Linear Time Constituency Parsing with RNNs and Dynamic Programming

Juneki Hong Liang Huang 1,2

¹ Oregon State University

² Baidu Research Silicon Valley Al Lab

A Brief History of Span Parsing

- Cross+Huang 2016 Introduced Span Parsing
 - But with greedy decoding.
- Stern et al. 2017 had Span Parsing with Global Search
 - But was too slow: $O(n^3)$
- Can we get something in between?
 - Something that is both fast and accurate?

Both Fast and Accurate!

In this talk, we will discuss:

- Linear Time Constituency Parsing using dynamic programming.
 - Going slower in order to go faster: $O(n^3) \rightarrow O(n^4) \rightarrow O(n)$.
- Cube Pruning to speed up Incremental Parsing with Dynamic Programming.
- An improved loss function for Loss-Augmented Decoding.

Span Parsing

 Span differences are taken from an encoder (in our case: a bi-LSTM)

Span Parsing

- Span differences are taken from an encoder (in our case: a bi-LSTM)
- A span is scored and labeled by a feed-forward network.

Span Parsing

- Span differences are taken from an encoder (in our case: a bi-LSTM)
- A span is scored and labeled by a feed-forward network.
- The score of a tree is the sum of all the labeled span scores

$$s_{tree}(t) = \sum_{(i,j,X)\in t} s(i,j,X)$$

 $(f_i - f_i, b_i - b_i)$

Action Label Stack

	Action	Label	Stack
1	Shift	Ø	(0, 1, Ø)

	Action	Label	Stack
1	Shift	Ø	(0, 1, Ø)
2	Shift	Ø	(0, 1, ø) (1, 2, ø)

	Action	Label	Stack
1	Shift	Ø	(0, 1, Ø)
2	Shift	Ø	(0, 1, ø) (1, 2, ø)
3	Shift	Ø	(0, 1, ø) (1, 2, ø) (2, 3, ø)

	Action	Label	Stack
1	Shift	Ø	(0, 1, Ø)
2	Shift	Ø	(0, 1, ø) (1, 2, ø)
3	Shift	Ø	(0, 1, ø) (1, 2, ø) (2, 3, ø)
4	Reduce	NP	(0, 1, ø) (1, 3, NP)

	Action	Label Stack	
1	Shift	Ø	(0, 1, Ø)
2	Shift	Ø	(0, 1, ø) (1, 2, ø)
3	Shift	Ø	(0, 1, ø) (1, 2, ø) (2, 3, ø)
4	Reduce	NP	(0, 1, ø) (1, 3, NP)
5	Reduce	Ø	(0, 3, Ø)

	Action	Label	Stack
1	Shift	Ø	(0, 1, Ø)
2	Shift	Ø	(0, 1, Ø) (1, 2, Ø)
3	Shift	Ø	(0, 1, ø) (1, 2, ø) (2, 3, ø)
4	Reduce	NP	(0, 1, ø) (1, 3, NP)
5	Reduce	Ø	(0, 3, Ø)
6	Shift	Ø	(0, 3, Ø) (3, 4, Ø)

	Action	Label	Stack
1	Shift	Ø	(0, 1, Ø)
2	Shift	Ø	(0, 1, ø) (1, 2, ø)
3	Shift	Ø	(0, 1, ø) (1, 2, ø) (2, 3, ø)
4	Reduce	NP	(0, 1, ø) (1, 3, NP)
5	Reduce	Ø	(0, 3, ø)
6	Shift	Ø	(0, 3, ø) (3, 4, ø)
7	Shift	NP	(0, 3, ø) (3, 4, ø) (4, 5, NP)

	Action	Label	Stack
1	Shift	Ø	(0, 1, Ø)
2	Shift	Ø	(0, 1, ø) (1, 2, ø)
3	Shift	Ø	(0, 1, ø) (1, 2, ø) (2, 3, ø)
4	Reduce	NP	(0, 1, ø) (1, 3, NP)
5	Reduce	Ø	(0, 3, Ø)
6	Shift	Ø	(0, 3, ø) (3, 4, ø)
7	Shift	NP	(0, 3, ø) (3, 4, ø) (4, 5, NP)
8	Reduce	PP	(0, 3, ø) (3, 5, PP)

Using a Graph Structured Stack

- This parsing procedure requires a stack of spans.
- We can use a Graph Structured Stack
 - To keep track of the next span on the stack
- And only use the top span (i, j) as our parsing state.

