Linear Time Constituency Parsing with

RNNs and Dynamic Programming

Juneki Hong ' Liang Huang '

' Oregon State University
2 Baidu Research Silicon Valley Al Lab

W Oregon State
University

_ '0 0'
Bai® Research

A Brief History of Span Parsing

® CrosstHuang 2016 Introduced Span Parsing

® But with greedy decoding.

® Stern et al. 2017 had Span Parsing with Global Search

® But was too slow: O(n3)

® Can we get something in between?

® Something that is both fast and accurate?

O
Cross + Huang 2016 *

Our Work

Speed

New at ACL 2018!

O o0
Stern et al. 2017 Kitaev + Klein 2018
Joshi et al. 2018

Accuracy

Time (sec)

2.0¢

1.5}

0.5}

0.0

Both Fast and Accurate!

++ Chart Parsing: O(n? %)
«» Beam 20 No Cube-Pruning: O(n! %)
xx Beam 20 Cube Pruned: O(n! %) 3000

++ Beam 5 Cube Pruned: O(n? ")
2500
[8)
),
W 2000}
),
H
g 1500 a4t
./ g
1000 +-]H-
" A
500 |

Work Beam 10

-H+|+-

500 1000 1500

20 40 60 80 100 120 140
Sentence Length

Baseline Chart Parser (Stern et al. 2017a)

Our Linear Time Parser

2000

91.79

91.97

110°

110°

Discourse Length (words) Discourse Length (words)

Ime (sec)

In this talk, we will discuss:

® Linear Time Constituency Parsing using dynamic programming.
® Going slower in order to go faster: O(n3) — O(n%) — O(n).
® Cube Pruning to speed up Incremental Parsing with Dynamic Programming.

® An improved loss function for Loss-Augmented Decoding.

® Span differences are taken from an encoder

(in our case:a bi-LSTM)

Cross + Huang 2016

Stern et al. 2017

Span Parsing

Wang + Chang 2016

..........
- ~
o - ~

f fi h 5 fi fs
/! /! /! /! /! /!
O—0—/0—/0—/0—0

T T

<S> o You 1 should » eat 3 ice 4 cream s (/S)

LT

—"
i -
-~ -
bl SN

Span Parsing

s(z,7,X)
® Span differences are taken from an encoder 1
(in our case:a bi-LSTM)
S

® A span is scored and labeled by a feed-forward
network.

-

- ~
s’ ~

fi fi 2 B fi fs
/! /! /! /! /! /!
O —0—0—/0—/0—0

T T

<S> o You 1 should » eat 3 ice 4 cream s </S>

LT

Cross + Huang 2016 Stern et al. 2017 Wang + Chang 2016 % b b2 b by bs

PAS
.. —'
- -
bl SRR

Span Parsing

s(z,7,X)
® Span differences are taken from an encoder 1
(in our case:a bi-LSTM)
S

® A span is scored and labeled by a feed-forward
network.

® [The score of a tree is the sum of all the labeled (fi = fis bi = bj)

span scores T

Stree(t) = > s(2,7, X)

(Z,j,X)Et <S> o You 1 should - eat 3 ice 4 cream s </S>

LT

Cross + Huang 2016 Stern et al. 2017 Wang + Chang 2016 % b b2 b by bs

"'
.. “
- -

Incremental Span Parsing Example

Action Label Stack

0 1 2 3 4 5
Eat ice cream after lunch

VB NN NN IN NN
Cross + Huang 2016

Incremental Span Parsing Example

Action Label Stack

1 Shift % (O 1, 9)

Eat ice cream after lunch
VB NN NN IN NN

Cross + Huang 2016

Incremental Span Parsing Example

Action Label Stack

1 Shift % (O 1, 9)

VB NN

Eat 1ice

2| shit @ (0,10 (1,20

Eat ice cream after lunch

VB NN NN IN NN
Cross + Huang 2016

Incremental Span Parsing Example

Action Label Stack

1 Shift % (O 1, 9)

VB NN NN : :
] 3| sShit @ (0,1,0)(1,2) (23,0

Eat 1ce cream

2| shit @ (0,10 (1,20

Eat ice cream after lunch
VB NN NN IN NN

Cross + Huang 2016

Incremental Span Parsing Example

Action Label Stack

1 Shift % (O 1, 9)

VB NP

BN 3 Shit o (0,1,0)(1,2 2)(2 3 o)
Eat NN NN

\ | 4| Reduce NP 2(0,1,@)(1,3, NP)

