—0

Liang Huang = =

University of Pennsylvania

Joint work with David Chiang F1E

(USC Information Sciences Institute)

Hong Kong University of Science & Technology
July 80, 2007

f-best Parsing

f-best Parsing

[saw a boy with a telescope.

f-best Parsing

/S \
K / 1-best
I / \

\ NP PP
Saw A / \
a boy prep NP

with telescope

[saw a boy with a telescope.

Liang Huang (Penn) k-best parsing 2

f-best Parsing

f\

K 1-best
2nd-best
I / \

2\

a boy prep NP

SAW

with telescope

[saw a boy with a telescope.

Liang Huang (Penn) k-best parsing 2

Not a trivial task...

Not a trivial task...

Aravind Joshi

Liang Huang (Penn) k-best parsing 3

Not a trivial task...

<Isaw her duD

Aravind Joshi

Liang Huang (Penn) k-best parsing 3

Not a trivial task...

<Isaw her duD

Aravind Joshi

Liang Huang (Penn) k-best parsing 3

Not a trivial task...

Liang Huang (Penn) k-best parsing 3

Not a trivial task...

@sushi with D

Aravind Joshi

Liang Huang (Penn) k-best parsing 4

Not a trivial task...

@sushi with D

Aravind Joshi

Liang Huang (Penn) k-best parsing 4

Not a trivial task...

@sushi withD |

Aravind Joshi

Liang Huang (Penn) k-best parsing 4

Not a trivial task...

@sushi withD |

Aravind Joshi

... you'd improve

your k-best parser

Liang Huang (Penn) k-best parsing 4

Why f-best?

* postpone disambiguation in a pipeline
— 1-best 1s not always optimal in the future
— propagate k-best lists instead of 1-best

— e.g.: semantic role labeler uses A-best parses

 approximate the set ot all possible
Interpretations

— reranking (Collins, 2000)
— minimum error training (Och, 2003)

— online training (McDonald et al., 2005)

Liang Huang (Penn)

l

part-of-speech tagging

l lattice

Syntactic Parsing

k-best parses

Semantic Interpretation

l

k-best parsing 5

In this talk...

* Formulations

— parsing as deduction; the CRY algorithm

— directed monotonic hypergraphs

* Algorithms
— Algorithm 0 thru Algorithm 3

* Experiments

* Applications in Machine Translation

Liang Huang (Penn) k-best parsing 6

Parsing as Deduction

* Parsing with context-free grammars (CFGs)

— Dynamic Programming (CRY algorithm)

(B,37) (Cj+1, k) (NP, 1, 3) (VP, 4, 6)
A—BC S— NP VP
(A4, 3, k) (S, 1, 6)

Liang Huang (Penn) k-best parsing 7

Parsing as Deduction

* Parsing with context-free grammars (CFGs)

— Dynamic Programming (CRY algorithm)

(B,37) (Cj+1, k) (NP, 1, 3) (VP, 4, 6)
A—BC S— NP VP
(A4, 3, k) (S, 1, 6)

B C

AN
1 7o+ k

Liang Huang (Penn) k-best parsing 7

Parsing as Deduction

* Parsing with context-free grammars (CFGs)

— Dynamic Programming (CRY algorithm)

(B,37) (Cj+1, k) (NP, 1, 3) (VP, 4, 6)
A—BC S— NP VP
(A4, 3, k) (S, 1, 6)
/A\
) k

Liang Huang (Penn) k-best parsing 7

Parsing as Deduction

* Parsing with context-free grammars (CFGs)

— Dynamic Programming (CRY algorithm)

(B, 57) (Cj+1, k) (NP, 1, 8) (VP, 4, 6)
A—BC S—NP VP
(A4, 3, k) (S, 1, 6)
A

computational complexity: O(n® |P|)

P i1s the set of productions (rules)

l k

Liang Huang (Penn) k-best parsing 7

Deduction => Hypergraph

* hypergraph 1s a generalization of graph

— each hyperedge connects

several vertices to one vertex

(VB, 8, 3) (PP 4, 6) (VB, 3,3) (PP 4,6)
(NP, 1, 3) (VP 4, 6) (NP, 1,3) (VP 4, 6)
(S, 1, 6) (S, 1, 6)

Liang Huang (Penn) k-best parsing 8

Deduction => Hypergraph

* hypergraph 1s a generalization of graph

— each hyperedge connects VEHTICES
several vertices to one vertex
(VB, 38, 3) (PP, 4, 6) (VB, 3,3) (PP, 4, 6)
(NP 1, 3) (VP 4, 6) (NP, 1,8) (VP 4, 6)

(S, 1, 6) (S. 1, 6)

Liang Huang (Penn) k-best parsing 8

Deduction => Hypergraph

* hypergraph 1s a generalization of graph

— each hyperedge connects VErtices
several vertices to one vertex
(VB, 3,3) (PP 4,6) (VB, 3,3) (PP, 4,6)
(NP 1, 3) (VP, 4, 6) (NP, 1,8) (VP 4, 6)
/
(S, 1, 6) ——— (S, 1, 6)

