MaxForce: Max-Violation Perceptron and

Forced Decoding for Scalable MT Training

Heng Yu Liang Huang Haitao Mi Kai Zhao

Chinese Acad. of Sciences
CUNY
IBMT.J.Watson
CUNY

The City
University
of
New York

Scalable Training for MT Finally Made Successful

Heng Yu Liang Huang Haitao Mi Kai Zhao

Chinese Acad. of Sciences
CUNY
IBM T.J.Watson
CUNY

Discriminative Training for SMT

- discriminative training is dominant in parsing / tagging
- can use arbitrary, overlapping, lexicalized features
- but not very successful yet in machine translation
- most efforts on MT training tune feature weights on the small dev set ($\sim 1 k$ sents) not the training set!
- as a result can only use ~ 10 dense features (MERT)
- or ~10k rather impoverished features (MIRA/PRO)
- Liang et al (2006) train on the training set but failed
training set ($>100 \mathrm{k}$ sentences)

test set
(~1k sents)

Timeline for MT Training

Timeline for MT Training

MERT
(Och ’02)

Standard Perceptron (a noble failure) (Liang et al 2006)

Timeline for MT Training

MERT
 (Och '02)
 (dense features)

Standard Perceptron (a noble failure) (Liang et al 2006)

MIRA
(Watanabe+ '07)
(Chiang+ '08-'I2)
(pseudo sparse features)

dev set (~|k sents)

test set (~|k sents)

Timeline for MT Training

MERT

Standard Perceptron (a noble failure) (Liang et al 2006)

(Och '02)
(dense features)

MIRA
(Watanabe+ '07)
(Chiang+ '08-' 12)
(pseudo sparse features)
(Hopkins+May 'II)
Regression
(Bazrafshan+ 'l2)
training set ($>100 \mathrm{k}$ sentences)
dev set
$(\sim 1 k$ sents $)$
test set (~|k sents)

Timeline for MT Training

Standard Perceptron (a noble failure) (Liang et al 2006)

HOLS
(Flanigan+ 'l3)
training set ($>100 \mathrm{k}$ sentences)

Timeline for MT Training

Standard Perceptron (a noble failure) (Liang et al 2006)

MERT
(Och '02)
(dense features)

MIRA
(Watanabe+ '07)
(Chiang+ '08-'I2)
(pseudo sparse features)
(Hopkins+May 'II)
Regression
(Bazrafshan+ 'l2)
HOLS (sparse features as
(Flanigan+'l3) one dense feature)

Timeline for MT Training

Why previous work fails

- their learning methods are based on exact search
- MT has huge search spaces => severe search errors
- learning algorithms should fix search errors
- full updates (perceptron/MIRA/PRO) can't fix search errors
- MT involves latent variables (derivations not annotated)
- perceptron/MIRA was not designed for latent variables
- we need better variants for perceptron

Why our approach works

- use a variant of perceptron tailored for inexact search
- fix search errors in the middle of the search
- "partial updates" instead of "full updates"
- use forced decoding lattice as the target to update to
- use parallelized minibatch to speed up learning
- result: scaled to a large portion of the training data
- 20M sparse features => +2.0 BLEU over MERT/PRO
- with latent variables (hidden derivations)

- with latent variables (hidden derivations)

all gold derivations

MT as Structured Classification

－with latent variables（hidden derivations）

$$
\text { 那 人 咬 了 狗 } x
$$

all gold derivations

MT as Structured Classification

- with latent variables (hidden derivations)

all gold derivations

MT as Structured Classification

- with latent variables (hidden derivations)

all gold derivations

wrong translation

MT as Structured Classification

- with latent variables (hidden derivations)

all gold derivations

wrong translation

MT as Structured Classification

- with latent variables (hidden derivations)

update: penalize best derivation and reward best gold derivation

Outline

- Motivations
- Phrase-based Translation and Forced Decoding
- Violation-Fixing Perceptron for SMT
- Update Strategies: Early Update and Max-Violation
- Feature Design
- Experiments

Phrase－based translation

布什	与 沙龙	举行 了 会谈
Bushi	yu Shalong	juxing le huitan

Bush	with	Sha		meetings
	with Sharon		held talks	
shi		along		

Phrase-based translation

Phrase-based translation

Phrase-based translation

Phrase-based translation

Phrase-based translation

Phrase-based translation

	with	Sharon held	
meetings			
Bush	with Sharon	held talks	
Bushi	yu	Shalong juxing le huitan	