1ce cream

2| shit @ (0,10 (1,20

Eat ice cream after lunch
VB NN NN IN NN

Cross + Huang 2016 10

Incremental Span Parsing Example

Action Label Stack

%) 1 Shift % (O 1, 9)

N 2| Shift s (0, 1,0)(1 2)

VB NP

BN 3 Shit o (0,1,0)(1,2 2)(2 3 o)
Eat NN NN

\ | 4| Reduce NP 2(0,1,@)(1,3, NP)

1ce cream

5| Reduce @ (O 3, 9)

Eat ice cream after lunch
VB NN NN IN NN

Cross + Huang 2016 I

Ice
NN

Incremental Span Parsing Example

)

N

NP

/N

Eat NN NN IN

cream after

NN

IN

1ce cream after

lunch
NN

Action Label Stack

Shift . % (0, 1, 9)

Shift @ (0, 1, @) (1, 2, o)

Shift 2 (0,1, 9) (1, 2, 9) (2, 3, 9)
Reduce NP (0.1, 2) (1, 3, NP)
Reduce é ? (0, 3,)

Shift @ (0, 3, @) (3, 4, o)

Cross + Huang 2016

Incremental Span Parsing Example

Action Label Stack

%) 1 Shift % (O 1, 9)

N 2| Shift s (010 1,2 o)

VB NP NP

VAN \ 3 Shit o (0,1,0)(1,2 2)(2 3 o)
Eat NN NN IN NN

I N B 4| Reduce NP (0,1,2) (1,3, NP)

1ce cream after lunch

5| Reduce @ (O 3, 9)

6/ Shit o (0,3 0)(3 4 0)

V4 Shift NP (0, 3,9) (3, 4, 9) (4, 5, NP)

Eat ice cream after lunch
VB NN NN IN NN

Cross + Huang 2016 13

Incremental Span Parsing Example

Action Label Stack

%) 1 Shift % (O 1, 9)

N 2| Shift 0 5(0,1,@)(1,2, ?)

VB

NP PP
BN VN 3/ shift @ (0,1,0) (1,2) (2 3 0)
IN NP

Eat NN NN
I N 4| Reduce NP (0,1,0)(1,3 NP)

ice cream after NN

‘ 5| Reduce @ (O 3, 9)

lunch 6 Shift % (O, 3, 2) (3, 4, 9)

V4 Shift NP (0, 3,9) (3, 4, 9) (4, 5, NP)

8 Reduce PP (0,3,2)(3 5 PP)

Eat ice cream after lunch
VB NN NN IN NN

Cross + Huang 2016 E

Incremental Span Parsing Example

S Action Label Stack

VP 1 Shift %) (O 1, 9)

%\ 2 Shift @ (O 1,9) (1, 2, 2)

VB

NP PP
BN VN 3/ shift @ (0,1,0) (1,2) (2 3 0)
IN NP

Eat NN NN
I N 4| Reduce NP (0,1,0)(1,3 NP)

ice cream after NN

‘ 5| Reduce @ (O 3, 9)

linch g ghift & (0,3 0)(3, 4, 0)
71 Shift NP (o 3.2) (3. 4.) (4. 5 NP)

8 Reduce PP (0,3,2)(3 5 PP)

Eat ice cream after lunch 9| Reduce S-VP (0 5, 5-VP)

VB NN NN IN NN |
Cross + Huang 2016 5

e

/

\
J
/|

™~

AN

\
I\

_)

\
i

/]

16

Using a Graph Structured Stack

® This parsing procedure requires a stack of spans.

® We can use a Graph Structured Stack

® TJo keep track of the next span on the stack

® And only use the top span (i, j) as our parsing state.

