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Discriminative Training for SMT

® discriminative training is dominant in parsing / tagging

® can use arbitrary, overlapping, lexicalized features

® but not very successful yet in machine translation

® most efforts on MT training tune feature weights on
the small dev set (~ 1k sents) not the training set!

® as a result can only use ~10 dense features (MERT)
® or ~10k rather impoverished features (MIRA/PRO)

® liang et al (2006) train on the training set but failed

B dev set test set
training set (>100k sentences) (~Ik sents) | (~Ik sents)
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Why previous work fails
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® their learning methods are based on exact search

® MT has huge search spaces => severe search errors
learning algorithms should fix search errors
full updates (perceptron/MIRA/PRO) can’t fix search errors
® MT involves latent variables (derivations not annotated)
perceptron/MIRA was not designed for latent variables

® we need better variants for perceptron
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Why our approach works
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® fix search errors in the middle of the search
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® use a variant of perceptron tai
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® “partial updates” instead of “full updates”

® use parallelized minibatch to speed up learning

® result: scaled to a large portion of the training data

® 20M sparse features => +2.0 BLEU over MERT/PRO

. . 6
for inexact searc
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® use forced decoding lattice as the target to update to
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MT as Structured Classification

® with latent variables (hidden derivations)

B A B T A s B A B T A s
|_‘ best gold best
ooe ++ ° . . .
derivation __derivation
the man bit the dog| vy the dog bit the man| y
all gold derivations wrong translation

update: penalize best derivation
and reward best gold derivation



Outline

® Phrase-based Translation and Forced Decoding

® Violation-Fixing Perceptron for SMT

® Update Strategies: Early Update and Max-Violation

® Feature Design

® Experiments
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Language Model and Beam Search

® split each -LM state into many +LM states
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Forced Decoding

® both as data selection (more literal) and oracle derivations
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Forced Decoding
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Forced Decoding

® both as data selection (more literal) and oracle derivations
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Unreachable Sentences and Prefix

e distortion limit causes unreachability (hiero would be better)

® but we can still use reachable prefix-pairs of unreachable pairs
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Sentence/Word Reachability Ratio

® how many sentences pairs pass forced decoding?
® the ratio drops dramatically as sentences get longer

® prefixes boost coverage
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® how many sentences pairs pass forced decoding?

® the ratio drops dramatically as sentences get longer
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Sentence/Word Reachability Ratio

® how many sentences pairs pass forced decoding?

® the ratio drops dramatically as sentences get longer

® prefixes boost coverage
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Number of Gold Derivations

® exponential in sentence length (on fully reachables)

® these are the “latent variables” in learning
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Outline

® Violation-Fixing Perceptron for MT Training

® Update strategy

® Feature design

® Experiments



Structured Perceptron (Collins 02)

binary classification
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Structured Perceptron (Collins 02)

binary classification
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Structured Perceptron (Collins 02)

binary classification <

w
x X
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: fe e # of classes inference

Y
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exponential

structured classification # of classes <

B A K T ] » —>-—>
* inference

the man bit the dog| vy Y

update weights

if y =z

® challenges in applying perceptron for MT
® the inference (decoding) is vastly inexact (beam search)

® we know standard perceptron doesn’t work for MT

® intuition: the learner should fix the search error first




Structured Perceptron (Collins 02)
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® challenges in applying perceptron for MT
® the inference (decoding) is vastly inexact (beam search)

® we know standard perceptron doesn’t work for MT

® intuition: the learner should fix the search error first




Search Error: Gold Derivations Pruned
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Fixing Search Error |: Early Update

® early update (Collins/Roark’04) when the correct falls off beam

® up to this point the incorrect prefix should score higher

® that’s a ‘““violation” which we want to fix

® standard perceptron does not guarantee violation

® w/ pruning, the correct seq. might score higher at the end!

® called “invalid” update b/c it doesn’t fix the search error

Q
'
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o
o
>

violation guaranteed:
incorrect prefix scores
higher up to this poin

correct sequence
falls off beam
(pruned)

standard update

(no guarantee!)
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Early Update w/ Latent Variable

® the gold-standard derivations are not annotated

® we treat any reference-producing derivation as good
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Early Update w/ Latent Variable
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Early Update w/ Latent Variable

® the gold-standard derivations are not annotated

® we treat any reference-producing derivation as good

gold derivation lattice held talks
Lammm el with Sharon
P - N Y &
.7 held ~“ o’ N Y
B_u;c.h oemmmmal 0 talks _* R v_v|1:h Sha_rgn‘

A .’ ~«' ~A .* ~A4

3 4 5 6

all correct derivations fall off




Early Update w/ Latent Variable

® the gold-standard derivations are not annotated

® we treat any reference-producing derivation as good
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Early Update w/ Latent Variable

® the gold-standard derivations are not annotated

® we treat any reference-producing derivation as good

gold derivation lattice held talks .
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violation guaranteed:
incorrect prefix scores
higher up to this point
all correct derivations fall off
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stop decoding



