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Not a trivial task...

@sushi withD |

Aravind Joshi

... you'd improve

your k-best parser
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Why f-best?

* postpone disambiguation in a pipeline
— 1-best 1s not always optimal in the future
— propagate k-best lists instead of 1-best

— e.g.: semantic role labeler uses A-best parses

 approximate the set ot all possible
Interpretations

— reranking (Collins, 2000)
— minimum error training (Och, 2003)

— online training (McDonald et al., 2005)

Liang Huang (Penn)
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In this talk...

* Formulations

— parsing as deduction; the CRY algorithm

— directed monotonic hypergraphs

* Algorithms
— Algorithm 0 thru Algorithm 3

* Experiments

* Applications in Machine Translation

Liang Huang (Penn) k-best parsing 6



Parsing as Deduction

* Parsing with context-free grammars (CFGs)

— Dynamic Programming (CRY algorithm)

(B,37) (Cj+1, k) (NP, 1, 3) (VP, 4, 6)
A—BC S— NP VP
(A4, 3, k) (S, 1, 6)
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Parsing as Deduction

* Parsing with context-free grammars (CFGs)

— Dynamic Programming (CRY algorithm)

(B, 57) (Cj+1, k) (NP, 1, 8) (VP, 4, 6)
A—BC S—NP VP
(A4, 3, k) (S, 1, 6)
A

computational complexity: O(n® |P|)

P i1s the set of productions (rules)

l k
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Deduction => Hypergraph

* hypergraph 1s a generalization of graph

— each hyperedge connects

several vertices to one vertex

(VB, 8, 3) (PP 4, 6) (VB, 3,3) (PP 4,6)
(NP, 1, 3) (VP 4, 6) (NP, 1,3) (VP 4, 6)
(S, 1, 6) (S, 1, 6)
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Deduction => Hypergraph

* hypergraph 1s a generalization of graph

— each hyperedge connects VErtices
several vertices to one vertex
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Packed Forest as Hypergraph

packed forest

a compact representation
of all parse trees

Liang Huang (Penn)

| saw a boy with a telescope

f\

A

[

/\
X

a boy

\

JPAUEL NP

with telescope

k-best parsing 9



Packed Forest as Hypergraph

packed forest

a compact representation
of all parse trees

Liang Huang (Penn)

| saw a boy with a telescope

N)
|
/_/
PP
a boy prep NP

|

with telescope

k-best parsing 10



Packed Forest as Hypergraph

packed forest

a compact representation
of all parse trees

Liang Huang (Penn)

| saw a boy with a telescope

N)
|
/_/
NP
PP
a boy prep NP

|

with telescope

k-best parsing 10



Weighted Deduction/Hypergraph

(B,,7):p (Cj+1,k):q
(4,1, k): f (p, q)

* / 1s the weight function

A— BC

e..: In Probabilistic Context-Free Grammars:

J (pa)=peq*Pr(A—~ BC)

Liang Huang (Penn) k-best parsing 11



Monotonic Weight Functions

* all weight functions must be monotonic on each
of their arguments

* optimal sub-problem property in dynamic
programming
CRY example:
A=(S5 1, 5)

B = (NP, 1,2), C=(VP, 3, 5)

f (b,c) =DbecePr(S—=NpPVP)

Liang Huang (Penn) k-best parsing 12



Monotonic Weight Functions

* all weight functions must be monotonic on each
of their arguments

* optimal sub-problem property in dynamic
programming
CRY example:
A=(S5 1, 5)

B = (NP, 1,2), C=(VP, 3, 5)

f (b,c) =DbecePr(S—=NpPVP)

Liang Huang (Penn) k-best parsing 12



f~best Problem in Hypergraphs

* 1-best problem
— find the best derivation of the target vertex t

* f-best problem

— find the top k derivations of the target vertex t

in CRY, £ =(S, 1, n)

° assumption

— acyclic: so that we can use topological order

Liang Huang (Penn) k-best parsing 13



Outline

* Algorithms
— Generic 1-best Viterbi Algorithm
— Algorithm 0: naive
— Algorithm 1: hyperedge-level
— Algorithm 2: vertex (1tem)-level
— Algorithm 3: lazy algorithm