Language Model and Beam Search

- split each -LM state into many +LM states

Language Model and Beam Search

- split each -LM state into many +LM states

Language Model and Beam Search

- split each -LM state into many +LM states

Language Model and Beam Search

- split each -LM state into many +LM states

Language Model and Beam Search

- split each -LM state into many +LM states

Forced Decoding

- both as data selection (more literal) and oracle derivations Bushi yu Shalong juxing le huitan

Forced Decoding

- both as data selection (more literal) and oracle derivations Bushi yu Shalong juxing le huitan

Forced Decoding

- both as data selection (more literal) and oracle derivations

Forced Decoding

- both as data selection (more literal) and oracle derivations

gold derivation lattice held talks

Forced Decoding

- both as data selection (more literal) and oracle derivations

gold derivation lattice
held talks

Forced Decoding

- both as data selection (more literal) and oracle derivations

gold derivation lattice
held talks

Forced Decoding

- both as data selection (more literal) and oracle derivations

gold derivation lattice
held talks

Unreachable Sentences and Prefix

- distortion limit causes unreachability (hiero would be better)
- but we can still use reachable prefix-pairs of unreachable pairs

Unreachable Sentences and Prefix

- distortion limit causes unreachability (hiero would be better)
- but we can still use reachable prefix-pairs of unreachable pairs

Sentence/Word Reachability Ratio

- how many sentences pairs pass forced decoding?
- the ratio drops dramatically as sentences get longer
- prefixes boost coverage

Sentence/Word Reachability Ratio

- how many sentences pairs pass forced decoding?
- the ratio drops dramatically as sentences get longer

Sentence/Word Reachability Ratio

- how many sentences pairs pass forced decoding?
- the ratio drops dramatically as sentences get longer

Sentence length

Number of Gold Derivations

- exponential in sentence length (on fully reachables)
- these are the "latent variables" in learning

Outline

- Background: Phrase-based Translation (Koehn, 2004)
- Forced Decoding
- Violation-Fixing Perceptron for MT Training
- Update strategy
- Feature design
- Experiments

Structured Perceptron (Collins 02)

binary classification

Structured Perceptron (Collins 02)

binary classification

structured classification

Structured Perceptron (Collins 02)

binary classification

structured classification

Structured Perceptron (Collins 02)

binary classification

- challenges in applying perceptron for MT
- the inference (decoding) is vastly inexact (beam search)
- we know standard perceptron doesn't work for MT
- intuition: the learner should fix the search error first

Structured Perceptron (Collins 02)

binary classification

- challenges in applying perceptron for MT
- the inference (decoding) is vastly inexact (beam search)
- we know standard perceptron doesn't work for MT
- intuition: the learner should fix the search error first

Search Error: Gold Derivations Pruned

real decoding beam search

Search Error: Gold Derivations Pruned

real decoding beam search

Search Error: Gold Derivations Pruned

real decoding beam search

Search Error: Gold Derivations Pruned

real decoding beam search

Search Error: Gold Derivations Pruned

real decoding beam search

Search Error: Gold Derivations Pruned

real decoding beam search

Search Error: Gold Derivations Pruned

real decoding beam search
should fix search errors here!

Fixing Search Error I: Early Update

Fixing Search Error I: Early Update

- early update (Collins/Roark'04) when the correct falls off beam
- up to this point the incorrect prefix should score higher
- that's a "violation" which we want to fix

standard update

Fixing Search Error I: Early Update

- early update (Collins/Roark'04) when the correct falls off beam
- up to this point the incorrect prefix should score higher
- that's a "violation" which we want to fix

Fixing Search Error I: Early Update

- early update (Collins/Roark'04) when the correct falls off beam
- up to this point the incorrect prefix should score higher
- that's a "violation" which we want to fix

Fixing Search Error I: Early Update

- early update (Collins/Roark'04) when the correct falls off beam
- up to this point the incorrect prefix should score higher
- that's a "violation" which we want to fix

violation guaranteed:
 incorrect prefix scores higher up to this point

correct sequence
standard update
falls off beam (pruned)

Fixing Search Error I: Early Update

- early update (Collins/Roark'04) when the correct falls off beam
- up to this point the incorrect prefix should score higher
- that's a "violation" which we want to fix
- standard perceptron does not guarantee violation
- w/ pruning, the correct seq. might score higher at the end!
- called "invalid" update b/c it doesn't fix the search error

Model
correct sequence falls off beam (pruned)
standard update (no guarantee!)

