MaxForce: Max-Violation Perceptron and

Forced Decoding for Scalable MT Training

Scalable Training for MT Finally Made Successful

Discriminative Training for SMT

- discriminative training is dominant in parsing / tagging
 - can use arbitrary, overlapping, lexicalized features
 - but not very successful yet in machine translation
- most efforts on MT training tune feature weights on the small dev set (~Ik sents) not the training set!
 - as a result can only use ~10 dense features (MERT)
 - or ~I0k rather impoverished features (MIRA/PRO)
- Liang et al (2006) train on the training set but failed

training set (>100k sentences)

test set

(~Ik sents)

Timeline for MT Training

MERT (Och '02)

(dense features)

training set (>100k sentences)

test set (~lk sents)

Timeline for MT Training

Standard Perceptron (a noble failure) (Liang et al 2006)

MERT (Och '02)

(dense features)

training set (>100k sentences)

test set (~lk sents)

Timeline for MT Training MERT (dense features) (Och '02) Standard Perceptron (a noble failure) (Liang et al 2006) MIRA (Watanabe+ '07) Chiang+ '08-'12) (pseudo sparse features) dev set test set training set (>100k sentences) (~lk sents) (~lk sents)

Timeline for MT Training

Standard Perceptron (a noble failure) (Liang et al 2006)

MERT (dense features) (Och '02) MIRA (Watanabe+'07) (Chiang+ '08-'12) (pseudo sparse features) PRO (Hopkins+May '11) Regression (Bazrafshan+'l2)

training set (>100k sentences)

test set (~Ik sents)

Timeline for MT Training

Standard Perceptron (a noble failure) (Liang et al 2006)

MERT (dense features) (Och '02) MIRA (Watanabe+'07) (Chiang+ '08-'12) (pseudo sparse features) PRO (Hopkins+May '11) Regression (Bazrafshan+'l2) HOLS (sparse features as one dense feature) (Flanigan+'I3) dev set test set (~lk sents)

training set (>100k sentences)

Why previous work fails

- their learning methods are based on exact search
 - MT has huge search spaces => severe search errors
 - learning algorithms should fix search errors
 - full updates (perceptron/MIRA/PRO) can't fix search errors
 - MT involves latent variables (derivations not annotated)
 - perceptron/MIRA was not designed for latent variables
- we need better variants for perceptron

Why our approach works

use a variant of perceptron tailored for inexact search

- fix search errors in the middle of the search
- "partial updates" instead of "full updates"
- use forced decoding lattice as the target to update to
- use parallelized minibatch to speed up learning
- result: scaled to a large portion of the training data
 - 20M sparse features => +2.0 BLEU over MERT/PRO

• with latent variables (hidden derivations)

• with latent variables (hidden derivations)

all gold derivations

with latent variables (hidden derivations)

all gold derivations

with latent variables (hidden derivations)

 那人咬了狗
 x

 best

 derivation

 the dog bit the man
 y

all gold derivations

with latent variables (hidden derivations)

all gold derivations

wrong translation

with latent variables (hidden derivations)

all gold derivations

wrong translation

with latent variables (hidden derivations)

all gold derivations

wrong translation

update: penalize best derivation and reward best gold derivation

Outline

- Motivations
- Phrase-based Translation and Forced Decoding
- Violation-Fixing Perceptron for SMT
 - Update Strategies: Early Update and Max-Violation
 - Feature Design
- Experiments

• split each -LM state into many +LM states

• split each -LM state into many +LM states

split each -LM state into many +LM states

split each -LM state into many +LM states

split each -LM state into many +LM states

both as data selection (more literal) and oracle derivations

Bushi yu Shalong juxing le huitan

Bush held talks with Sharon

both as data selection (more literal) and oracle derivations

Bushi yu Shalong juxing le huitan

Bush held talks with Sharon

both as data selection (more literal) and oracle derivations Bush held talks with Sharon Bushi yu Shalong juxing le huitan ••• ... meeting ... talks **Bush** ... talk 000 held talks gold derivation lattice with Sharon held **Bush** Sharon talks with 6

both as data selection (more literal) and oracle derivations

Forced Decoding

both as data selection (more literal) and oracle derivations

Forced Decoding

both as data selection (more literal) and oracle derivations

Forced Decoding

both as data selection (more literal) and oracle derivations

Unreachable Sentences and Prefix

- distortion limit causes unreachability (hiero would be better)
 - but we can still use reachable prefix-pairs of unreachable pairs