Liang Huang (Penn) k-best parsing 8

Packed Forest as Hypergraph

packed forest

a compact representation
of all parse trees

Liang Huang (Penn)

| saw a boy with a telescope

f\

A

[

/\
X

a boy

\

JPAUEL NP

with telescope

k-best parsing 9

Packed Forest as Hypergraph

packed forest

a compact representation
of all parse trees

Liang Huang (Penn)

| saw a boy with a telescope

N)
|
/_/
PP
a boy prep NP

|

with telescope

k-best parsing 10

Packed Forest as Hypergraph

packed forest

a compact representation
of all parse trees

Liang Huang (Penn)

| saw a boy with a telescope

N)
|
/_/
NP
PP
a boy prep NP

|

with telescope

k-best parsing 10

Weighted Deduction/Hypergraph

(B,,7):p (Cj+1,k):q
(4,1, k): f (p, q)

* / 1s the weight function

A— BC

e..: In Probabilistic Context-Free Grammars:

J (pa)=peq*Pr(A—~ BC)

Liang Huang (Penn) k-best parsing 11

Monotonic Weight Functions

* all weight functions must be monotonic on each
of their arguments

* optimal sub-problem property in dynamic
programming
CRY example:
A=(S5 1, 5)

B = (NP, 1,2), C=(VP, 3, 5)

f (b,c) =DbecePr(S—=NpPVP)

Liang Huang (Penn) k-best parsing 12

Monotonic Weight Functions

* all weight functions must be monotonic on each
of their arguments

* optimal sub-problem property in dynamic
programming
CRY example:
A=(S5 1, 5)

B = (NP, 1,2), C=(VP, 3, 5)

f (b,c) =DbecePr(S—=NpPVP)

Liang Huang (Penn) k-best parsing 12

f~best Problem in Hypergraphs

* 1-best problem
— find the best derivation of the target vertex t

* f-best problem

— find the top k derivations of the target vertex t

in CRY, £ =(S, 1, n)

° assumption

— acyclic: so that we can use topological order

Liang Huang (Penn) k-best parsing 13

Outline

* Algorithms
— Generic 1-best Viterbi Algorithm
— Algorithm 0: naive
— Algorithm 1: hyperedge-level
— Algorithm 2: vertex (1tem)-level
— Algorithm 3: lazy algorithm

* Experiments

* Applications to Machine Translation

Liang Huang (Penn) k-best parsing 14

Generic 1-best Viterb1 Algorithm

* traverse the hypergraph in topological order

— for each vertex

e for each incoming hyperedge

(“bottom-up”)

— compute the result of the /° function along the hyperedge

— update the 1-best value for the current vertex if possible

U:d%

w: b v

Liang Huang (Penn)

: f.(a, b)

k-best parsing 15

Generic 1-best Viterb1 Algorithm

* traverse the hypergraph in topological order

— for each vertex ("bottom-up”)

e for each incoming hyperedge
— compute the result of the /° function along the hyperedge

— update the 1-best value for the current vertex if possible

(VP, 2 44) u: a F# (VR 2 7>
)

(PP, 4,7) w:b v

Liang Huang (Penn) k-best parsing 15

Generic 1-best Viterb1 Algorithm

* traverse the hypergraph in topological order

— for each vertex ("bottom-up”)

e for each incoming hyperedge
— compute the result of the /° function along the hyperedge

— update the 1-best value for the current vertex if possible

u: a F\fl
, |- better (£(a, b), £(c, d))

Liang Huang (Penn) k-best parsing 16

Generic 1-best Viterb1 Algorithm

* traverse the hypergraph in topological order

— for each incoming hyperedge

* compute the result of the f/* function along the
hyperedge

* update the 1-best value for the current vertex if possible

u: a %
v | : better(better (£(a, b), £(c,), -..)

w: b [V

Liang Huang (Penn) k-best parsing 17

Generic 1-best Viterb1 Algorithm

* traverse the hypergraph in topological order

— for each incoming hyperedge

* compute the result of the f/* function along the
hyperedge

* update the 1-best value for the current vertex if possible

u: a %
v | : better(better (£(a, b), £(c,), -..)

w: b [V

overall time complexity: O(|E|)

Liang Huang (Penn) k-best parsing 17

Generic 1-best Viterb1 Algorithm

* traverse the hypergraph in topological order

— for each incoming hyperedge

* compute the result of the f/* function along the
hyperedge

* update the 1-best value for the current vertex if possible

u: a %
v | : better(better (£(a, b), £(c,), -..)

w: b [V

overall time complexity: O(|E|)

in CKY: |E|=0 (n*|P|)