* Experiments

* Applications to Machine Translation

Liang Huang (Penn) k-best parsing 14



Generic 1-best Viterb1 Algorithm

* traverse the hypergraph in topological order

— for each vertex

e for each incoming hyperedge

(“bottom-up”)

— compute the result of the /° function along the hyperedge

— update the 1-best value for the current vertex if possible

U:d%

w: b v

Liang Huang (Penn)

: f.(a, b)
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Generic 1-best Viterb1 Algorithm

* traverse the hypergraph in topological order

— for each vertex ("bottom-up”)

e for each incoming hyperedge
— compute the result of the /° function along the hyperedge

— update the 1-best value for the current vertex if possible

u: a F\fl
, |- better ( £(a, b), £(c, d))
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Generic 1-best Viterb1 Algorithm

* traverse the hypergraph in topological order

— for each incoming hyperedge

* compute the result of the f/* function along the
hyperedge

* update the 1-best value for the current vertex if possible

u: a %
v | : better( better ( £(a, b), £(c, ), -..)

w: b [V

overall time complexity: O( |E|)

in CKY: |E|=0 (n*|P|)
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Dynamic Programming: 1950's

Richard Bellman Andrew Viterbi

Liang Huang (Penn) k-best parsing 18
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Dynamic Programming: 1950's

Richard Bellman Andrew Viterbi

We knew everything so far
in your talk 40 years ago
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-best Viterb1 algorithm 0: naive

* straightforward k-best extension:

— a vector of length £ instead of a single value

— vector components maintain sorted

— now what’s f(a, b) ?
e k2 values -- Cartesian Product f{(a, bj)

* just need top k out of the £? values

u:a JL r mult, ( f; a, b) = top, { /" (2, b) }

w: b v|:mult,( f, a, b)

Liang Huang (Penn) k-best parsing 19



-best Viterb1 algorithm 0: naive

* straightforward k-best extension:

— a vector of length £ instead of a single value

— vector components maintain sorted 1
— now what's (a, b) ? b=
e k2 values -- Cartesian Product f(a;, 0) 5
* just need top £ out of the A? values 6].4|.3].3
a
Al mult, (f a, b) = top, { f (4, b) }
w: b J v| : mult, (£, a, b)
Liang Huang (Penn)

k-best parsing 19




Algorithm 0: naive

* straightforward A-best extension:

— a vector of length £ instead of a single value

— and how to update?

 from two f-lengthed vectors (2k elements)

* select the top £ elements: O(%)

u: a
JL f
w: b v| : merge,(mult, ( /,a, b), mult, (/,c, d))
R
u:c
w’: d

Liang Huang (Penn) k-best parsing 20
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Algorithm 0: naive

* straightforward A-best extension:
— a vector of length £ instead of a single value

— and how to update?
 from two f-lengthed vectors (2k elements)

* select the top £ elements: O(%)

u: a
JL f
w: b v| : merge,(mult, ( /,a, b), mult, (/,c, d))
S
u’: ¢
overall time complexity: O(/? | E |)
w':d
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Algorithm 1: speedup mult,

mult, ( f, a, b) = top,{ f (4, ) }

Gu | | |

Liang Huang (Penn) k-best parsing 21
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Algorithm 1: speedup mult,

mult, ( f, a, b) = top,{ f (4, ) }

* only Interested in top £ why enumerate all £2?

* aand b are sorted!
.1
* f 1s monotonic! ) P
 f(a,, b,) must be the 1-best 4
5
* the 2nd-best must be...
— either f(a,, b,) or f(a,, b,)
* what about the 3rd-best?