Ш

Unreachable Sentences and Prefix

- distortion limit causes unreachability (hiero would be better)
 - but we can still use reachable prefix-pairs of unreachable pairs

Ш

Sentence/Word Reachability Ratio

- how many sentences pairs pass forced decoding?
 - the ratio drops dramatically as sentences get longer
 - prefixes boost coverage

Sentence/Word Reachability Ratio

- how many sentences pairs pass forced decoding?
 - the ratio drops dramatically as sentences get longer

Sentence/Word Reachability Ratio

- how many sentences pairs pass forced decoding?
 - the ratio drops dramatically as sentences get longer

Number of Gold Derivations

- exponential in sentence length (on fully reachables)
 - these are the "latent variables" in learning

Outline

- Background: Phrase-based Translation (Koehn, 2004)
- Forced Decoding
- Violation-Fixing Perceptron for MT Training
 - Update strategy
 - Feature design
- Experiments

binary classification

binary classification

structured classification

binary classification

structured classification

- challenges in applying perceptron for MT
 - the inference (decoding) is vastly inexact (beam search)
 - we know standard perceptron doesn't work for MT
- intuition: the learner should fix the search error first

- challenges in applying perceptron for MT
 - the inference (decoding) is vastly inexact (beam search)
 - we know standard perceptron doesn't work for MT
- intuition: the learner should fix the search error first

real decoding beam search

real decoding beam search

should fix search errors here!

- early update (Collins/Roark'04) when the correct falls off beam
 - up to this point the incorrect prefix should score higher
 - that's a "violation" which we want to fix

- early update (Collins/Roark'04) when the correct falls off beam
 - up to this point the incorrect prefix should score higher
 - that's a "violation" which we want to fix

- early update (Collins/Roark'04) when the correct falls off beam
 - up to this point the incorrect prefix should score higher
 - that's a "violation" which we want to fix

- early update (Collins/Roark'04) when the correct falls off beam
 - up to this point the incorrect prefix should score higher
 - that's a "violation" which we want to fix

- early update (Collins/Roark'04) when the correct falls off beam
 - up to this point the incorrect prefix should score higher
 - that's a "violation" which we want to fix
- standard perceptron does not guarantee violation
 - w/ pruning, the correct seq. might score higher at the end!
 - called "invalid" update b/c it doesn't fix the search error

- the gold-standard derivations are **not** annotated
 - we treat any reference-producing derivation as good

- the gold-standard derivations are **not** annotated
 - we treat any reference-producing derivation as good

- the gold-standard derivations are **not** annotated
 - we treat any reference-producing derivation as good

- the gold-standard derivations are **not** annotated
 - we treat any reference-producing derivation as good

- the gold-standard derivations are **not** annotated
 - we treat any reference-producing derivation as good

- the gold-standard derivations are **not** annotated
 - we treat any reference-producing derivation as good

- the gold-standard derivations are **not** annotated
 - we treat any reference-producing derivation as good

Fixing Search Error 2: Max-Violation

- early update works but learns slowly due to partial updates
- max-violation: use the prefix where violation is maximum
 - "worst-mistake" in the search space
- we call these methods "violation-fixing perceptrons" (Huang et al 2012)

Latent-Variable Perceptron

Roadmap of the techniques

structured perceptron (Collins, 2002)

Roadmap of the techniques

structured perceptron (Collins, 2002)

latent-variable perceptron (Zettlemoyer and Collins, 2005; Sun et al., 2009)

Roadmap of the techniques

Feature Design

- Dense features:
 - standard phrase-based features (Koehn, 2004)
- Sparse Features:
 - rule-identification features (unique id for each rule)
 - word-edges features
 - lexicalized local translation context within a rule
 - non-local features
 - dependency between consecutive rules