Liang Huang (Penn) k-best parsing 17

Dynamic Programming: 1950's

Richard Bellman Andrew Viterbi

Liang Huang (Penn) k-best parsing 18
g g

Dynamic Programming: 1950's

Richard Bellman Andrew Viterbi

We knew everything so far
in your talk 40 years ago

Liang Huang (Penn) k-best parsing 18

-best Viterb1 algorithm 0: naive

* straightforward k-best extension:

— a vector of length £ instead of a single value

— vector components maintain sorted

— now what’s f(a, b) ?
e k2 values -- Cartesian Product f{(a, bj)

* just need top k out of the £? values

u:a JL r mult, (f; a, b) = top, { /" (2, b) }

w: b v|:mult,(f, a, b)

Liang Huang (Penn) k-best parsing 19

-best Viterb1 algorithm 0: naive

* straightforward k-best extension:

— a vector of length £ instead of a single value

— vector components maintain sorted 1
— now what's (a, b) ? b=
e k2 values -- Cartesian Product f(a;, 0) 5
* just need top £ out of the A? values 6].4|.3].3
a
Al mult, (f a, b) = top, { f (4, b) }
w: b J v| : mult, (£, a, b)
Liang Huang (Penn)

k-best parsing 19

Algorithm 0: naive

* straightforward A-best extension:

— a vector of length £ instead of a single value

— and how to update?

 from two f-lengthed vectors (2k elements)

* select the top £ elements: O(%)

u: a
JL f
w: b v| : merge,(mult, (/,a, b), mult, (/,c, d))
R
u:c
w’: d

Liang Huang (Penn) k-best parsing 20
g g

Algorithm 0: naive

* straightforward A-best extension:
— a vector of length £ instead of a single value

— and how to update?
 from two f-lengthed vectors (2k elements)

* select the top £ elements: O(%)

u: a
JL f
w: b v| : merge,(mult, (/,a, b), mult, (/,c, d))
S
u’: ¢
overall time complexity: O(/? | E |)
w':d

Liang Huang (Penn) k-best parsing 20

Algorithm 1: speedup mult,

mult, (f, a, b) = top,{ f (4,) }

Gu | | |

Liang Huang (Penn) k-best parsing 21

Algorithm 1: speedup mult,

mult, (f, a, b) = top,{ f (4,) }

* only Interested in top £ why enumerate all £2?

b

!
0]
A
-0

Liang Huang (Penn) k-best parsing 21

Algorithm 1: speedup mult,

mult, (f, a, b) = top,{ f (4,) }

* only Interested in top £ why enumerate all £2?

* aand b are sorted!

b

!
0]
A
-0

Liang Huang (Penn) k-best parsing 21

Algorithm 1: speedup mult,

mult, (f, a, b) = top,{ f (4,) }

* only Interested in top £ why enumerate all £2?

* aand b are sorted!

g f 1S monotonic!

b

!
0]
A
-0

Liang Huang (Penn) k-best parsing 21

Algorithm 1: speedup mult,

mult, (f, a, b) = top,{ f (4,) }

* only Interested in top £ why enumerate all £2?

* a and b are sorted!
* f 1s monotonic!

1
LS

- f(a,, b,) must be the 1-best 4
5

Liang Huang (Penn) k-best parsing 21

Algorithm 1: speedup mult,

mult, (f, a, b) = top,{ f (4,) }

* only Interested in top £ why enumerate all £2?

* aand b are sorted!
* f1s monotonic! ;
- f(a,, b,) must be the 1-best b
* the 2nd-best must be... 2

— either f(a,, b,) or f(a,, b,)

Liang Huang (Penn) k-best parsing 21

Algorithm 1: speedup mult,

mult, (f, a, b) = top,{ f (4,) }

* only Interested in top £ why enumerate all £2?

* aand b are sorted!
.1
* f 1s monotonic!) P
 f(a,, b,) must be the 1-best 4
5
* the 2nd-best must be...
— either f(a,, b,) or f(a,, b,)
* what about the 3rd-best?

Liang Huang (Penn) k-best parsing 21

Algorithm 1 (Demo)

f(a,b)=ab

Algorithm 1 (Demo)

f(a,b)=ab

Liang Huang (Penn) k-best parsing 22

f(a,b)=ab

Liang Huang (Penn)

Algorithm 1 (Demo)

.30

k-best parsing

22

f(a,b)=ab

Liang Huang (Penn)

Algorithm 1 (Demo)

.24

.30 | .20

.6 A
a

k-best parsing

22

f(a,b)=ab

Liang Huang (Penn)

Algorithm 1 (Demo)

24

30 | .20

.6 A
a

k-best parsing

23

f(a,b)=ab

Liang Huang (Penn)

Algorithm 1 (Demo)

24

30 | .20

.6 A
a

k-best parsing

23

f(a,b)=ab

Liang Huang (Penn)

Algorithm 1 (Demo)

.18

24 | .16

30 | .20

.6 A
a

k-best parsing

23

Algorithm 1 (Demo)

use a priority queue (heap) to
store the candidates (frontier)

Liang Huang (Penn)

