP

I

VP

VBD

saw

NP

DT

the

NN

boy

PP

IN

with

NP

DT

a

NN

telescope

.

.

11



Local vs. Non-Local: Examples

• CoLenPar feature captures the difference in lengths 
of adjacent conjuncts (Charniak and Johnson, 2005)

12
CoLenPar: 2



Local vs. Non-Local: Examples

• CoLenPar feature captures the difference in lengths 
of adjacent conjuncts (Charniak and Johnson, 2005)

12
CoLenPar: 2

local!



Local vs. Non-Local: Examples

• CoPar feature captures the depth to which adjacent 
conjuncts are isomorphic (Charniak and Johnson, 2005)

13
CoPar: 4



Local vs. Non-Local: Examples

• CoPar feature captures the depth to which adjacent 
conjuncts are isomorphic (Charniak and Johnson, 2005)

13
CoPar: 4

non-local!



Factorizing non-local features
• going bottom-up, at each node

• compute (partial values of) feature instances that 
become computable at this level

• postpone those uncomputable to ancestors

14

unit instance of ParentRule 
feature at VP node

TOP

S

NP

PRP

I

VP

VBD

saw

NP

DT

the

NN

boy

PP

IN

with

NP

DT

a

NN

telescope

.

.



Factorizing non-local features
• going bottom-up, at each node

• compute (partial values of) feature instances that 
become computable at this level

• postpone those uncomputable to ancestors

14

unit instance of ParentRule 
feature at VP node

TOP

S

NP

PRP

I

VP

VBD

saw

NP

DT

the

NN

boy

PP

IN

with

NP

DT

a

NN

telescope

.

.



Factorizing non-local features
• going bottom-up, at each node

• compute (partial values of) feature instances that 
become computable at this level

• postpone those uncomputable to ancestors

14

unit instance of ParentRule 
feature at VP node

TOP

S

NP

PRP

I

VP

VBD

saw

NP

DT

the

NN

boy

PP

IN

with

NP

DT

a

NN

telescope

.

.



Factorizing non-local features
• going bottom-up, at each node

• compute (partial values of) feature instances that 
become computable at this level

• postpone those uncomputable to ancestors

15

TOP

S

NP

PRP

I

VP

VBD

saw

NP

DT

the

NN

boy

PP

IN

with

NP

DT

a

NN

telescope

.

.

unit instance of ParentRule 
feature at S node



Factorizing non-local features
• going bottom-up, at each node

• compute (partial values of) feature instances that 
become computable at this level

• postpone those uncomputable to ancestors

15

TOP

S

NP

PRP

I

VP

VBD

saw

NP

DT

the

NN

boy

PP

IN

with

NP

DT

a

NN

telescope

.

.

unit instance of ParentRule 
feature at S node



Factorizing non-local features
• going bottom-up, at each node

• compute (partial values of) feature instances that 
become computable at this level

• postpone those uncomputable to ancestors

15

TOP

S

NP

PRP

I

VP

VBD

saw

NP

DT

the

NN

boy

PP

IN

with

NP

DT

a

NN

telescope

.

.

unit instance of ParentRule 
feature at S node



Factorizing non-local features
• going bottom-up, at each node

• compute (partial values of) feature instances that 
become computable at this level

• postpone those uncomputable to ancestors

16

TOP

S

NP

PRP

I

VP

VBD

saw

NP

DT

the

NN

boy

PP

IN

with

NP

DT

a

NN

telescope

.

.

unit instance of ParentRule 
feature at TOP node



Factorizing non-local features
• going bottom-up, at each node

• compute (partial values of) feature instances that 
become computable at this level

• postpone those uncomputable to ancestors

16

TOP

S

NP

PRP

I

VP

VBD

saw

NP

DT

the

NN

boy

PP

IN

with

NP

DT

a

NN

telescope

.

.

unit instance of ParentRule 
feature at TOP node



Factorizing non-local features
• going bottom-up, at each node

• compute (partial values of) feature instances that 
become computable at this level

• postpone those uncomputable to ancestors

16

TOP

S

NP

PRP

I

VP

VBD

saw

NP

DT

the

NN

boy

PP

IN

with

NP

DT

a

NN

telescope

.