- the first and last Chinese words in the rule
- the first and last English words in the rule
- the two Chinese words surrounding the rule

- the first and last Chinese words in the rule
- the first and last English words in the rule
- the two Chinese words surrounding the rule

- the first and last Chinese words in the rule
- the first and last English words in the rule
- the two Chinese words surrounding the rule

- the first and last Chinese words in the rule
- the first and last English words in the rule
- the two Chinese words surrounding the rule

- the first and last Chinese words in the rule
- the first and last English words in the rule
- the two Chinese words surrounding the rule

- the first and last Chinese words in the rule
- the first and last English words in the rule
- the two Chinese words surrounding the rule

Combo Features:

- the first and last Chinese words in the rule
- the first and last English words in the rule
- the two Chinese words surrounding the rule
 - Combo Features:

- the first and last Chinese words in the rule
- the first and last English words in the rule
- the two Chinese words surrounding the rule
 - Combo Features:

- the first and last Chinese words in the rule
- the first and last English words in the rule
- the two Chinese words surrounding the rule
 - Combo Features:

- the first and last Chinese words in the rule
- the first and last English words in the rule
- the two Chinese words surrounding the rule
 - Combo Features:

- the first and last Chinese words in the rule
- the first and last English words in the rule
- the two Chinese words surrounding the rule

Combo Features:

100010=沙龙|held 010001=举行|talks

- the first and last Chinese words in the rule
- the first and last English words in the rule
- the two Chinese words surrounding the rule

Combo Features:

100010=沙龙|held 010001=举行|talks

Lexical features are often too sparse

• 6 kinds of lexical backoffs with various budgets

• total budget can't exceed 10 (bilexical)

Chinese	English	class size		budget
word		52.9k	64.2k	5
characters		3.7k		3
Brown cluster, full string		200		3
Brown cluster, prefix 6		6	8	2
Brown cluster, prefix 4		4	4	2
POS tag		52	36	2
word type	-	4	-	1

Lexical features are often too sparse

• 6 kinds of lexical backoffs with various budgets

• total budget can't exceed 10 (bilexical)

Chinese	English	class size		budget
word		52.9k	64.2k	5
characters	-	3.7k	. - .	3
Brown cluster, full string		200		3
Brown cluster, prefix 6		6	8	2
Brown cluster, prefix 4		4	4	2
POS tag		52	36	2
word type	-	4	-	1

Lexical features are often too sparse

6 kinds of lexical backoffs with various budgets

total budget can't exceed I0 (bilexical)

Chinese	English	class size		budget
word		52.9k	64.2k	5
characters	-	3.7k	-	3
Brown cluster, full string		200		3
Brown cluster, prefix 6		6	8	2
Brown cluster, prefix 4		4	4	2
POS tag		52	36	2
word type	-	4	-	1

Lexical features are often too sparse

6 kinds of lexical backoffs with various budgets

total budget can't exceed 10 (bilexical)

Chinese	English	class size		budget
word		52.9k	64.2k	5
characters		3.7k		3
Brown cluster, full string		200		3
Brown cluster, prefix 6		6	8	2
Brown cluster, prefix 4		4	4	2
POS tag		52	36	2
word type	-	4	-	1

100010=沙龙|held

P00010=NN|held

Lexical features are often too sparse

6 kinds of lexical backoffs with various budgets

total budget can't exceed 10 (bilexical)

Chinese	English	class size		budget
word		52.9k	64.2k	5
characters	-	3.7k		3
Brown cluster, full string		200		3
Brown cluster, prefix 6		6	8	2
Brown cluster, prefix 4		4	4	2
POS tag		52	36	2
word type	-	4	-	1

100010=沙龙|held

P00010=NN|held

Lexical features are often too sparse

6 kinds of lexical backoffs with various budgets

• total budget can't exceed 10 (bilexical)

Chinese	English	class size		budget
word		52.9k	64.2k	5
characters	-	3.7k		3
Brown cluster, full string		200		3
Brown cluster, prefix 6		6	8	2
Brown cluster, prefix 4		4	4	2
POS tag		52	36	2
word type	-	4	-	1