.18

24 | .16

30 | .20

.6 A
a

k-best parsing

24

Algorithm 1 (Demo)

use a priority queue (heap) to
store the candidates (frontier)

Liang Huang (Penn)

.18

24 | .16

30 | .20

.6 A
a

k-best parsing

24

Algorithm 1 (Demo)

use a priority queue (heap) to
store the candidates (frontier)

Liang Huang (Penn)

.18

24 | .16

B0 | .20 | .15

.6 A 0
a

k-best parsing

24

Algorithm 1 (Demo)

use a priority queue (heap) to
store the candidates (frontier)

In each 1teration:

1. extract-max from the

heap
1
2. push the two
3 | .18
- “shoulders” into the
<" 4 | 24 | .16 heap
5 | .80 | 20 | .15 k iterations.
6 | 4 | 8 | .8 O(klogk |E|) overall time

Liang Huang (Penn) k-best parsing 24

Algorithm 2: speedup merge,

* Algorithm 1 works on each hyperedge
sequentially

* can we process them simultaneously?

u: a w: b p: X q:y

&\ f ’ .

Liang Huang (Penn) k-best parsing 25

]

Algorithm 2 (Demo)

starts with an initial heap ot the 1-best

derivations from each hyperedge

B, xC

N

item-level heap

Liang Huang (Penn) k-best parsing 26

Algorithm 2 (Demo)

pop the best (.42) and ...

B, xC

N

item-level heap

42

Liang Huang (Penn) k-best parsing 27

Algorithm 2 (Demo)

pop the best (.42) and ...

push the two successors (.07 and .24)

B, xC B,xC B.xC

\

item-level heap

Liang Huang (Penn) k-best parsing 28

Algorithm 2 (Demo)

pop the 2nd-best (.36)

B,xC B.xC

output
item-level heap P

42

v k=2, d=3 36

Liang Huang (Penn) k-best parsing 29

Algorithm 3: Oftline (lazy)

* from Algorithm 0 to Algorithm 2:

— delaying the calculations until needed -- lazier

— larger locality

* even lazier... (one step further)

— we are Interested 1n the A-best derivations of the

Liang Huang (Penn) k-best parsing 30

Algorithm 3: Oftline (lazy)

* forward phase

— do a normal 1-best search till the final item

— but construct the hypergraph (forest) along the way

* recursive backward phase
— ask the final item: what’s your 2nd-best?
— final 1item will propagate this question till the leaves

— then ask the final item: what’s your 3rd-best?

Liang Huang (Penn) k-best parsing 31

Algorithm 3 demo

after the “forward” step (1-best parsing):

forest = 1-best derivations from each hyperedge

NP (1, 2)

Liang Huang (Penn)

1-best

S (1, 7)

VP (4,7)
VP (1, 5)

k-best parsing

42

32

Algorithm 3 demo

now the backward step

NP (1, 2)

that’s your 2nd-best?

Liang Huang (Penn) k-best parsing 33

Algorithm 3 demo

NP (1, 2)

I’'m not sure... let me
ask my parents...

Liang Huang (Penn) k-best parsing 34

NP (1, 2)

Liang Huang (Penn)

Algorithm 3 demo

k-best parsing

VP (1, B) P(6,7)

42

35

NP (1, 2)

Liang Huang (Penn)

Algorithm 3 demo

but wait a minute... did you already know the ”’s ?

k-best parsing

VP (1, B) P(6,7)

42

36

Algorithm 3 demo

but wait a minute... did you already know the ”’s ?

NP (1, 2) VP (1, B) P(6,7)

oops... forgot to ask 42

more questions

recursively ..

k-best parsing 36

Algorithm 3 demo

what’s your 2nd-best?

NP (1, 2)

Liang Huang (Penn) k-best parsing 37

Algorithm 3 demo

recursion goes on to the leaf nodes

NP (1, 2)

Liang Huang (Penn) k-best parsing 38

Algorithm 3 demo

and reports back the numbers...

NP (1, 2) VP (1, B) P(6,7)

42

Liang Huang (Penn) k-best parsing 39

Algorithm 3 demo

push .30 and .21 to the candidate heap (priority queue)

NP (1, 2) VP (1, B) P(6,7)

k=2 42

.30

Liang Huang (Penn) k-best parsing 40

Algorithm 3 demo

pop the root of the heap (.30)

NP (1, 2) VP (1, B) P(6,7)

42

k=2
@ [know my Qnd—D s <1’ 7) .30

Liang Huang (Penn) k-best parsing 41

Interesting Properties

1-best 1s best everywhere (all
decisions optimal)

2nd-best 1s optimal everywhere
except one decision

— and that decision must be 2nd-best
— and 1t’s the best of all 2nd-best

decisions

so what about the 3rd-best?

kth-best 1s...