Early Update w/ Latent Variable

- the gold-standard derivations are not annotated
- we treat any reference-producing derivation as good gold derivation lattice held talks

Model

Early Update w/ Latent Variable

- the gold-standard derivations are not annotated
- we treat any reference-producing derivation as good gold derivation lattice held talks

Model

Early Update w/ Latent Variable

- the gold-standard derivations are not annotated
- we treat any reference-producing derivation as good gold derivation lattice held talks

Early Update w/ Latent Variable

- the gold-standard derivations are not annotated
- we treat any reference-producing derivation as good gold derivation lattice held talks

Model

Early Update w/ Latent Variable

- the gold-standard derivations are not annotated
- we treat any reference-producing derivation as good gold derivation lattice held talks

Model

Early Update w/ Latent Variable

- the gold-standard derivations are not annotated
- we treat any reference-producing derivation as good gold derivation lattice held talks

violation guaranteed:
incorrect prefix scores
higher up to this point
all correct derivations fall off

Early Update w/ Latent Variable

- the gold-standard derivations are not annotated
- we treat any reference-producing derivation as good gold derivation lattice held talks

華
荅
all violation guaranteed:
incorrect prefix scores
higher up to this point
all correct derivations fall off
stop decoding

Fixing Search Error 2: Max-Violation

- early update works but learns slowly due to partial updates
- max-violation: use the prefix where violation is maximum
- "worst-mistake" in the search space
- we call these methods "violation-fixing perceptrons" (Huang et al 2012)

Early Update vs. Max-Violation

Early Update vs. Max-Violation

Early Update vs. Max-Violation

Early Update vs. Max-Violation

Early Update vs. Max-Violation

Early Update vs. Max-Violation

Early Update vs. Max-Violation

Early Update vs. Max-Violation

Early Update vs. Max-Violation

Early Update vs. Max-Violation

Latent-Variable Perceptron

Roadmap of the techniques
 structured
 perceptron
 (Collins, 2002)

Roadmap of the techniques

structured
perceptron
(Collins, 2002)
latent-variable perceptron
(Zettlemoyer and Collins, 2005; Sun et al., 2009)

Roadmap of the techniques

structured perceptron
(Collins, 2002)
latent-variable perceptron
(Zettlemoyer and Collins, 2005; Sun et al., 2009)
perceptron w/
inexact search (Collins \& Roark, 2004; Huang et al 2012)

Roadmap of the techniques

Roadmap of the techniques

Feature Design

- Dense features:
- standard phrase-based features (Koehn, 2004)
- Sparse Features:
- rule-identification features (unique id for each rule)
- word-edges features
- lexicalized local translation context within a rule
- non-local features
- dependency between consecutive rules

WordEdges Features (local)

- the first and last Chinese words in the rule
- the first and last English words in the rule
- the two Chinese words surrounding the rule

WordEdges Features (local)

- the first and last Chinese words in the rule
- the first and last English words in the rule
- the two Chinese words surrounding the rule

WordEdges Features (local)

- the first and last Chinese words in the rule
- the first and last English words in the rule
- the two Chinese words surrounding the rule

WordEdges Features (local)

- the first and last Chinese words in the rule
- the first and last English words in the rule
- the two Chinese words surrounding the rule

WordEdges Features (local)

- the first and last Chinese words in the rule
- the first and last English words in the rule
- the two Chinese words surrounding the rule

WordEdges Features (local)

- the first and last Chinese words in the rule
- the first and last English words in the rule
- the two Chinese words surrounding the rule

Combo Features:

WordEdges Features (local)

- the first and last Chinese words in the rule
- the first and last English words in the rule
- the two Chinese words surrounding the rule

Combo Features:

WordEdges Features (local)

- the first and last Chinese words in the rule
- the first and last English words in the rule
- the two Chinese words surrounding the rule

Combo Features:
100010=沙龙|held

WordEdges Features (local)