100010=沙龙|held

P00010=NN|held

010001=举行|talks

Lexical features are often too sparse

6 kinds of lexical backoffs with various budgets

• total budget can't exceed 10 (bilexical)

Chinese	English	class size		budget
word		52.9k	64.2k	5
characters	-	3.7k	-	3
Brown cluster, full string		200		3
Brown cluster, prefix 6		6	8	2
Brown cluster, prefix 4		4	4	2
POS tag		52	36	2
word type	-	4	-	1

100010=沙龙|held

P00010=NN|held

010001=举行|talks

0c0001=举|talks
Non-Local Features (trivial)

- two consecutive rule ids (rule bigram model)
- the last two English words and the current rule
- should explore a lot more!

Non-Local Features (trivial)

- two consecutive rule ids (rule bigram model)
- the last two English words and the current rule
- should explore a lot more!

Non-Local Features (trivial)

- two consecutive rule ids (rule bigram model)
- the last two English words and the current rule
- should explore a lot more!

• Date sets

Scale	Language	sent.	dev	tst
-------	----------	-------	-----	-----

Scale	Language	sent.	dev	tst	
Small		30k	nist06 nows	nist08 news	
Large		240k	mstod news		

Scale	Language	sent.	dev	tst	
Small	Ch En	30k	nist06 nows	nist08 noves	
Large		240k			

	sm	all	large		
	sent.	words	sent.	words	
full	21.4%	8.8%	32.1%	12.7%	
+prefix	61.3%	24.6%	67.3%	32.8%	

Table 3: The ratio of sentence and word coverage on small and large training sets.

Scale	Language	sent.	dev	tst	
Small	Ch En	30k	nist06 nows	nist08 noves	
Large		240k			

	sm	all	large	
	sent. words		sent.	words
full	21.4%	8.8%	32.1%	12.7%
+prefix	61.3%	24.6%	67.3%	32.8%

l 0x dev

Table 3: The ratio of sentence and word coverage on small and large training sets.

Scale	Language	sent.	dev	tst	
Small	Ch En	30k	nist06 nows	nist08 noves	
Large		240k			

	sm	all	large			
	sent.	words	sent.	words		
full	21.4%	8.8%	32.1%	12.7%		
+prefix	61.3%	24.6%	67.3%	32.8%		

Table 3: The ratio of sentence and word coverage onsmall and large training sets.

Scale	Language	sent.	dev	tst	
Small		30k	nist06 nows	nist08 news	
Large		240k			
Large	Sp-En	170k	newstest2012	newtest2013	

	sm	nall	large			
	sent.	words	sent.	words		
full	21.4%	8.8%	32.1%	12.7%		
+prefix	61.3%	24.6%	67.3%	32.8%		

Table 3: The ratio of sentence and word coverage onsmall and large training sets.

Scale	Language	sent.	dev	tst	
Small		30k	nist06 nows	nist08 news	
Large		240k			
Large	Sp-En	170k	newstest2012	newtest2013	

		small		large		Sp-En	sent.	word.	
		sent.	words	sent.	words	ratio	55%	43.9%	
	full	21.4%	8.8%	32.1%	12.7%				
	+prefix	61.3%	24.6%	67.3%	32.8%				
Ta	able 3: The ratio of sentence and word coverage on								

small and large training sets.

Scale	Language	sent.	dev	tst	
Small		30k	nist06 noves	nist08 news	
Large	- Cn-En	240k			
Large	Sp-En	170k	newstest2012	newtest2013	

	sm	all	laı	ge	Sp-En	sent.	word.
	sent.	words	sent.	words	ratio	55%	43.9%
full	21.4%	8.8%	32.1%	12.7%	<u>.</u>	3 x dev	
+prefix	61.3%	24.6%	67.3%	32.8%			
L1. 2. Th	a matia of	l0x dev	and mond	20x dev			

Table 3: The ratio of sentence and word coverage on small and large training sets.