) (rank(s) —1) <k —1
0EA

Liang Huang (Penn)

local picture:

1 06 | .04 | .03 | .03
3 \.\i~8\ 12 (.09 | .09
< 4| .24 \.\16\ 12 .12
5 .80 | .20 f‘r5\ 15

k-best parsing

42

Summary of Algorithms

Algorithms Time Complexity Locality

1-best O(|E|) hyperedge

alg. 0: naive O(kt| K1) hyperedge (mult,)
alg. 1 O(klog k | E|) hyperedge (mult,)
alg. 2 O(|E|+| V]| klog k) item (merge,)
alg. 3: lazy O(|E|+|D| klog k) global

for CRY: a=2, |E|=0#*|P|), |V|=0n?*|N|), |D|=0(n)
a 1s the arity of the grammar

Liang Huang (Penn) k-best parsing 43

Outline

* Experiments
— Collins/Bikel Parser

— both efficiency and accuracy

* Applications in Machine Translation

Liang Huang (Penn) k-best parsing 44

Background: Statistical Parsing

* Probabilistic Grammar

— induced from a treebank (Penn Treebank)

* State-of-the-art Parsers

— Collins (1999), Bikel (2004, Charniak (2000), etc.
* Evaluation of Accuracy
— PARSEVAL: tree-similarity (English treebank: ~90%)

* Previous work on k-best Parsing:

— Collins (2000): turn oftf dynamic programming

— Charniak/Johnson (2005): coarse-to-fine, still too slow

Liang Huang (Penn) k-best parsing 45

Efficiency

Implemented Algorithms 0, 1, 8 on top of Collins/Bikel Parser
Average (wall-clock) time on Penn Treebank (per sentence):
Algorithm 0 —+—

Algorithm 1 —=—-
Algorithm 3

)
T
=
[
[
Ak
_U’J
ak]
E
|_
[y
£
[}
-
oo
(i
L
[
oo
-
Ak]
=
=L

(J + | D| k log k)

Liang Huang (Penn) k-best parsing 46

Oracle Reranking

: 1d dard
given k parses of a sentence £
correct” parse accuracy
— 100%
* oracle reranking: pick the
best parse according to
the gold-standard
/— 89%
1-best

- : pick the
best parse according to
the score tunction

Liang Huang (Penn) k-best parsing 47

Oracle Reranking

: 1d dard
given k parses of a sentence £

“correct” parse accuracy
— 100%
* oracle reranking: pick the — G 96%
best parse according to :
am»

the gold-standard F-best parses

) f— 89%
1-best —
. : pick the

best parse according to

the score function

~ T 78%

Liang Huang (Penn) k-best parsing 47

Oracle Reranking

gold standard
“correct” parse accuracy

D 100%

glven k parses of a sentence

. . oracle —~__
* oracle reranking: pick the G 96%

best parse according to

the gold-standard

G 9
k-best parses < :

) f— 89%
1-best —
. : pick the

best parse according to

the score function

~ T 78%

Liang Huang (Penn) k-best parsing 47

Quality of the /-best lists

This work on top of _--
Collins parser -~ Collins (2000)

o
Q
o
P
L
£
3]
©
O

This work with beam width 107
(Collins, 2000)

(F{awaparklpi, 1 5}9?)

10 20 30 50 70 100
k

Liang Huang (Penn) k-best parsing 48

Quality of the /-best lists

This work on top of _ -
Collins parser .-~

-
-~

-~

- P
- ’ =
. - e
- -
- / R
L e
-) -
- e Lt
.--..- .f r-.r
=

rd

This work with beam width 107
(Collins, 2000)

(Ratnaparkhi, 1997)
20 30 50 70 100

Liang Huang (Penn) k-best parsing 48

Why are our f-best lists better?

average number of parses for sentences of certain length

average number of parses

sentence length
Collins (2000): turn down dynamic programming
theoretically exponential time complexity;

aggressive beam pruning to make it tractable in practice

Liang Huang (Penn) k-best parsing 49

Why are our f-best lists better?

average number of parses for sentences of certain length

7% of the test-set

average number of parses

sentence length
Collins (2000): turn down dynamic programming
theoretically exponential time complexity;

aggressive beam pruning to make it tractable in practice

Liang Huang (Penn) k-best parsing 49

Implemented 1n ...

— state-of-the-art statistical parsers

e Charniak parser (2005); Berkeley parser (2006)

* McDonald et al. dependency parser (2005)

* Microsoft Research (Redmond) dependency parser (2006)
— generic dynamic programming languages/packages

* Dyna (Eisner et al.,, 2005) and Tiburon (May and Knight, 2006)
— state-of-the-art syntax-based translation systems

* Hiero (Chiang, 2005)

 ISI syntax-based system (2005)

* CMU syntax-based system (2006)

* BBN syntax-based system (2007)

Liang Huang (Penn) k-best parsing 50

Applications in

Machine Translation

Syntax-based Translation

® synchronous context-free grammars (SCFGs)
® generating pairs of strings/trees simultaneously