- the first and last Chinese words in the rule
- the first and last English words in the rule
- the two Chinese words surrounding the rule

Combo Features:
100010=沙龙|held

WordEdges Features (local)

- the first and last Chinese words in the rule
- the first and last English words in the rule
- the two Chinese words surrounding the rule

Combo Features:
100010=沙龙|held

WordEdges Features（local）

－the first and last Chinese words in the rule
－the first and last English words in the rule
－the two Chinese words surrounding the rule
Combo Features：
100010＝沙龙｜held
01000I＝举行｜talks

WordEdges Features（local）

＜s＞Bush held a few talks
－the first and last Chinese words in the rule
－the first and last English words in the rule
－the two Chinese words surrounding the rule
Combo Features：
100010＝沙龙｜held
01000I＝举行｜talks

Lexical backoffs and combos

- Lexical features are often too sparse
- 6 kinds of lexical backoffs with various budgets
- total budget can't exceed IO (bilexical)

Chinese	English	class size		budget
word		52.9 k	64.2 k	5
characters		-	3.7 k	-
Brown cluster, full string		200		3
Brown cluster, prefix 6	6	8	2	
Brown cluster, prefix 4	4	4	2	
POS tag		52	36	2
word type		-	4	-

Lexical backoffs and combos

- Lexical features are often too sparse
- 6 kinds of lexical backoffs with various budgets
- total budget can't exceed IO (bilexical)

Chinese	English	class size		budget
word		52.9 k	64.2 k	5
characters		-	3.7 k	-
Brown cluster, full string		200		3
Brown cluster, prefix 6	6	8	2	
Brown cluster, prefix 4	4	4	2	
POS tag		52	36	2
word type		-	4	-

Lexical backoffs and combos

- Lexical features are often too sparse
- 6 kinds of lexical backoffs with various budgets
- total budget can't exceed IO (bilexical)

Chinese	English	class size		budget
word		52.9 k	64.2 k	5
characters		-	3.7 k	-
Brown cluster, full string		200		3
Brown cluster, prefix 6	6	8	2	
Brown cluster, prefix 4	4	4	2	
POS tag		52	36	2
word type		-	4	-

$100010=$ 沙龙|held

Lexical backoffs and combos

- Lexical features are often too sparse
- 6 kinds of lexical backoffs with various budgets
- total budget can't exceed IO (bilexical)

Chinese	English	class size		budget
word		52.9 k	64.2 k	5
characters		-	3.7 k	-
Brown cluster, full string		200		3
Brown cluster, prefix 6	6	8	2	
Brown cluster, prefix 4	4	4	2	
POS tag		52	36	2
word type		-	4	-

$100010=$ 沙龙|held
POOOIO=NN|held

Lexical backoffs and combos

- Lexical features are often too sparse
- 6 kinds of lexical backoffs with various budgets
- total budget can't exceed IO (bilexical)

Chinese	English	class size		budget
word		52.9 k	64.2 k	5
characters		-	3.7 k	-
Brown cluster, full string		200		3
Brown cluster, prefix 6	6	8	2	
Brown cluster, prefix 4	4	4	2	
POS tag		52	36	2
word type		-	4	-

$100010=$ 沙龙|held
POOOIO=NN|held

Lexical backoffs and combos

－Lexical features are often too sparse
－ 6 kinds of lexical backoffs with various budgets
－total budget can＇t exceed IO（bilexical）

Chinese	English	class size		budget
word		52.9 k	64.2 k	5
characters		-	3.7 k	-
Brown cluster，full string		200		3
Brown cluster，prefix 6	6	8	2	
Brown cluster，prefix 4	4	4	2	
POS tag		52	36	2
word type		-	4	-

$100010=$ 沙龙｜held
POOOIO＝NN｜held
01000I＝举行｜talks

Lexical backoffs and combos

－Lexical features are often too sparse
－ 6 kinds of lexical backoffs with various budgets
－total budget can＇t exceed IO（bilexical）

Chinese	English	class size		budget
word		52．9k	64．2k	5
characters	－	3．7k	－	3
Brown cluster，full string		200		3
Brown cluster，prefix 6		6	8	2
Brown cluster，prefix 4		4	4	2
POS tag		52	36	2
word type	－	4	－	1

$100010=$ 沙龙｜held POOOIO＝NN｜held

01000I＝举行｜talks
$0 c 0001=$ 举｜talks

Non-Local Features (trivial)

- two consecutive rule ids (rule bigram model)
- the last two English words and the current rule
- should explore a lot more!