- standard perceptron (Liang et al's "bold") works poorly
 - b/c invalid update ratio is very high (search quality is low)
- max-violation converges faster than early update

- standard perceptron (Liang et al's "bold") works poorly
 - b/c invalid update ratio is very high (search quality is low)
- max-violation converges faster than early update

- standard perceptron (Liang et al's "bold") works poorly
 - b/c invalid update ratio is very high (search quality is low)
- max-violation converges faster than early update

- standard perceptron (Liang et al's "bold") works poorly
 - b/c invalid update ratio is very high (search quality is low)
- max-violation converges faster than early update

Parallelized Perceptron

- mini-batch perceptron (Zhao and Huang, 2013) much faster than iterative parameter mixing (McDonald et al, 2010)
 - 6 CPUs => ~4x speedup; 24 CPUs => ~7x speedup

- dense: II standard features for phrase-based MT
- ruleid: rule identification feature
- word-edges: word-edges features with back-offs

non-local: non-local features with back-offs

- dense: II standard features for phrase-based MT
- ruleid: rule identification feature
- word-edges: word-edges features with back-offs

non-local: non-local features with back-offs

- dense: II standard features for phrase-based MT
- ruleid: rule identification feature
- word-edges: word-edges features with back-offs

- dense: II standard features for phrase-based MT
- ruleid: rule identification feature
- word-edges: word-edges features with back-offs

- dense: II standard features for phrase-based MT
- ruleid: rule identification feature
- word-edges: word-edges features with back-offs

External comparison with MERT & PRO

- MERT, PRO-dense/medium/sparse all tune on dev-set
- PRO-sparse use the same feature as ours

- Moses: state-of-the-art phrase-based system in C++
- Cubit: phrase-based system (Huang and Chiang, 2007) in python
 - almost identical baseline scores with MERT
 - max-violation takes ~47 hours on 24 CPUs (23M features)

- Moses: state-of-the-art phrase-based system in C++
- Cubit: phrase-based system (Huang and Chiang, 2007) in python
 - almost identical baseline scores with MERT
 - max-violation takes ~47 hours on 24 CPUs (23M features)

System	Alg.	Tune on	Features	Dev	Test
Moses	MERT	dev set	11	25.5	22.5
	MERT	dev set		25.4	22.5
Cubit					

- Moses: state-of-the-art phrase-based system in C++
- Cubit: phrase-based system (Huang and Chiang, 2007) in python
 - almost identical baseline scores with MERT
 - max-violation takes ~47 hours on 24 CPUs (23M features)

System	Alg.	Tune on	Features	Dev	Test
Moses	MERT	dev set	11	25.5	22.5
	MERT	dev set		25.4	22.5
				25.6	22.6
Cubit	PRO	dev set			
			-		

- Moses: state-of-the-art phrase-based system in C++
- Cubit: phrase-based system (Huang and Chiang, 2007) in python
 - almost identical baseline scores with MERT
 - max-violation takes ~47 hours on 24 CPUs (23M features)

System	Alg.	Tune on	Features	Dev	Test
Moses	MERT	dev set	11	25.5	22.5
	MERT	dev set		25.4	22.5
				25.6	22.6
Cubit	PRO	dev set	3k	26.3	23.0
			-		

- Moses: state-of-the-art phrase-based system in C++
- Cubit: phrase-based system (Huang and Chiang, 2007) in python
 - almost identical baseline scores with MERT
 - max-violation takes ~47 hours on 24 CPUs (23M features)

System	Alg.	Tune on	Features	Dev	Test
Moses	MERT	dev set	11	25.5	22.5
	MERT	dev set		25.4	22.5
	PRO	dev set		25.6	22.6
Cubit			3k	26.3	23.0
			36k	17.7	14.3
Part States					

- Moses: state-of-the-art phrase-based system in C++
- Cubit: phrase-based system (Huang and Chiang, 2007) in python
 - almost identical baseline scores with MERT
 - max-violation takes ~47 hours on 24 CPUs (23M features)

System	Alg.	Tune on	Features	Dev	Test
Moses	MERT	dev set	11	25.5	22.5
	MERT	dev set		25.4	22.5
	PRO	dev set		25.6	22.6
Cubit			3k	26.3	23.0
			36k	17.7	14.3
	MaxForce	Train set	23M	27.8	24.5