17

—sh —>|

Graph Structured Stack Example

Gold:

Shift
(0,1)

(Note: Spans are independently labeled)
(So we can worry about just the spans themselves)

18

GSS Graph Structured Stack Example

Gold:

Shift
(0,1)

Shift
(1,2)

Gold Parse

19

Graph Structured Stack Example

Gold:

Shift
(0,1)

Shift
(1,2)

Shift
(2, 3)

e | @ft Pointers

Gold Parse

20

Graph Structured Stack Example

Gold:

Shift
(0,1)

Shift
(1,2)

Shift
(2, 3)

Reduce
(1, 3)

= |_©ft Pointers

Gold Parse

21

Graph Structured Stack Example

Gold:

Shift
(0,1)

Shift
(1,2)

Shift
(2, 3)

Reduce
(1, 3)

Reduce
(0, 3)

= |_©ft Pointers

Gold Parse

22

Graph Structured Stack Example

== |_eft Pointers

1 2 3 4 5 6
Gold Parse
——sh —> (0,1) ——sh —> (1,2) ——sh —> (2,3) ——sh—> (3,4) —sh—> (4,5) r—> (3,5)
\I‘ \I' I‘
o2 Tas (2.4) —shs (4.5)
? ? S >
Rt >\\< PEa Sy
2,3) e (3 1
<
ri&(o 3) \r\ (2,4)
Y, \ h
N (3,4)
Shift Shift Shift Reduce Reduce Shift

Gold:

(0,1) (1,2) (2, 3) (1, 3) (0, 3) (3, 4)

Graph Structured Stack Example

1 2 3 4 5 6 7 8 9
—sh—{ (0,1) —sh— (1,2) ——sh—{ (2,3) —sh— (3,4) —sh—> (4,5) —r— (3,5) —r—> (2,5) (1,5) —r— (0,5)
\r \r r 7 r
\(02) \(13) (2,4) —sh— (4,5) ii-—) (35)/2(25) /
\sh \ \ >§Slh / r
(273) sh 3 4) \ \ (1 4) (Sh (475) > (375) /
T3] O\ (2.4) —18 (04) —sho (4.5)
™ /
sh
G /
Gold: Shift Shift Shift Reduce Reduce Shift Shift Reduce | Reduce
' (0,1) (1,2) (2, 3) (1, 3) (0, 3) (3, 4) (4, 5) (3, 5) (0, 9)

24

O(n)

Runtime Analysis

N SN /N /N I/

A/ A
XS

25

Huang+Sagae 2010

O(n)

Runtime Analysis

~— N SN ,/N /N /Y

N— O N N NN

A A
DYV ava

#steps: 2n — 1 = O(n)

26

Huang+Sagae 2010

Runtime Analysis: O(n*)

()
#states per step: O(n?)

\)\ 3 (4,5) > (3,8) —r— (2,5) —r—y (1,5) —r
~ I~ ~ e r% .
(0,2) (1,3) (2,4) —sh— (4,5) ~ (3,5) ?r > (2,5) /r7

\Sh\ S}l\ 81}1 I
(2,3) <Sh>§53’4) ilg (1,4) b (4,5) ~—r—> (3,5) /

I‘\ r r

(0,3) . N (24) — (0,4) —sh— (4,5)
\sh A7
N (34) £

#steps: 2n — 1 = O(n)

Huang+Sagae 2010

27

Runtime Analysis: O(n*)

()
#states per step: O(n?)

¢ —sh— (0,1) —sh— (1,2) il 2,3) il 3,4 i (4,5) > (3,5) r/: (2,5) r7 (1,5) —r
e (072) e (173) h\ (274) _Sh;) (475) ii"’ (375) ?r > (275) /11:7
\sh\ N N Sgl r
’ \I‘\ —sh—> r—>»
(03) “(24) 3> (04) —sh— (4,5)
\ S
sh r/
@ (3.4)

#steps: 2n — 1 = O(n)

O(n’) states

Huang+Sagae 2010

28

Runtime Analysis: O(n*)

#left pointers per state: O(n) 4—_

~ ~ ~~
(0,2) (1,3)
\Sh sh\
™ I
2,3) 3.4
Check out the paper for Deng’s Theorem: (0,3)

C'=¢-2(j—i)+1

29

Runtime Analysis: O(n*)

(Z,7)
. 2
#left pointers per state: O(n) 4—_ states per step: O(n°)

Check out the paper for Deng’s Theorem: 0.3)
'=¢-2(j—i)+1

#steps: 2n — 1 = O(n)

—
O(n?) states with O(n) reduce actions: O(n*) runtime

Huang+Sagae 2010

30

Going slower to go faster

® Our Action-Synchronous algorithm has a slower runtime than CKY!