.

unit instance of ParentRule 
feature at TOP node

non-local features factor 
across nodes dynamically

local features factor 
across hyperedges statically



TOP

S

NP

PRP

I

VP

VBD

saw

NP

DT

the

NN

boy

PP

IN

with

NP

DT

a

NN

telescope

.

.

NGramTree (C&J 05)

• an NGramTree captures the smallest tree fragment 
that contains a bigram (two consecutive words)

• unit instances are boundary words between subtrees

Ai,k

Bi,j

wi . . . wj−1

Cj,k

wj . . . wk−1

unit instance of node A

17



TOP

S

NP

PRP

I

VP

VBD

saw

NP

DT

the

NN

boy

PP

IN

with

NP

DT

a

NN

telescope

.

.

NGramTree (C&J 05)

• an NGramTree captures the smallest tree fragment 
that contains a bigram (two consecutive words)

• unit instances are boundary words between subtrees

Ai,k

Bi,j

wi . . . wj−1

Cj,k

wj . . . wk−1

unit instance of node A

18



TOP

S

NP

PRP

I

VP

VBD

saw

NP

DT

the

NN

boy

PP

IN

with

NP

DT

a

NN

telescope

.

.

NGramTree (C&J 05)

• an NGramTree captures the smallest tree fragment 
that contains a bigram (two consecutive words)

• unit instances are boundary words between subtrees

Ai,k

Bi,j

wi . . . wj−1

Cj,k

wj . . . wk−1

unit instance of node A

18



TOP

S

NP

PRP

I

VP

VBD

saw

NP

DT

the

NN

boy

PP

IN

with

NP

DT

a

NN

telescope

.

.

NGramTree (C&J 05)

• an NGramTree captures the smallest tree fragment 
that contains a bigram (two consecutive words)

• unit instances are boundary words between subtrees

Ai,k

Bi,j

wi . . . wj−1

Cj,k

wj . . . wk−1

unit instance of node A

19



TOP

S

NP

PRP

I

VP

VBD

saw

NP

DT

the

NN

boy

PP

IN

with

NP

DT

a

NN

telescope

.

.

NGramTree (C&J 05)

• an NGramTree captures the smallest tree fragment 
that contains a bigram (two consecutive words)

• unit instances are boundary words between subtrees

Ai,k

Bi,j

wi . . . wj−1

Cj,k

wj . . . wk−1

unit instance of node A

19



TOP

S

NP

PRP

I

VP

VBD

saw

NP

DT

the

NN

boy

PP

IN

with

NP

DT

a

NN

telescope

.

.

NGramTree (C&J 05)

• an NGramTree captures the smallest tree fragment 
that contains a bigram (two consecutive words)

• unit instances are boundary words between subtrees

Ai,k

Bi,j

wi . . . wj−1

Cj,k

wj . . . wk−1

unit instance of node A

19



TOP

S

NP

PRP

I

VP

VBD

saw

NP

DT

the

NN

boy

PP

IN

with

NP

DT

a

NN

telescope

.

.

NGramTree (C&J 05)

• an NGramTree captures the smallest tree fragment 
that contains a bigram (two consecutive words)

• unit instances are boundary words between subtrees

Ai,k

Bi,j

wi . . . wj−1

Cj,k

wj . . . wk−1

unit instance of node A

20



TOP

S

NP

PRP

I

VP

VBD

saw

NP

DT

the

NN

boy

PP

IN

with

NP

DT

a

NN

telescope

.

.

NGramTree (C&J 05)

• an NGramTree captures the smallest tree fragment 
that contains a bigram (two consecutive words)

• unit instances are boundary words between subtrees

Ai,k

Bi,j

wi . . . wj−1

Cj,k

wj . . . wk−1

unit instance of node A

20



TOP

S

NP

PRP

I

VP

VBD

saw

NP

DT

the

NN

boy

PP

IN

with

NP

DT

a

NN

telescope

.

.