Liang Huang (Penn) k-best parsing 21



Algorithm 1 (Demo)

f(a,b)=ab
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f(a,b)=ab

Liang Huang (Penn)
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Algorithm 1 (Demo)

use a priority queue (heap) to
store the candidates (frontier)

Liang Huang (Penn)
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Algorithm 1 (Demo)

use a priority queue (heap) to
store the candidates (frontier)

Liang Huang (Penn)
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Algorithm 1 (Demo)

use a priority queue (heap) to
store the candidates (frontier)

In each 1teration:

1. extract-max from the

heap
1
2. push the two
3 | .18
- “shoulders” into the
<" 4 | 24 | .16 heap
5 | .80 | 20 | .15 k iterations.
6 | 4 | 8 | .8 O(klogk |E|) overall time

Liang Huang (Penn) k-best parsing 24



Algorithm 2: speedup merge,

* Algorithm 1 works on each hyperedge
sequentially

* can we process them simultaneously?

u: a w: b p: X q:y

&\ f ’ .

Liang Huang (Penn) k-best parsing 25
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Algorithm 2 (Demo)

starts with an initial heap ot the 1-best

derivations from each hyperedge

B, xC

N

item-level heap

Liang Huang (Penn) k-best parsing 26



Algorithm 2 (Demo)

pop the best (.42) and ...

B, xC

N

item-level heap

42

Liang Huang (Penn) k-best parsing 27



Algorithm 2 (Demo)

pop the best (.42) and ...

push the two successors (.07 and .24)

B, xC B,xC B.xC

\

item-level heap

Liang Huang (Penn) k-best parsing 28



Algorithm 2 (Demo)

pop the 2nd-best (.36)

B,xC B.xC

output
item-level heap P

42

v k=2, d=3 36

Liang Huang (Penn) k-best parsing 29



Algorithm 3: Oftline (lazy)

* from Algorithm 0 to Algorithm 2:

— delaying the calculations until needed -- lazier

— larger locality

* even lazier... (one step further)

— we are Interested 1n the A-best derivations of the

Liang Huang (Penn) k-best parsing 30



Algorithm 3: Oftline (lazy)

* forward phase

— do a normal 1-best search till the final item

— but construct the hypergraph (forest) along the way

* recursive backward phase
— ask the final item: what’s your 2nd-best?
— final 1item will propagate this question till the leaves

— then ask the final item: what’s your 3rd-best?

Liang Huang (Penn) k-best parsing 31



Algorithm 3 demo

after the “forward” step (1-best parsing):

forest = 1-best derivations from each hyperedge

NP (1, 2)

Liang Huang (Penn)

1-best

S (1, 7)

VP (4,7)
VP (1, 5)

k-best parsing

42
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Algorithm 3 demo

now the backward step

NP (1, 2)

that’s your 2nd-best?

Liang Huang (Penn) k-best parsing 33



Algorithm 3 demo

NP (1, 2)

I’'m not sure... let me
ask my parents...

Liang Huang (Penn) k-best parsing 34



NP (1, 2)

Liang Huang (Penn)

Algorithm 3 demo

k-best parsing

VP (1, B) P(6,7)
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NP (1, 2)

Liang Huang (Penn)

Algorithm 3 demo

but wait a minute... did you already know the ”’s ?
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Algorithm 3 demo

but wait a minute... did you already know the ”’s ?

NP (1, 2) VP (1, B) P(6,7)

oops... forgot to ask 42

more questions

recursively ..

k-best parsing 36



Algorithm 3 demo

what’s your 2nd-best?

NP (1, 2)

Liang Huang (Penn) k-best parsing 37



Algorithm 3 demo

recursion goes on to the leaf nodes

NP (1, 2)

Liang Huang (Penn) k-best parsing 38



Algorithm 3 demo

and reports back the numbers...

NP (1, 2) VP (1, B) P(6,7)

42

Liang Huang (Penn) k-best parsing 39



Algorithm 3 demo

push .30 and .21 to the candidate heap (priority queue)

NP (1, 2) VP (1, B) P(6,7)

k=2 42

.30

Liang Huang (Penn) k-best parsing 40



Algorithm 3 demo

pop the root of the heap (.30)

NP (1, 2) VP (1, B) P(6,7)

42

k=2
@ [ know my Qnd—D s <1’ 7) .30

Liang Huang (Penn) k-best parsing 41



Interesting Properties

1-best 1s best everywhere (all
decisions optimal)

2nd-best 1s optimal everywhere
except one decision

— and that decision must be 2nd-best
— and 1t’s the best of all 2nd-best

decisions

so what about the 3rd-best?

kth-best 1s...