(So we can worry about just the spans themselves)

(Note: Spans are independently labeled)

Gold:	Shift (0,1)	Shift (1,2)
-------	-------------	----------------

Gold:	Shift (0,1)	Shift (1,2)	Shift (2, 3)
-------	-------------	----------------	-----------------

Gold:	Shift (0,1)	Shift (1,2)	Shift (2, 3)	Reduce (1, 3)
-------	-------------	----------------	-----------------	------------------

Gold:	Shift (0,1)	Shift (1,2)	Shift (2, 3)	Reduce (1, 3)	Reduce (0, 3)
-------	-------------	----------------	-----------------	------------------	------------------

$$\#$$
steps: $2n - 1 = O(n)$

(i, j)#states per step: $O(n^2)$

#steps: 2n - 1 = O(n)

(i, j)#states per step: $O(n^2)$

#steps: 2n - 1 = O(n)

 $O(n^3)$ states

#states per step: $O(n^2)$ #left pointers per state: O(n)Check out the paper for Deng's Theorem: $\ell' = \ell - 2(j - i) + 1$

$$\#$$
steps: $2n - 1 = O(n)$

 $O(n^3)$ states

(i,j)#states per step: $O(n^2)$ #left pointers per state: O(n)Check out the paper for Deng's Theorem: $\ell' = \ell - 2(j - i) + 1$

#steps:
$$2n - 1 = O(n)$$

 $O(n^3)$ states with O(n) reduce actions: $O(n^4)$ runtime

Going slower to go faster

Our Action-Synchronous algorithm has a slower runtime than CKY!

Going slower to go faster

- Our Action-Synchronous algorithm has a slower runtime than CKY!
- However, it also becomes straightforward to prune using beam search.

$$\epsilon \xrightarrow{- \mathrm{sh} \to (0,1)} \xrightarrow{- \mathrm{sh} \to (1,2)} \xrightarrow{- \mathrm{sh} \to (2,3)} \xrightarrow{- \mathrm{sh} \to (3,4)} \xrightarrow{- \mathrm{sh} \to (4,5)} \xrightarrow{- \mathrm{r} \to (3,5)} \xrightarrow{- \mathrm{r} \to (2,5)} \xrightarrow{- \mathrm{r} \to (1,5)} \xrightarrow{- \mathrm{r} \to (0,5)} \xrightarrow{$$

Going slower to go faster

- Our Action-Synchronous algorithm has a slower runtime than CKY!
- However, it also becomes straightforward to prune using beam search.
- So we can achieve a linear runtime in the end.

$$\epsilon \xrightarrow{\text{sh}} (0,1) \xrightarrow{\text{sh}} (1,2) \xrightarrow{\text{sh}} (2,3) \xrightarrow{\text{sh}} (3,4) \xrightarrow{\text{sh}} (4,5) \xrightarrow{\text{r}} (3,5) \xrightarrow{\text{r}} (2,5) \xrightarrow{\text{r}} (1,5) \xrightarrow{\text{r}} (0,5) \xrightarrow{\text{r}} (0,2) \xrightarrow{\text{sh}} (2,3) \xrightarrow{\text{r}} (0,3) \xrightarrow{\text{sh}} (3,4) \xrightarrow{\text{r}} (0,3) \xrightarrow{\text{sh}} (3,4) \xrightarrow{\text{r}} (0,4) \xrightarrow{\text{sh}} (4,5) \xrightarrow{\text{r}} (0,5) \xrightarrow{$$

Now our runtime is O(n).

$$\epsilon \xrightarrow{\operatorname{sh}} (0,1) \xrightarrow{\operatorname{sh}} (1,2) \xrightarrow{\operatorname{sh}} (2,3) \xrightarrow{\operatorname{sh}} (3,4) \xrightarrow{\operatorname{sh}} (4,5) \xrightarrow{\operatorname{r}} (3,5) \xrightarrow{\operatorname{r}} (2,5) \xrightarrow{\operatorname{r}} (1,5) \xrightarrow{\operatorname{r}} (0,5)$$

$$(0,2) \xrightarrow{\operatorname{r}} (1,3) \xrightarrow{\operatorname{r}} (2,4) \xrightarrow{\operatorname{sh}} (4,5) \xrightarrow{\operatorname{r}} (4,5) \xrightarrow{\operatorname{r}} (3,5) \xrightarrow{\operatorname{r}} (3,5$$

But the O(n) is hiding a constant.

But the O(n) is hiding a constant.