NGramTree (C&J 05)

• an NGramTree captures the smallest tree fragment 
that contains a bigram (two consecutive words)

• unit instances are boundary words between subtrees

Ai,k

Bi,j

wi . . . wj−1

Cj,k

wj . . . wk−1

unit instance of node A

20



Outline

• Packed Forest and General Idea

• Forest Reranking and Non-Local Features

• Perceptron for Generic Reranking

• Local vs. Non-Local Features

• Incremental Computation of Non-Local Features

• Decoding Algorithm

• Experiments

21

the argmax operator



General Idea of Decoding

22



General Idea of Decoding

• bottom-up (chart parsing)

22



General Idea of Decoding

• bottom-up (chart parsing)

• keep top k trees at each node

• combine top subtrees

• score unit non-local features

22



General Idea of Decoding

• bottom-up (chart parsing)

• keep top k trees at each node

• combine top subtrees

• score unit non-local features

• similar to machine translation decoding
with integrated language models

• non-local features <=> LM combo

• so we use forest rescoring from MT
(Chiang 2007; Huang and Chiang 2007) 

to speed up the computation
22



General Idea of Decoding

• bottom-up (chart parsing)

• keep top k trees at each node

• combine top subtrees

• score unit non-local features

• similar to machine translation decoding
with integrated language models

• non-local features <=> LM combo

• so we use forest rescoring from MT
(Chiang 2007; Huang and Chiang 2007) 

to speed up the computation
22



General Idea of Decoding

• bottom-up (chart parsing)

• keep top k trees at each node

• combine top subtrees

• score unit non-local features

• similar to machine translation decoding
with integrated language models

• non-local features <=> LM combo

• so we use forest rescoring from MT
(Chiang 2007; Huang and Chiang 2007) 

to speed up the computation
22



General Idea of Decoding

• bottom-up (chart parsing)

• keep top k trees at each node

• combine top subtrees

• score unit non-local features

• similar to machine translation decoding
with integrated language models

• non-local features <=> LM combo

• so we use forest rescoring from MT
(Chiang 2007; Huang and Chiang 2007) 

to speed up the computation
22

Ai,k

Bi,j

wi . . . wj−1

Cj,k

wj . . . wk−1

held  ...    talk

VP3, 6

with  ...   Sharon

PP1, 3



Faster Decoding

VP

PP1, 3 VP3, 6 PP1, 4 VP4, 6 PP3, 6VP2, 3

hyperedge

NP1, 2

(Huang and Chiang, 2005, 2007; Chiang, 2007)

• best-first exploration of hyperedges simultaneously!
significant savings of computation

• most of the item combinations are neglected

23

“cube-pruning”



Experiments

scaled to the whole Penn Treebank



Data Preparation

• use Charniak parser as baseline

• standard split: train: sec 02-21, dev: sec 22, test: sec 23

• training set split into 20 fold (cross-validation style)

• modify Charniak parser to output forests!

• pruned by an Inside-Outside style algorithm

• use 15 features templates from (Charniak and Johnson, 2005; 
Collins, 2000); 800, 582 feature instances (~70% local)

• both n-best and forest reranking systems implemented 
in pure Python, on 64-bit Dual-core 3.0 GHz machines

25



Forest vs. n-best Oracles
• forests enjoy higher oracle scores than n-best lists

• a dynamic programming algorithm for forest oracle

96.7

97.8

97.2

89.7

26

98.6



Forest vs. n-best Oracles
• forests enjoy higher oracle scores than n-best lists

• a dynamic programming algorithm for forest oracle

96.7

97.8

97.2

89.7

26

98.6



Main Results

baseline: 1-best Charniak parser 89.72

approach training time F1%

50-best reranking 4 x 0.3h 91.43

100-best reranking 4 x 0.7h 91.49

forest reranking 4 x 6.1h 91.69

• forest reranking outperforms both 50-best and 
100-best reranking

• and can be trained on the whole treebank in ~1 day 
even with a pure Python implementation!

27
details in the paper.



Comparison with Others

approach system F1%

reranking

dynamic 
programming

generative

semi-supervised

 Collins (2000) 89.7

 Charniak and Johnson (2005) 91.0

 Petrov and Klein (2008) 88.3

 this work 91.7

 Bod (2000) 90.7

 Petrov and Klein (2007) 90.1

 McClosky et al. (2006) 92.1

28



Conclusion

• A Framework for Reranking on Packed Forests

• forests have more variations and smaller sizes

• dynamic programming algorithm for forest oracles

• Two Key Ideas that made it work

• incremental, recursive computation of features

• forest rescoring for approximate decoding

• Discriminative training scaled to the whole PTB

• better than both 50-best and 100-best reranking

• better than any previous results trained on PTB
29



Conclusion

• more akin to traditional chart parsing, not reranking!