) (rank(s) —1) <k —1
0EA

Liang Huang (Penn)

local picture:

1 06 | .04 | .03 | .03
3 \.\i~8\ 12 (.09 | .09
< 4| .24 \.\16\ 12 .12
5 .80 | .20 f‘r5\ 15

k-best parsing
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Summary of Algorithms

Algorithms Time Complexity Locality

1-best O(|E|) hyperedge

alg. 0: naive O(kt| K1) hyperedge (mult,)
alg. 1 O(klog k | E|) hyperedge (mult,)
alg. 2 O(|E|+| V]| klog k) item (merge, )
alg. 3: lazy O(|E|+|D| klog k) global

for CRY: a=2, |E|=0#*|P|), |V|=0n?*|N|), |D|=0(n)
a 1s the arity of the grammar

Liang Huang (Penn) k-best parsing 43



Outline

* Experiments
— Collins/Bikel Parser

— both efficiency and accuracy

* Applications in Machine Translation

Liang Huang (Penn) k-best parsing 44



Background: Statistical Parsing

* Probabilistic Grammar

— induced from a treebank (Penn Treebank)

* State-of-the-art Parsers

— Collins (1999), Bikel (2004, Charniak (2000), etc.
* Evaluation of Accuracy
— PARSEVAL: tree-similarity (English treebank: ~90%)

* Previous work on k-best Parsing:

— Collins (2000): turn oftf dynamic programming

— Charniak/Johnson (2005): coarse-to-fine, still too slow

Liang Huang (Penn) k-best parsing 45



Efficiency

Implemented Algorithms 0, 1, 8 on top of Collins/Bikel Parser
Average (wall-clock) time on Penn Treebank (per sentence):
Algorithm 0 —+—

Algorithm 1 —=—-
Algorithm 3

)
T
=
[
[
Ak
_U’J
ak]
E
|_
[y
£
[}
-
oo
(i
L
[
oo
-
Ak ]
=
=L

(J + | D| k log k)

Liang Huang (Penn) k-best parsing 46



Oracle Reranking

: 1d dard
given k parses of a sentence £
correct” parse accuracy
— 100%
* oracle reranking: pick the
best parse according to
the gold-standard
/— 89%
1-best

- : pick the
best parse according to
the score tunction

Liang Huang (Penn) k-best parsing 47
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* oracle reranking: pick the — G 96%
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) f— 89%
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Oracle Reranking

gold standard
“correct” parse accuracy

D 100%

glven k parses of a sentence

. . oracle —~__
* oracle reranking: pick the G 96%

best parse according to

the gold-standard

G 9
k-best parses < :

) f— 89%
1-best —
. : pick the

best parse according to

the score function

~ T 78%
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Quality of the /-best lists

This work on top of _--
Collins parser -~ Collins (2000)

o
Q
o
P
L
£
3]
©
O

This work with beam width 107
(Collins, 2000)

(F{awaparklpi, 1 5}9?)

10 20 30 50 70 100
k
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Quality of the /-best lists

This work on top of _ -
Collins parser .-~

-
-~

-~

- P
- ’ =
. - e
- -
- / R
L e
- ) -
- e Lt
.--..- .f r-.r
# =

rd

This work with beam width 107
(Collins, 2000)

(Ratnaparkhi, 1997)
20 30 50 70 100
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Why are our f-best lists better?

average number of parses for sentences of certain length

average number of parses

sentence length
Collins (2000): turn down dynamic programming
theoretically exponential time complexity;

aggressive beam pruning to make it tractable in practice

Liang Huang (Penn) k-best parsing 49



Why are our f-best lists better?

average number of parses for sentences of certain length

7% of the test-set

average number of parses

sentence length
Collins (2000): turn down dynamic programming
theoretically exponential time complexity;

aggressive beam pruning to make it tractable in practice
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Implemented 1n ...