® co-indexed nonterminal further rewritten as a unit

S 1) vp@), (1) vp@)
vP — PPO VPOA®, vpe ppl
— Baoweier, Powell

S S
/\ /\
VP VP

Baoweier PP VP Powell VP PP

yu Shalong juxring le huitan held a meeting with Sharon

Liang Huang (Penn) Applications in MT 52

Translation as Parsing

® translation (“decoding”) => monolingual parsing

® parse the source input with the source projection

® build the corresponding target sub-strings in parallel

Liang Huang (Penn) Applications in MT 53

Translation as Parsing

® translation (“decoding”) => monolingual parsing

® parse the source input with the source projection

® build the corresponding target sub-strings in parallel
1) vP®), (1) vp®)

PP vP®@ vpP® ppd)
Baowezer, Powell

Baoweier juxing le huitan

Liang Huang (Penn) Applications in MT 53

Translation as Parsing

® translation (“decoding”) => monolingual parsing

® parse the source input with the source projection

® build the corresponding target sub-strings in parallel
1) vP®),

PPL VP(®),
Baoweier,

Baoweier juxing le huitan

Liang Huang (Penn) Applications in MT 53

Translation as Parsing

® translation (“decoding’”’) => monolingual parsing

® parse the source input with the source projection

® build the corresponding target sub-strings in parallel

S — NpPWO VPO,
VP — PPO VPO
NP — Baoweter,

juxing le huitan

Baoweier

Liang Huang (Penn) Applications in MT 53

Translation as Parsing

® translation (“decoding’”’) => monolingual parsing

® parse the source input with the source projection

® build the corresponding target sub-strings in parallel

S — NpPWO VPO,
VP — PPO VvP®)
NP — Baoweter,

G EE29H

Baoweier yu Shalong juxing le huitan

Liang Huang (Penn) Applications in MT 53

Translation as Parsing

® translation (“decoding’”’) => monolingual parsing

® parse the source input with the source projection

® build the corresponding target sub-strings in parallel

S — NpPWO VPO,
VP — PPO VvP®)
NP — Baoweter,

VP

1.5 1.0

3.0

Baoweier yu Shalong juxing le huitan

Liang Huang (Penn) Applications in MT 53

Translation as Parsing

® translation (“decoding’”’) => monolingual parsing

® parse the source input with the source projection

® build the corresponding target sub-strings in parallel

S — NPO VPR, NPOD VPR
VP — PPO VPR vPQe ppl)

NP — Baoweter, Powell
3.0
VP
1.5 1.0 2.0
R

Baoweier yu Shalong juxing le huitan

Liang Huang (Penn) Applications in MT 53

Translation as Parsing

® translation (“decoding’”’) => monolingual parsing

® parse the source input with the source projection

® build the corresponding target sub-strings in parallel
s — NrPOvVPOe NpPO VPR

VP — PPO VPR vPQe ppl)
NP — Baoweter, Powell

3.0

Powell with Sharon held a talk

1.5 1.0

Baoweier yu Shalong juxing le huitan

Liang Huang (Penn) Applications in MT 53

Translation as Parsing

® translation (“decoding’”’) => monolingual parsing

® parse the source input with the source projection

® build the corresponding target sub-strings in parallel

S — NPOL VPO NPOD VPO
vP — PPO vVPO® vpPe ppl
NP — Baoweter, Powell

held a talk with Sharon

Powell with Sharon held a talk
1.5 1.0
EEn 2T
Baoweier yu Shalong juxing le huitan

Liang Huang (Penn) Applications in MT 53

Language Model: Rescoring

Spanish/English
Bilingual Text

Statistical Analysis Statistical Analysis

v v

: ‘ translation model (TM) | Broken language model (LM) :
Spanish —> competency English —> fluency English

What hunger have |
Hungry | am so
Have | that hunger
| am so hungry
How hunger have |

Que hambre tengo yo > | am so hungry

Liang Huang (Penn) Applications in MT 54

Language Model: Rescoring

Spanish/English
Bilingual Text

StatisticaiAnalysis Statistical Analysis
: Broken -
What hunger have |

Hungry | am so
Have | that hunger
| am so hungry
How hunger have |

Que hambre tengo yo > | am so hungry

Liang Huang (Penn) Applications in MT 54

Language Model: Rescoring

Spanish/English
Bilingual Text

Statistical Analysis Statistical Analysis

o -~

k-best rescoring

What hunger have |
Hungry | am so
Have | that hunger
| am so hungry
How hunger have |

Que hambre tengo yo > | am so hungry

Liang Huang (Penn) Applications in MT 54

Language Model: Rescoring

Spanish/English
Bilingual Text

Statistical Analysis Statistical Analysis

o -~

k-best rescoring |,

3.7 What hunger have |

3.8 Hungry | am so
4.1 Have | that hunger
Que hambre tengo yo 25 > | am so hungry > | am so hungry

7.2 How hunger have |

Liang Huang (Penn) Applications in MT 54

Language Model: Rescoring

Spanish/English
Bilingual Text

StatisticaiAnalysis Statistical Analysis
: Broken :
k-best rescoring |, LM
3.7 What hunger have | 5.4
3.8 Hungry | am so 7.0
4.1 Have | that hunger 9.8
Que hambre tengo yo 25 > | am so hungry 07 > | am so hungry