€ —sh— (0,1) —sh— (1,2) (Sh_) 2,3 (Sh_) 3,4 (Sh_) (4,5) —r— (3,5) —r:: (2,5) —r7 (1,5) —r7> (0,5)
\sh\ S};\ >§Slh / /r
(273) sh (374) \r>§ (174) —sh— (475) — - (375)
< B 0 /
(03) (™ (24) 3 (0,4) —sh—> (45)
sh /r/
. (3.4)

31

Going slower to go faster

® Our Action-Synchronous algorithm has a slower runtime than CKY!

® However, it also becomes straightforward to prune using beam search.

e —sh—> (0,1) —sh—> (1,2) —sh—> (2,3) —sh—> (3:4) —sh—> (4,5) —r— (3,5) — (2,5) —r7 (1,5) —=— (0,5)
() 13 (4,5) e (3,5) 7% (2,5) i/
\sh h .
:ﬁ (1,4) —sh—> (4,5) —TI—> (3,5) 7
\I'
N (2,4) T4 (0,4) —sh—> (4,5)
; 7
"\ (3.4) /

€ —sh—> (0,1) —sh—> (1,2) (Sh—) (2,3) —sh—> (3,4) —sh—> (4,5) —TIr—> (3,5) —Tr—> (2,5) —TIr—> (1,5) —r;) (0,5>
T 0.2) —sho> (2,3) —1—> (0,3) —sh> (3,4) —r—> (0.4) —sh> (4.5)

31

Going slower to go faster

® Our Action-Synchronous algorithm has a slower runtime than CKY!

® However, it also becomes straightforward to prune using beam search.

® So we can achieve a linear runtime in the end.

e —sh—> (0,1) —sh—> (1,2) —sh—> (2,3) —sh—> (3,4) —sh—> (4,5 -»(&m——t:(zm——éa(Lm——t;(ma
() o (45) e (3,5) Sl (255) i/
\sh h .
:ﬁ (1,4) —sh—> (4,5) zr—> (3,5) 7
\I'
N (2,4) T4 (0,4) —sh—> (4,5)
; 7
”\(agzé

€ —sh—> (0,1) —sh—> (1,2) (Sh—) (2,3) —sh—> (3,4) —sh—> (4,5) —TIr—> (3,5) —Tr—> (2,5) —TIr—> (1,5) —r;) (O,5)
T 0.2) —sho> (2,3) —1—> (0,3) —sh> (3,4) —r—> (0.4) —sh> (4.5)

31

Now our runtime is O(n).

€ —sh—> (0,1) —sh—> (1,2) (Sh_) (2,3) (Sh—) (3,4) (Sh—) (4,5) r—> (3,5) r/: (2 5) > (1 5)
™ 0.2) _ 3) _ T 24) —a (45) (45) —r— (35)
o (2,3) r\i (0,3) —sh— (3,4) /Sr > (O 4) —sh— (4 5)

32

But the O(n) is hiding a constant.

But the O(n) is hiding a constant.

b states per action step

O(b) left pointers per state

O(nb?) runtime

34

Cube-Pruning

® We can apply cube-pruning to make O(nb log b)

Chiang 2007
Huang+Chiang 2007

Cube-Pruning

® We can apply cube-pruning to make O(nb log b)

€ —sh—> (0,1) —sh—> (1,2) <Sh_) (2,3) <Sh_) (3,4) <Sh_) (4,5) r (3,5)
I~ I~ I~
(072) (173) (274) % sh (475)
\Sh \r
~ ~
(2,3) r— (0,3) —sh—}, (3,4)

® By pushing all states and their left pointers into a heap

Chiang 2007
Huang+Chiang 2007

Cube-Pruning

® We can apply cube-pruning to make O(nb log b)

€ —sh—> (0,1) —sh—> (1,2) —sh—> (2,3) —sh—> (3,4) —sh—> (4,5) r (3,5) r—> (2,5)