— state-of-the-art statistical parsers

e Charniak parser (2005); Berkeley parser (2006)

* McDonald et al. dependency parser (2005)

* Microsoft Research (Redmond) dependency parser (2006)
— generic dynamic programming languages/packages

* Dyna (Eisner et al.,, 2005) and Tiburon (May and Knight, 2006)
— state-of-the-art syntax-based translation systems

* Hiero (Chiang, 2005)

 ISI syntax-based system (2005)

* CMU syntax-based system (2006)

* BBN syntax-based system (2007)

Liang Huang (Penn) k-best parsing 50



Applications in

Machine Translation




Syntax-based Translation

® synchronous context-free grammars (SCFGs)
® generating pairs of strings/trees simultaneously

® co-indexed nonterminal further rewritten as a unit

S 1) vp@), (1) vp@)
vP — PPO VPOA®,  vpe ppl
—  Baoweier, Powell

S S
/\ /\
VP VP

Baoweier PP VP Powell VP PP

yu Shalong juxring le huitan held a meeting with Sharon

Liang Huang (Penn) Applications in MT 52



Translation as Parsing

® translation (“decoding”) => monolingual parsing

® parse the source input with the source projection

® build the corresponding target sub-strings in parallel

Liang Huang (Penn) Applications in MT 53
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Translation as Parsing

® translation (“decoding”) => monolingual parsing

® parse the source input with the source projection

® build the corresponding target sub-strings in parallel
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Translation as Parsing

® translation (“decoding’”’) => monolingual parsing

® parse the source input with the source projection

® build the corresponding target sub-strings in parallel

S — NpPWO VPO,
VP — PPO VPO
NP —  Baoweter,

juxing le huitan

Baoweier
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Translation as Parsing

® translation (“decoding’”’) => monolingual parsing

® parse the source input with the source projection

® build the corresponding target sub-strings in parallel

S — NPO VPR, NPOD VPR
VP — PPO VPR vPQe ppl)

NP —  Baoweter, Powell
3.0
VP
1.5 1.0 2.0
R

Baoweier yu  Shalong juxing le huitan
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Translation as Parsing

® translation (“decoding’”’) => monolingual parsing

® parse the source input with the source projection

® build the corresponding target sub-strings in parallel
s — NrPOvVPOe NpPO VPR

VP — PPO VPR vPQe ppl)
NP —  Baoweter, Powell

3.0

Powell with Sharon held a talk

1.5 1.0

Baoweier yu  Shalong juxing le huitan
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Translation as Parsing

® translation (“decoding’”’) => monolingual parsing

® parse the source input with the source projection

® build the corresponding target sub-strings in parallel

S — NPOL VPO NPOD VPO
vP — PPO vVPO®  vpPe ppl
NP —  Baoweter, Powell

held a talk with Sharon

Powell with Sharon held a talk
1.5 1.0
EEn 2T
Baoweier yu  Shalong juxing le huitan

Liang Huang (Penn) Applications in MT 53




Language Model: Rescoring

Spanish/English
Bilingual Text

Statistical Analysis Statistical Analysis

v v

: ‘ translation model (TM) | Broken language model (LM) :
Spanish —> competency English —> fluency English

What hunger have |
Hungry | am so
Have | that hunger
| am so hungry
How hunger have |

Que hambre tengo yo > | am so hungry
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Language Model: Rescoring

Spanish/English
Bilingual Text

StatisticaiAnalysis Statistical Analysis
: Broken -
What hunger have |

Hungry | am so
Have | that hunger
| am so hungry
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Que hambre tengo yo > | am so hungry
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Language Model: Rescoring

Spanish/English
Bilingual Text

Statistical Analysis Statistical Analysis

o -~

k-best rescoring

What hunger have |
Hungry | am so
Have | that hunger
| am so hungry
How hunger have |

Que hambre tengo yo > | am so hungry
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Language Model: Rescoring