7.2 How hunger have | 8.7

Liang Huang (Penn) Applications in MT 54

k-best rescoring results

® The ISI syntax-based translation system

® currently the best performing system on
Chinese to English task in NIST evaluations

® based on synchronous grammars BLEU score
® translation model (TM) only: 24.45
o rescoring with trigram LM on 25000-best list: 34.58

Liang Huang (Penn) Applications in MT 55

Language Model: Integration

Spanish/English
Bilingual Text

Statistical Analysis Statistical Analysis

Spanish English

synchronous CFG n-gram LM

Liang Huang (Penn) (Knight and Koehn, 2003) Applications in MT 56

Language Model: Integration

Spanish/English
Bilingual Text

Statistica! Analysis Statistical Analysis
|

Broken
English

Que hambre tengo yo —>| integrated decoder |—> | am so hungry

computationally challenging! &

Spanish English

Liang Huang (Penn) (Knight and Koehn, 2003) Applications in MT 56

Integrated Decoding Results

® The ISI syntax-based translation system

® currently the best performing system on
Chinese to English task in NIST evaluations

based on synchronous grammars BLEU score
translation model (TM) only: 24.45
rescoring with trigram LM on 25000-best list: 34.58

trigram integrated decoding: 38.44

Liang Huang (Penn) Applications in MT 57

Integrated Decoding Results

® The ISI syntax-based translation system

® currently the best performing system on
Chinese to English task in NIST evaluations

based on synchronous grammars BLEU score
translation model (TM) only: 24.45
rescoring with trigram LM on 25000-best list: 34.58

trigram integrated decoding: 38.44

but very slow!
Liang Huang (Penn) Applications in MT 57

Rescoring vs. Integration

quality
A
good
> speed
slow fast

Liang Huang (Penn) Applications in MT 58

Rescoring vs. Integration

quality
A

slow fast

> speed

Liang Huang (Penn) Applications in MT 58

Rescoring vs. Integration

quality
A

good) any compromise!

(on-the-fly rescoring?)

slow fast

> speed

Liang Huang (Penn) Applications in MT 58

Rescoring vs. Integration

Yes, forest-rescoring --
almost as fast as rescoring, and
almost as good as integration

quality
A
) any compromise!

(on-the-fly rescoring?)

slow fast

> speed

Liang Huang (Penn) Applications in MT 58

Why Integration is Slow!?

hyperedge
/ \

with ... Sharon held ... talk
hold ... talks

with ... Shalong

® split each node into +LM items (w/ boundary words)
® beam search: only keep top-k +LM items at each node
® but there are many ways to derive each node

® can we avoid enumerating all combinations!?

Liang Huang (Penn) Applications in MT 59

Why Integration is Slow!?

hold ... Sharon
held ... Shalong

w) ~bald ; Shalong

with ... Sharon held ... talk

with ... Shalong hold ... talks

® split each node into +LM items (w/ boundary words)
® beam search: only keep top-k +LM items at each node
® but there are many ways to derive each node

® can we avoid enumerating all combinations!?

Liang Huang (Penn) Applications in MT 59

Forest Rescoring

k-best parsing with LM cost, we can only
Algorithm 2 do k-best approximately.

L]

\

\

process all hyperedges simultaneously!
significant savings of computation

Liang Huang (Penn) Applications in MT 60

Forest Rescoring Results

® on the Hiero system (Chiang, 2005)
® ~|0 fold speed-up at the same level of BLEU
® on my syntax-directed system (Huang et al., 2006)
® ~|0 fold speed-up at the same level of search-error
® on a typical phrase-based system (Pharaoh)
® ~30 fold speed-up at the same level of search-error
® ~|00 fold speed-up at the same level of BLEU
® also used in see my ACL ’07 paper for details

e |SI, CMU, and BBN syntax-based systems

Liang Huang (Penn) Applications in MT 6l

Conclusions

® monotonic hypergraph formulation

® the k-best derivations problem

® k-best Algorithms

® Algorithm O (naive) to Algorithm 3 (lazy)
® experimental results

e efficiency

® accuracy (effectively searching over larger space)
® applications in machine translation

® k-best rescoring and forest rescoring

Liang Huang (Penn) Applications in MT 62

Thank you!
ikl

Questions?
Comments!

Thank you!
ikl

Questions?
Comments!

Thank you!
ikl

Questions?
Comments!

e Liang Huang and David Chiang (2005).
Better k-best Parsing.
In Proceedings of IWPT,Vancouver, B.C.

Liang Huang and David Chiang (2007).
Forest Rescoring: Faster Decoding with Integrated Language Models.
In Proceedings of ACL, Prague, Czech Rep.