T~y T~y T~y
~ ~ ~
(072) (173) (274) §_ Sh (475) (475)
\Sh\ \r\ sh/7
(2,3) r— (0,3) —sh—}. (3,4) r— (0,4)

® By pushing all states and their left pointers into a heap

® And popping the top b unique subsequent states

Chiang 2007
Huang+Chiang 2007

Cube-Pruning

® We can apply cube-pruning to make O(nb log b)

€ —sh—> (0,1) —sh—> (1,2) —sh—> (2,3) —sh—> (3,4) —sh—> (4,5) r (3,5) r—> (2,5)

T~y T~y T~y
~ ~ ~
(072) (173) (274) §_ Sh (475) (475)
\Sh\ \r\ sh/7
(2,3) r— (0,3) —sh—}. (3,4) r— (0,4)

® By pushing all states and their left pointers into a heap

® And popping the top b unique subsequent states

® First time Cube-Pruning has been applied to Incremental Parsing

Chiang 2007
Huang+Chiang 2007

Time (sec)

2.0}

1.5¢

0.5}

0.0

Runtime on

Chart Parsing: O(n?*?2°%)

Beam 20 No Cube-Pruning: O(n!-%%)

Beam 20 Cube Pruned: O(n%)

Beam 5 Cube Pruned: O(n? ")

40 60 80 100
Sentence Length

120

140

PTB and Discourse

T T T T T T _T
4 O ¥
3500 | O - S
< > 3
S/ o+ {10
()]]
s Cf
3000+ Q - é’
ufll <
.l:b'_l_ @) 2
2500 | O - 710
— # :
@)
Q
W 2000 IO
Q A
E +-
.— 1500} g}
- ¥
_|.
1000 } +# -
+
500} ;
Work Beam 10
0 , , . -
500 1000 1500 2000

Discourse Length (words) Discourse Length (words)

39

40

Training

® Structured SVM approach:

® Goal:Score the gold tree higher than all others by a margin:

Vt,s(t*) — s(t) > A(t, t*)

40

Training

® Structured SVM approach:

® Goal:Score the gold tree higher than all others by a margin:

Vt,s(t*) — s(t) > A(t, t*)

® Loss Augmented Decoding:

® During Training: Return tree with highest augmented score:

t = arg max (S(t) + A t*))

40

Training

® Structured SVM approach:

® Goal:Score the gold tree higher than all others by a margin:

Vt,s(t*) — s(t) > A(t, t*)

® Loss Augmented Decoding:

® During Training: Return tree with highest augmented score:

t = arg max (S(t) + A t*))

® Minimize Loss: (s(t) + A(¢,t*)) — s(t*)

40

Score

S
|
VP
/\
VB NP
T T~
Eat NN NP

\ e

ice NN IN NP

cream after NN

lunch

Before training:

S
|
VP
/\
VB NP
I N

Eat NN NN IN NP

ice cream after NN

lunch

)

Accuracy

S
\
VP
%\
VB
Eat NN NN NP

ice cream after NN

lunch

41

|deally after training:

S
|
VP
%\
VB
S A(t,, 1) Eat NN NN NP
\ > o T
VP ice cream after NN
S
O | A(ty, 1) VB NP lunch
o VP N
O T Eat NN NN IN NP
D vB NP \ \ \ \
| /\ 1Ice cream after NN
Eat NN NP |
‘ /\\ lunch

ice NN IN NP

cream after NN

lunch

Accuracy 42

Score

|deally after training:

S
|
VP
%\
VB
? A(tzv t*) Eat N‘N N‘N ‘ N‘P
VP — —» ice cream after NN
k
\ A(t, 1) VB NP lunch
VP T
T~ ———— e e e e el
VB NP \ \ \ \
| /\ 1Ice cream after NN
Eat NN NP |
| e lunch
ice NN IN NP
o
cream after N‘N *Y AxiIs not drawn to scale
lunch

Accuracy 43

Delta Margins

® Counts the incorrectly labeled spans in the tree.

® Happens to be decomposable, so can even be used to compare partial trees.

At 1) = 3]l(X Y t@.’j»

(4,5, X)€t

44

Cross-Span Loss

® We observe that the null label @ is used in two different ways:

45

Cross-Span Loss

® We observe that the null label @ is used in two different ways:

® TJo facilitate ternary and n-ary branching trees.