Fixing Search Error 2: Max-Violation

_|_
d 2
—_ — (7))
A best in the beam di i* A -

]
/dy |

standard update
is invalid

local

model W
max
violation

worst in the beam

QL
-+

® carly update works but learns slowly due to partial updates
® max-violation: use the prefix where violation is maximum
® “worst-mistake” in the search space

® we call these methods “violation-fixing perceptrons’ (Huang
et al 2012)
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Early Update vs. Max-Violation
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Feature Design

® Dense features:
® standard phrase-based features
® Sparse Features:
® rule-identification features (unique id for each rule)
® word-edges features
lexicalized local translation context within a rule
® non-local features

dependency between consecutive rules
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WordEdges Features (local)

<s> it 5 W (21T T =] </s>

Vn

<s> Bush |held a few talks

® the first and last Chinese words in the rule
® the first and last English words in the rule

® the two Chinese words surrounding the rule
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Lexical backoffs and combos

<s> it &

[

<s> Bush

S jz

217 7

ANK

=ix| <[s>

—

held a few talks

® | exical features are often too sparse

® 6 kinds of lexical backoffs with various budgets

® total budget can’t exceed |0 (bilexical)

Chinese English class size budget
word 529k | 64.2k >
characters | . 3.7k - 3
Brown cluster, full string 200 3
Brown cluster, prefix 6 6 8 2
Brown cluster, prefix 4 4 4 2
POS tag 52 36 2
word type - 4 - 1
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Non-Local Features (trivial)

<s> it & Wk |27 7T

Vn

<s> Bush
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<[s>

® two consecutive rule ids (rule bigram model)

® the last two English words and the current rule

® should explore a lot more!
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Perceptron: std, early, and max-violation

® standard perceptron (Liang et al’s “bold”) works poorly
® b/c invalid update ratio is very high (search quality is low)

® max-violation converges faster than early update
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Parallelized Perceptron

® mini-batch perceptron (Zhao and Huang, 2013) much faster
than iterative parameter mixing (McDonald et al,2010)

® 6 CPUs => ~4x speedup; 24 CPUs => ~/x speedup

24

BLEU

23 |

minibatch(24-core) —+—
minibatch(6-core) —¢—
minibatch(1 core) —e—
singlle procI:essolr

o 05 1 15 2 25 3 35 4

——

22 Time
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Internal comparison with different features

® dense: | | standard features for phrase-based MT
® ruleid: rule identification feature
® word-edges: word-edges features with back-offs
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External comparison with MERT & PRO

® MERT, PRO-dense/medium/sparse all tune on dev-set

® PRO-sparse use the same feature as ours
26
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W 18 PRO-dense -
s PRO-medium
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Final Results on FBIS Data

® Moses: state-of-the-art phrase-based system in C++

® Cubit: phrase-based system (Huang and Chiang, 2007) in python
® almost identical baseline scores with MERT

® max-violation takes ~47 hours on 24 CPUs (23M features)
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Results on Spanish-English set

® Data-set: Europarl corpus, 170

® dev/test set: newtest2012 /20

< sentences

3 (one-reference only)

® +| in |-ref bleu ~ +2 in 4-ref bleu

® bleu improvement is comparable to Chinese w/ 4-refs

system algorithm | #feat. dev test

Moses Mert | | 274 24 .4

Cubit MaxForce 21M 28.7 25.5
Sp-En sent. | word.

Reachable ratio | 55% |43.9%
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Sp-En sent. | word.
Reachable ratio | 55% |43.9%
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Conclusion

® a simple yet effective online learning approach for MT
® scaled to (a large portion of) the training set for the first time
® able to incorporate 20M sparse lexicalized features
® no need to define BLEU+I, or hope/fear derivations

® no learning rate or hyperparameters

e +2.3/+2.0 BLEU points better than MERT/PRO

® the three ingredients that made it work
® violation-fixing perceptron: early-update and max-violation
® forced decoding lattice helps

® minibatch parallelization scales it up to big data
34
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structured

perceptron
(Collins, 2002)

latent-variable perceptron w/

perceptron inexact search
(Zettlemoyer and Collins, (Collins & Roark, 2004;
2005; Sun et al., 2009) Huang et al 2012)

latent-variable perceptron replacing EM

w/ inexact search for partially-
(Yu et al 2013) observed data

hiero  syntactic parsing semantic parsing transliteration
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20 years of Statistical MT

word alignment: IBM models

translation model (choose one from below)
e SCFG or STSG
e PBMT

evaluation metric: BLEU
decoding algorithm: cube pruning

training algorithm (choose one from below)
e MERT : ~10 dense features on dev set

e MIRA or PRO : ~| Ok feats on dev set
® MaxForce: 20M+ feats on training set; +2/+1.5 BLEU over MERT/PRO
Max-Violation Perceptron with Forced Decoding: fixes search errors

first successful effort of online large-scale discriminative training for MT



When learning with vastly inexact search, you should use a
principled method such as max-violation.

L

y T standard update
correct
falls off beam o (bad!)
(pruned) Max-violation

Thank you!