Quality of the /-best lists

o
Q
o
P
L
£
3]
©
O

" (Charniak and Johnson, 200@

This work with beam width 10
(Collins, 2000)

(F{awaparklpi, 1 5}9?)

10 20 30 50 70 100
k

Liang Huang (Penn) k-best parsing 64

Syntax-based Experiments

Tree-to-String System

® syntax-directed, English to Chinese (Huang, Knight, Joshi, 2006)
® the reverse direction is found in (Liu et al, 2006)

i NP-C VP synchronous tree-
bei substitution grammars (STSG)

(Galley et al., 2004; Eisner, 2003)

related to
STAG (Shieber/Schabes, 90)

PP

shot TO NP-C tested on 140 sentences
| | slightly better BLEU scores

to N|N the police than Pharaoh

death
Liang Huang (Penn) e Applications in MT 66

Speed vs. Search Quality

2190 L I T 1T T 11T
: full-integration

E cube pruning =+«
218.8 |-: : | _
P cube growing =ess =

218.6

218.4

i
)
O
O
b

©
O
=
)
O)
4]
-
5]
=
4y}

v, Mo

218 2 Lu . L1 g o] 'I"""E""l!. e
10° 10 10°

average number of +LM items explored per sentence

Liang Huang (Penn) Applications in MT 67

Speed vs. Translation Accuracy

0.262

0.260

0.258

L
O
O
wn
D
L
—
Wl

0.256

0.254

full-integration
cube pruning
cube growing
p 1l N

10°

10%

10°

average number of +LM items explored per sentence

Liang Huang (Penn)

Applications in MT 68

Cube Pruning

S > &
A \Qx. QOX- \QX_
SAEEO R
3 N

monotonic grid?

(VP held x meeting)
3,6

(VP held % talk)

(VP hold * conference) 1.5

Liang Huang (Penn) Applications in MT 69

Cube Pruning
‘OQ\ @*OQ\ \0&0\

A x»* éo* v*
SN 8
AN R

S N

non-monotonic grid
due to LM combo costs

(VP held * meeting)

3,6 9.0+ 0.5

(VP 557 * t2lk) 2.1 +03|4.1 +54(9.1 +023

(VP 5od * conference)y BolS] 45+ 0.6]6.5 +105| 115+ 0.6

Liang Huang (Penn) Applications in MT 70

Cube Pruning

/A\ bigram (meeting, with) * *
o >
A
PPi.3 X VP35 X
b) N
o

non-monotonic grid
due to LM combo costs

(V held *(meetm% 90+ 05

(VP 557 * t2lk) 4.1 +54(9.1 +03

(VP hold conference) 65 +105|115+06

Liang Huang (Penn) Applications in MT 70

Cube Pruning

S > &
A \Qx. QOX- \QX_
AN R
N, \

non-monotonic grid
due to LM combo costs

(VP held meeting)
3,6

(VP held % talk)

(VP hold * conference)

12.1

Liang Huang (Penn) Applications in MT 7|

Cube Pruning

k-best parsing @&o‘\\ @*OQ\ \0&0\
Algorithm | & & &
%
* a priority queue of candidates f: (b\p‘f @\‘:
e extract the best candidate Q™ Q Q>
\ N N

(VP held x meeting)
3,6

(VP held % talk)

(VP hold * conference)

Liang Huang (Penn) Applications in MT 72

Cube Pruning

k-best parsing &o‘\\ @&o‘”\ \Oo%\
Algorithm | & o &
. . 2 *
* a priority queue of candidates @%SD (b\)o‘; @t\?‘:
e extract the best candidate Q™ QN Q™
* push the two successors NS G @

(VP held * meeting)
3,6

(VP held % talk)

(VP hold * conference)

Liang Huang (Penn) Applications in MT 73

Cube Pruning

k-best parsing @&o‘\\ @&o‘”\ \Ooé@\
Algorithm | & o &
. . 2 *
* a priority queue of candidates @%SD (b\)o‘; 45’:?5
e extract the best candidate Q™ QN Q™
* push the two successors NS @ @

(VP held * meeting)
3,6

(VP held % talk)

(VP hold * conference)

Liang Huang (Penn) Applications in MT 74

Cube Pruning

items are popped out-of-order SN SN JCAN
‘D’(’ ‘b"{/ \O
solution: keep a buffer of pop-ups S S &°
2.5 24 5.1

(VP held meeting)
3,6

(VP held % talk)

(VP hold * Conference)

Liang Huang (Penn) Applications in MT 75

Cube Pruning

items are popped out-of-order S
S
solution: keep a buffer of pop-ups &
2.5 24 5.1

finally re-sort the buffer
and return inorder:

24 25 5.1

(VP held x meeting)
3,6

&oo\ 0%\
\O
030@ o}‘@

(VP held % talk)

(VP hold * Conference)

Liang Huang (Penn)

Applications in MT 75