- Moses: state-of-the-art phrase-based system in C++
- Cubit: phrase-based system (Huang and Chiang, 2007) in python
 - almost identical baseline scores with MERT
 - max-violation takes ~47 hours on 24 CPUs (23M features)

System	Alg.	Tune on	Features	Dev	Test
Moses	MERT	dev set		25.5	22.5
	MERT	dev set		25.4	22.5
	PRO	dev set		25.6	22.6
Cubit			3k	26.3	23.0
			36k	17.7	14.3
	MaxForce	Train set	23M	27.8	24.5

- Moses: state-of-the-art phrase-based system in C++
- Cubit: phrase-based system (Huang and Chiang, 2007) in python
 - almost identical baseline scores with MERT
 - max-violation takes ~47 hours on 24 CPUs (23M features)

System	Alg.	Tune on	Features	Dev	Test
Moses	MERT	dev set	11	25.5	22.5
	MERT	dev set		25.4	22.5
	PRO	dev set		25.6	22.6
Cubit			3k	26.3	23.0
			36k	17.7	14.3
	MaxForce	Train set	23M	27.8	24.5

+**2.3** +**2.0** 32

Results on Spanish-English set

- Data-set: Europarl corpus, 170k sentences
- dev/test set: newtest2012 / 2013 (one-reference only)
 - +1 in 1-ref bleu ~ +2 in 4-ref bleu
 - bleu improvement is comparable to Chinese w/ 4-refs

system	algorithm	#feat.	dev	test
Moses	Mert	11	27.4	24.4
Cubit	MaxForce	21M	28.7	25.5

Sp-En	sent.	word.	
Reachable ratio	55%	43.9%	

Results on Spanish-English set

- Data-set: Europarl corpus, 170k sentences
- dev/test set: newtest2012 / 2013 (one-reference only)
 - +1 in 1-ref bleu ~ +2 in 4-ref bleu
 - bleu improvement is comparable to Chinese w/ 4-refs

system	algorithm	#feat.	dev	test
Moses	Mert	11	27.4	24.4
Cubit	MaxForce	21M	28.7	25.5

Sp-En	sent.	word.
Reachable ratio	55%	43.9%

+1.3 +1.1

Conclusion

- a simple yet effective online learning approach for MT
 - scaled to (a large portion of) the training set for the first time
 - able to incorporate 20M sparse lexicalized features
 - no need to define BLEU+1, or hope/fear derivations
 - no learning rate or hyperparameters
 - +2.3/+2.0 BLEU points better than MERT/PRO
- the three ingredients that made it work
 - violation-fixing perceptron: early-update and max-violation
 - forced decoding lattice helps
 - minibatch parallelization scales it up to big data

Roadmap of the techniques

structured perceptron (Collins, 2002)

Roadmap of the techniques

structured perceptron (Collins, 2002)

latent-variable perceptron (Zettlemoyer and Collins, 2005; Sun et al., 2009)
Roadmap of the techniques

20 years of Statistical MT

- word alignment: IBM models (Brown et al 90, 93)
- translation model (choose one from below)
 - SCFG (ITG:Wu 95, 97; Hiero: Chiang 05, 07) or STSG (GHKM 04, 06; Liu+ 06; Huang+ 06)
 - **PBMT** (Och+Ney 02; Koehn et al 03)
- evaluation metric: BLEU (Papineni et al 02)
- decoding algorithm: cube pruning (Chiang 07; Huang+Chiang 07)
- training algorithm (choose one from below)
 - MERT (Och 03): ~10 dense features on dev set
 - MIRA (Chiang et al 08-12) or PRO (Hopkins+May 11): ~10k feats on dev set
 - MaxForce: 20M+ feats on training set; +2/+1.5 BLEU over MERT/PRO
 - Max-Violation Perceptron with Forced Decoding: fixes search errors
 - first successful effort of online large-scale discriminative training for MT

When learning with vastly inexact search, you should use a principled method such as max-violation.

Thank you!