• multipass search (Goodman, 1997)

• non-local features in the pruned forest

• but without blowing up the forest

• better search algorithms should help!

• could in principle incorporate fancier features

• also applicable to other problems involving forest

• sequence segmentation/labeling, dependency parsing, 
machine translation, generation, ...

30



Forest is your friend.   Save the forest.

Thank you!

Forest-dumping Charniak parser 
will be available online.





Global Feature - RightBranch

33

• length of rightmost (non-punctuation) path

• English has a right-branching tendency

(Charniak and Johnson, 2005)

can not be factored anywhere
have to wait till root



WordEdges (C&J 05)

• a WordEdges feature classifies a node by its label, 
(binned) span length, and surrounding words

• a POSEdges feature uses surrounding POS tags
TOP

S

NP

PRP

I

VP

VBD

saw

NP

DT

the

NN

boy

PP

IN

with

NP

DT

a

NN

telescope

.

.

2 words

WordEdges is local

   f 400 (y) = f NP 2 saw with (y) = 1

34



WordEdges (C&J 05)

• a WordEdges feature classifies a node by its label, 
(binned) span length, and surrounding words

• a POSEdges feature uses surrounding POS tags
TOP

S

NP

PRP

I

VP

VBD

saw

NP

DT

the

NN

boy

PP

IN

with

NP

DT

a

NN

telescope

.

.

2 words

WordEdges is local

POSEdges is non-local

   f 800 (y) = f NP 2 VBD IN  (y) = 1

   f 400 (y) = f NP 2 saw with (y) = 1

34



WordEdges (C&J 05)

• a WordEdges feature classifies a node by its label, 
(binned) span length, and surrounding words

• a POSEdges feature uses surrounding POS tags
TOP

S

NP

PRP

I

VP

VBD

saw

NP

DT

the

NN

boy

PP

IN

with

NP

DT

a

NN

telescope

.

.

2 words

WordEdges is local

POSEdges is non-local

   f 800 (y) = f NP 2 VBD IN  (y) = 1

local features comprise
~70% of all instances!

   f 400 (y) = f NP 2 saw with (y) = 1

34



Heads (C&J 05, Collins 00)

• head-to-head lexical dependencies

• we percolate heads bottom-up

• unit instances are between the head word of the 
head child and the head words of non-head children

TOP/saw

S/saw

NP/I

PRP/I

I

VP/saw

VBD/saw

saw

NP/the

DT/the

the

NN/boy

boy

PP/with

IN/with

with

NP/a

DT/a

a

NN/telescope

telescope

./.

.

35



Heads (C&J 05, Collins 00)

• head-to-head lexical dependencies

• we percolate heads bottom-up

• unit instances are between the head word of the 
head child and the head words of non-head children

TOP/saw

S/saw

NP/I

PRP/I

I

VP/saw

VBD/saw

saw

NP/the

DT/the

the

NN/boy

boy

PP/with

IN/with

with

NP/a

DT/a

a

NN/telescope

telescope

./.

.

35



Heads (C&J 05, Collins 00)

• head-to-head lexical dependencies

• we percolate heads bottom-up

• unit instances are between the head word of the 
head child and the head words of non-head children

TOP/saw

S/saw

NP/I

PRP/I

I

VP/saw

VBD/saw

saw

NP/the

DT/the

the

NN/boy

boy

PP/with

IN/with

with

NP/a

DT/a

a

NN/telescope

telescope

./.

.

unit instances at VP node
saw - the; saw - with

35



Approximate Decoding

• bottom-up, keeps top k derivations at each node

• forest rescoring from MT (Chiang 2007; Huang and Chiang 07) 

• priority queue for next-best (Huang and Chiang, 2005)

• each iteration pops the best and pushes successors

• unit non-local feature costs as a non-monotonic cost

1.0 3.0 8.0
1.0

1.1

3.5

2.5 9.0 9.5

2.4 9.5 9.4

5.1 17.0 12.1
36

Ai,k

Bi,j

wi . . . wj−1

Cj,k

wj . . . wk−1

held  ...    talk

VP3, 6

with  ...   Sharon

PP1, 3



Approximate Decoding

• bottom-up, keeps top k derivations at each node

• forest rescoring from MT (Chiang 2007; Huang and Chiang 07) 