Spanish/English
Bilingual Text

Statistical Analysis Statistical Analysis

o -~

k-best rescoring |,

3.7 What hunger have |

3.8 Hungry | am so
4.1 Have | that hunger
Que hambre tengo yo 25 > | am so hungry > | am so hungry

7.2 How hunger have |
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Language Model: Rescoring

Spanish/English
Bilingual Text

StatisticaiAnalysis Statistical Analysis
: Broken :
k-best rescoring |, LM
3.7 What hunger have | 5.4
3.8 Hungry | am so 7.0
4.1 Have | that hunger 9.8
Que hambre tengo yo 25 > | am so hungry 07 > | am so hungry

7.2 How hunger have | 8.7

Liang Huang (Penn) Applications in MT 54




k-best rescoring results

® The ISI syntax-based translation system

® currently the best performing system on
Chinese to English task in NIST evaluations

® based on synchronous grammars BLEU score
® translation model (TM) only: 24.45
o rescoring with trigram LM on 25000-best list:  34.58
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Language Model: Integration

Spanish/English
Bilingual Text

Statistical Analysis Statistical Analysis

Spanish English

synchronous CFG n-gram LM
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Language Model: Integration

Spanish/English
Bilingual Text

Statistica! Analysis Statistical Analysis
|

Broken
English

Que hambre tengo yo —>| integrated decoder |—> | am so hungry

computationally challenging! &

Spanish English

Liang Huang (Penn) (Knight and Koehn, 2003) Applications in MT 56




Integrated Decoding Results

® The ISI syntax-based translation system

® currently the best performing system on
Chinese to English task in NIST evaluations

based on synchronous grammars BLEU score
translation model (TM) only: 24.45
rescoring with trigram LM on 25000-best list:  34.58

trigram integrated decoding: 38.44
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Integrated Decoding Results

® The ISI syntax-based translation system

® currently the best performing system on
Chinese to English task in NIST evaluations

based on synchronous grammars BLEU score
translation model (TM) only: 24.45
rescoring with trigram LM on 25000-best list:  34.58

trigram integrated decoding: 38.44

but very slow!
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Rescoring vs. Integration

quality
A
good
> speed
slow fast
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Rescoring vs. Integration

quality
A

good ) any compromise!

(on-the-fly rescoring?)

slow fast

> speed
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Rescoring vs. Integration

Yes, forest-rescoring --
almost as fast as rescoring, and
almost as good as integration

quality
A
) any compromise!

(on-the-fly rescoring?)

slow fast

> speed
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Why Integration is Slow!?

hyperedge
/ \

with ... Sharon held ... talk
hold ... talks

with ... Shalong

® split each node into +LM items (w/ boundary words)
® beam search: only keep top-k +LM items at each node
® but there are many ways to derive each node

® can we avoid enumerating all combinations!?
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Why Integration is Slow!?

hold ... Sharon
held ... Shalong

w) ~bald ; Shalong

with ... Sharon held ... talk

with ... Shalong hold ... talks

® split each node into +LM items (w/ boundary words)
® beam search: only keep top-k +LM items at each node
® but there are many ways to derive each node

® can we avoid enumerating all combinations!?
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Forest Rescoring

k-best parsing with LM cost, we can only
Algorithm 2 do k-best approximately.

L]

\

\

process all hyperedges simultaneously!
significant savings of computation
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Forest Rescoring Results

® on the Hiero system (Chiang, 2005)
® ~|0 fold speed-up at the same level of BLEU
® on my syntax-directed system (Huang et al., 2006)
® ~|0 fold speed-up at the same level of search-error
® on a typical phrase-based system (Pharaoh)
® ~30 fold speed-up at the same level of search-error
® ~|00 fold speed-up at the same level of BLEU
® also used in see my ACL ’07 paper for details

e |SI, CMU, and BBN syntax-based systems

Liang Huang (Penn) Applications in MT 6l



Conclusions

® monotonic hypergraph formulation

® the k-best derivations problem

® k-best Algorithms

® Algorithm O (naive) to Algorithm 3 (lazy)
® experimental results

e efficiency

® accuracy (effectively searching over larger space)
® applications in machine translation

® k-best rescoring and forest rescoring
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Thank you!
ikl

Questions?
Comments!

e Liang Huang and David Chiang (2005).
Better k-best Parsing.
In Proceedings of IWPT,Vancouver, B.C.