O(b) left pointers per state

 $O(nb^2)$ runtime

• We can apply cube-pruning to make $O(nb \log b)$

• We can apply cube-pruning to make $O(nb \log b)$

• By pushing all states and their left pointers into a heap

• We can apply cube-pruning to make $O(nb \log b)$

- By pushing all states and their left pointers into a heap
- And popping the top b unique subsequent states

• We can apply cube-pruning to make $O(nb \log b)$

- By pushing all states and their left pointers into a heap
- And popping the top b unique subsequent states
- First time Cube-Pruning has been applied to Incremental Parsing

Runtime on PTB and Discourse

- Structured SVM approach:
 - Goal: Score the gold tree higher than all others by a margin:

$$\forall t, s(t^*) - s(t) \ge \Delta(t, t^*)$$

- Structured SVM approach:
 - Goal: Score the gold tree higher than all others by a margin:

$$\forall t, s(t^*) - s(t) \ge \Delta(t, t^*)$$

- Loss Augmented Decoding:
 - During Training: Return tree with highest augmented score:

$$\hat{t} = \arg\max_{t} \left(s(t) + \Delta(t, t^*) \right)$$

- Structured SVM approach:
 - Goal: Score the gold tree higher than all others by a margin:

$$\forall t, s(t^*) - s(t) \ge \Delta(t, t^*)$$

- Loss Augmented Decoding:
 - During Training: Return tree with highest augmented score:

$$\hat{t} = \arg\max_{t} \left(s(t) + \Delta(t, t^*) \right)$$

• Minimize Loss: $\left(s(\hat{t}) + \Delta(\hat{t}, t^*)\right) - s(t^*)$

Before training:

Ideally after training:

Ideally after training:

Delta Margins

- Counts the incorrectly labeled spans in the tree.
 - Happens to be decomposable, so can even be used to compare partial trees.

$$\Delta(t, t^*) = \sum_{(i, j, X) \in t} \mathbb{1} \left(X \neq t^*_{(i, j)} \right)$$

We observe that the null label ø is used in two different ways:

- We observe that the null label ø is used in two different ways:
 - To facilitate ternary and n-ary branching trees.

- We observe that the null label ø is used in two different ways:
 - To facilitate ternary and n-ary branching trees.
 - As a default label for incorrect spans that violate other gold spans.

We modify the loss to account for incorrect spans in the tree.

$$\Delta(t, t^*) = \sum_{(i,j,X)\in t} \mathbb{1}\left(X \neq t^*_{(i,j)}\right)$$

• We modify the loss to account for incorrect spans in the tree.

$$\Delta(t, t^*) = \sum_{(i, j, X) \in t} \mathbb{1} \left(X \neq t^*_{(i, j)} \vee \text{cross}(i, j, t^*) \right)$$

We modify the loss to account for incorrect spans in the tree.

$$cross(i, j, t^*)$$

• Indicates whether (i, j) is crossing a span in the gold tree

We modify the loss to account for incorrect spans in the tree.

$$cross(i, j, t^*)$$

• Indicates whether (i, j) is crossing a span in the gold tree

Still decomposable over spans, so can be used to compare partial trees.

Max-Violation Updates

- Take the largest augmented loss value across all time steps.
- This is the Max-Violation, that we use to train.

Huang et. al. 2012

Experiments: PTB Test

Model	Note	F1 Score
Stern et al. (2017a)	Baseline Method (Chart Parser)	91.79
Stern et al. (2017a) + cross-span	+our improved loss	91.81
Stern et al. (2017b)	Github Code	91.86
 GSS Beam 15	Our Work	91.84
GSS Beam 20	Our Work	91.97

Comparison to other parsers

PTB only, Single Model, End-to-End

Reranking, Ensemble, Extra Data

Model	Note	F1 Score	Model	Note	F1 Score
Durett + Klein 2015		91.1			
Cross + Huang 2016	Original Span Parser	91.3	Vinyals et al. 2015	Ensemble	90.5
Liu + Zhang 2016		91.7	Dyer et al.	Generative Reranking	93.3
Dyer et al. 2016	Discriminative	91.7	2016		
Stern 2017a	Baseline Chart Parser	91.79	Choe + Charniak 2016	Reranking	93.8
Stern 2017c	Separate Decoding	92.56	Fried et al. 2017	Ensemble Reranking	94.25
Our Work	Beam 20	91.97			

Conclusions:

- Linear Time Span-Based Constituency Parsing with Dynamic Programming.
- Cube-Pruning to speedup Incremental Parsing with Dynamic Programming.
- Cross-Span Loss extension for improving Loss-Augmented Decoding.
- Result: Faster and more accurate than cubic-time Chart Parsing.

Caveats:

- 2nd highest accuracy for single-model end-to-end systems trained on PTB only.
 - Stern et al. 2017c is more accurate, but with separate decoding, and is much slower.
- After this ACL, definitely no longer true. (e.g. Joshi et al. 2018, Kitaev+Klein 2018)
 - But both are Span-Based Parsers and can be linearized in the same way!

Questions?

Thank You