• priority queue for next-best (Huang and Chiang, 2005)

• each iteration pops the best and pushes successors

• unit non-local feature costs as a non-monotonic cost

1.0 3.0 8.0
1.0

1.1

3.5

2.5 9.0 9.5

2.4 9.5 9.4

5.1 17.0 12.1

w·fN(          ) = 0.5

36

Ai,k

Bi,j

wi . . . wj−1

Cj,k

wj . . . wk−1

held  ...    talk

VP3, 6

with  ...   Sharon

PP1, 3



Approximate Decoding

• bottom-up, keeps top k derivations at each node

• forest rescoring from MT (Chiang 2007; Huang and Chiang 2007)  

• priority queue for next-best (Huang and Chiang, 2005)

• each iteration pops the best and pushes successors

• unit non-local feature costs as a non-monotonic cost

1.0 3.0 8.0
1.0

1.1

3.5

2.5 9.0 9.5

2.4 9.5 9.4

5.1 17.0 12.1

w·fN(          ) = 0.5

37

Ai,k

Bi,j

wi . . . wj−1

Cj,k

wj . . . wk−1

held  ...    talk

VP3, 6

with  ...   Sharon

PP1, 3



Approximate Decoding

• bottom-up, keeps top k derivations at each node

• forest rescoring from MT (Chiang 2007; Huang and Chiang 2007) 

• priority queue for next-best (Huang and Chiang, 2005)

• each iteration pops the best and pushes successors

• unit non-local feature costs as a non-monotonic cost
Ai,k

Bi,j

wi . . . wj−1

Cj,k

wj . . . wk−1

1.0 3.0 8.0
1.0

1.1

3.5

2.5 9.0 9.5

2.4 9.5 9.4

5.1 17.0 12.1

w·fN(          ) = 0.5

38

held  ...    talk

VP3, 6

with  ...   Sharon

PP1, 3



Approximate Decoding

VP

PP1, 3 VP3, 6 PP1, 4 VP4, 6 PP3, 6VP2, 3

hyperedge

NP1, 2

(Huang and Chiang, 2005; 2007; Chiang, 2007)

complexity: O(E + V U k log k), 
bottom-neck: the time for on-the-fly extraction

• process all hyperedges simultaneously!
significant savings of computation 

39

“cube-pruning”



Forest Oracle

the candidate tree that is closest to gold-standard

40



Optimal Parseval F-score
• find the tree in the forest with highest F-score

• Parseval F1-score is the harmonic mean between 
labeled precision and labeled recall

• can not optimize F-scores on sub-forests separately

• can not optimize precision and recall simultaneously

• we instead use dynamic programming

• optimizes the number of matched brackets per given 
number of test brackets

• “when the test (sub-) parse has 5 brackets, what is 
the max. number of matched brackets?”

41



Combining Oracle Functions

t f(t)

2
3

1

2
⊗

t g(t)

4
5

4

4
=

t (f⊗g)(t)

6
7
8

5

6

6

uv

w

• to combine two nodes along a hyperedge, we need to 
distribute test brackets between the two, and optimize 
the number of matches

42



Combining Oracle Functions

t f(t)

2
3

1

2
⊗

t g(t)

4
5

4

4
=

t (f⊗g)(t)

6
7
8

5

6

6

this node matched?
t (f⊗g)⇑(1,0) (t)
7
8
9

5

6

6

N

t (f⊗g)⇑(1,1) (t)
7
8
9

6

7

7

Y

ora[w]

uv

w

• to combine two nodes along a hyperedge, we need to 
distribute test brackets between the two, and optimize 
the number of matches

42



Combining Oracle Functions

t f(t)

2
3

1

2
⊗

t g(t)

4
5

4

4
=

t (f⊗g)(t)

6
7
8

5

6

6
final answer:

this node matched?
t (f⊗g)⇑(1,0) (t)
7
8
9

5

6

6

N

t (f⊗g)⇑(1,1) (t)
7
8
9

6

7

7

Y

ora[w]

uv

w

• to combine two nodes along a hyperedge, we need to 
distribute test brackets between the two, and optimize 
the number of matches

42



Forest vs. n-best Oracles
• forests enjoy higher oracle scores than n-best lists

• a dynamic programming algorithm for forest oracle

96.7

97.8

97.2

89.7

43

98.6