Liang Huang and David Chiang (2007).
Forest Rescoring: Faster Decoding with Integrated Language Models.
In Proceedings of ACL, Prague, Czech Rep.




Quality of the /-best lists

o
Q
o
P
L
£
3]
©
O

" (Charniak and Johnson, 200@

This work with beam width 10
(Collins, 2000)

(F{awaparklpi, 1 5}9?)

10 20 30 50 70 100
k
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Syntax-based Experiments




Tree-to-String System

® syntax-directed, English to Chinese (Huang, Knight, Joshi, 2006)
® the reverse direction is found in (Liu et al, 2006)

i NP-C VP synchronous tree-
bei substitution grammars (STSG)

(Galley et al., 2004; Eisner, 2003)

related to
STAG (Shieber/Schabes, 90)

PP

shot TO NP-C tested on 140 sentences
| | slightly better BLEU scores

to N|N the police than Pharaoh

death
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Speed vs. Search Quality

2190 L I T 1T T 11T
: full-integration

E cube pruning =+«
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average number of +LM items explored per sentence
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Speed vs. Translation Accuracy

0.262

0.260

0.258

L
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O
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full-integration
cube pruning
cube growing
p 1l N
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10%
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average number of +LM items explored per sentence
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Cube Pruning

S > &
A \Qx. QOX- \QX_
SAEEO R
3 N

monotonic grid?

(VP held x meeting)
3,6

(VP held % talk)

(VP hold * conference) 1.5
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Cube Pruning
‘OQ\ @*OQ\ \0&0\

A x»* éo* v*
SN 8
AN R

S N

non-monotonic grid
due to LM combo costs

(VP held * meeting)

3,6 9.0+ 0.5

(VP 557 * t2lk) 2.1 +03|4.1 +54(9.1 +023

(VP 5od * conference)y BolS] 45+ 0.6]6.5 +105| 115+ 0.6
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Cube Pruning

/A\ bigram (meeting, with) * *
o >
A
PPi.3 X VP35 X
b ) N
o

non-monotonic grid
due to LM combo costs

(V held *(meetm% 90+ 05

(VP 557 * t2lk) 4.1 +54(9.1 +03

(VP hold conference) 65 +105|115+06
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Cube Pruning

S > &
A \Qx. QOX- \QX_
AN R
N, \

non-monotonic grid
due to LM combo costs

(VP held meeting)
3,6

(VP held % talk)

(VP hold * conference)

12.1
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Cube Pruning

k-best parsing @&o‘\\ @*OQ\ \0&0\
Algorithm | & & &
%
* a priority queue of candidates f: (b\p‘f @\‘:
e extract the best candidate Q™ Q Q>
\ N N

(VP held x meeting)
3,6

(VP held % talk)

(VP hold * conference)
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Cube Pruning

k-best parsing &o‘\\ @&o‘”\ \Oo%\
Algorithm | & o &
. . 2 *
* a priority queue of candidates @%SD (b\)o‘; @t\?‘:
e extract the best candidate Q™ QN Q™
* push the two successors NS G @

(VP held * meeting)
3,6

(VP held % talk)

(VP hold * conference)
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Cube Pruning

k-best parsing @&o‘\\ @&o‘”\ \Ooé@\
Algorithm | & o &
. . 2 *
* a priority queue of candidates @%SD (b\)o‘; 45’:?5
e extract the best candidate Q™ QN Q™
* push the two successors NS @ @

(VP held * meeting)
3,6

(VP held % talk)

(VP hold * conference)
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Cube Pruning

items are popped out-of-order SN SN JCAN
‘D’(’ ‘b"{/ \O
solution: keep a buffer of pop-ups S S &°
2.5 24 5.1

(VP held meeting)
3,6

(VP held % talk)

(VP hold * Conference)
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Cube Pruning

items are popped out-of-order S
S
solution: keep a buffer of pop-ups &
2.5 24 5.1

finally re-sort the buffer
and return inorder:

24 25 5.1

(VP held x meeting)
3,6

&oo\ 0%\
\O
030@ o}‘@

(VP held % talk)

(VP hold * Conference)

Liang Huang (Penn)
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