(1, j) =0

45

Cross-Span Loss

® We observe that the null label @ is used in two different ways:
® TJo facilitate ternary and n-ary branching trees.

® As a default label for incorrect spans that violate other gold spans.

(1, j) =0

45

Cross-Span Loss

® We modify the loss to account for incorrect spans in the tree.

At,t) = X (X » t(”))

46

Cross-Span Loss

® We modify the loss to account for incorrect spans in the tree.

At t*)= >]I(X 7t 5V cross(1, 7, t*))
(4,5, X) Et |

47

Cross-Span Loss

® We modify the loss to account for incorrect spans in the tree.
cross(z, 7,t™)

® Indicates whether (i, j) is crossing a span in the gold tree

/ /

A(t,t*)y= > 1 (X 7+ tzkz.j) \V cross(1, 7, t*))
(4,5, X) Et |

47

Cross-Span Loss

® We modify the loss to account for incorrect spans in the tree.
cross(z, 7,t™)

® Indicates whether (i, j) is crossing a span in the gold tree

/ /

A(t,t*)y= > 1 (X 7+ tzkz.j) \V cross(1, 7, t*))
(4,5, X) Et |

® Still decomposable over spans, so can be used to compare partial trees.

47

Max-Violation Updates

® Take the largest augmented loss value across all time steps.

® This is the Max-Violation, that we use to train.

best in the beam =
~ S
Corre — ' u —
Ct s — aJr=
>
worst In the beam _ last valid invalid

fallg off update update!

the beam biggest
violation

Huang et. al. 2012

(standard)

48

Experiments: PI B lest

Model Note F1 Score
Stern et al. (2017a) B(elgﬁ;izeplzlfs’tle'nsd 91.79
******************* B @O o retioss | 91
Stern et al. (2017b) Github Code 91.80
GSS Beam 15 Our Work 91.84
cssmoamzm | owwor | g

49

Comparison to

PTB only, Single Model, End-to-End

Model Note F1 Score
Durett + Klein
______________________________ 2015 | vt
Cross + Huang Original Span 91 3
______________________________ 2016 | Paser
Liu + Zhang
______________________________ 206 | W
Dyer et al. Y
______________________________ 2006 | oeonmnatve 9L
Stern Baseline
~ 2017a | ChartParser e
Stern Separate
2017¢ Decoding 92.96
Our Work Beam 20 01.97

other parsers

Reranking, Ensemble, Extra Data

Model Note F1 Score
Vinyals et al.

2015 Ensemble 90.5
Dyer et al. Generative 93 3

2016 Reranking |

Choe + Charniak .

2016 Reranking 93.8
Fried et al. Ensemble

2017 Reranking 94.29

50

Conclusions:

® | inear Time Span-Based Constituency Parsing with Dynamic Programming.
® Cube-Pruning to speedup Incremental Parsing with Dynamic Programming.
® Cross-Span Loss extension for improving Loss-Augmented Decoding.

® Result: Faster and more accurate than cubic-time Chart Parsing.

51

Caveats:

® 2nd highest accuracy for single-model end-to-end systems trained on PTB only.

Stern et al. 201 7c is more accurate, but with separate decoding, and is much slower.

o After this ACL, definitely no longer true. (e.g. Joshi et al. 2018, Kitaev+Klein 201 8)

But both are Span-Based Parsers and can be linearized in the same way!

52

Time (sec)

2.0¢

1.5}

0.5}

0.0

Questions?

Thank You

++ Chart Parsing: O(n*2%)

« . Beam 20 No Cube-Pruning: O(n?%)
x x Beam 20 Cube Pruned: O(n!-%)

++ Beam 5 Cube Pruned: O(n"7)

B Q) /|
3500 .:+
n
o
3000 Q .
ugi?
<A
2500 .
— O 4+
@)
()
W 2000} e -
Q A
c +#
.— 1500} =
= #
+
1000} +_TH- -
|
+
i
500} =
Work Beam 10
O | | | -IIH—I +1
500 1000 1500 2000

20 40 60 80 100 120
Sentence Length

140

Discourse Length (words) Discourse Length (words)

Time (sec)