Non-Local Features (trivial)

- two consecutive rule ids (rule bigram model)
- the last two English words and the current rule
- should explore a lot more!

Non-Local Features (trivial)

- two consecutive rule ids (rule bigram model)
- the last two English words and the current rule
- should explore a lot more!

Experiments

Date sets

Experiments

Date sets

Scale	Language	sent.	dev	tst

Experiments

- Date sets

Scale	Language	sent.	dev	tst
Small				
Large	Ch-En	30 k	nist06 news	nist08 news
		240 k		

Experiments

- Date sets

Scale	Language	sent.	dev	tst
Small				
Large	Ch-En	30 k	nist06 news	nist08 news
		240 k		

	small		large	
	sent.	words	sent.	words
full	21.4%	8.8%	32.1%	12.7%
+prefix	61.3%	24.6%	67.3%	32.8%

Table 3: The ratio of sentence and word coverage on small and large training sets.

Experiments

- Date sets

Scale	Language	sent.	dev	tst
Small	Ch-En	30k	nist06 news	nist08 news
Large		240k		

	small		large	
	sent.	words	sent.	words
full	21.4%	8.8%	32.1%	12.7%
+prefix	61.3%	24.6%	67.3%	32.8%
I0x dev				

Table 3: The ratio of sentence and word coverage on small and large training sets.

Experiments

- Date sets

Scale	Language	sent.	dev	tst
Small				
Large	Ch-En	30 k	nist06 news	nist08 news
		240 k		

	small		large		
	sent.	words	sent.	words	
full	21.4%	8.8%	32.1%	12.7%	
+prefix	61.3%	24.6%	67.3%	32.8%	
IOx dev				I20x dev	

Table 3: The ratio of sentence and word coverage on small and large training sets.

Experiments

- Date sets

Scale	Language	sent.	dev	tst
Small	Ch-En	30 k	nist06 news	nist08 news
Large	Sp-En	170 k	newstest2012	newtest20I3

	small		large		
	sent.	words	sent.	words	
full	21.4%	8.8%	32.1%	12.7%	
+prefix	61.3%	24.6%	67.3%	32.8%	
$10 \times \mathrm{dev}$				120 x dev	

Table 3: The ratio of sentence and word coverage on small and large training sets.

Experiments

- Date sets

Scale	Language	sent.	dev	tst
Small				
Large	Ch-En	30 k	nist06 news	nist08 news
		240 k		
Large	Sp-En	170 k	newstest2012	newtest2013 3

	small		large		Sp-En	sent.	word.
	sent.	words	sent.	words			
full	21.4%	8.8%	32.1%	12.7%			
I0x dev							55%
	43.9%						
+prefix	61.3%	24.6%	67.3%	32.8%			

Table 3: The ratio of sentence and word coverage on small and large training sets.

Experiments

- Date sets

Scale	Language	sent.	dev	tst
Small				
Large	Ch-En	30 k	nist06 news	nist08 news
		240 k		
Large	Sp-En	170 k	newstest2012	newtest2013 3

	small		large		Sp-En	sent.	word.
	sent.	words	sent.	words	ratio	55\%	43.9\%
full	21.4\%	8.8\%	32.1\%	12.7\%	31 xdev		
+prefix	61.3\%	24.6\%	67.3\%	32.8\%			

Table 3: The ratio of sentence and word coverage on small and large training sets.

Perceptron: std, early, and max-violation

- standard perceptron (Liang et al's "bold") works poorly
- b/c invalid update ratio is very high (search quality is low)
- max-violation converges faster than early update

Perceptron: std, early, and max-violation

- standard perceptron (Liang et al's "bold") works poorly
- b/c invalid update ratio is very high (search quality is low)
- max-violation converges faster than early update
this explains why Liang et al '06 failed std ~"bold"; local ~"local"

Number of iteration

Perceptron: std, early, and max-violation

- standard perceptron (Liang et al's "bold") works poorly
- b/c invalid update ratio is very high (search quality is low)
- max-violation converges faster than early update
this explains why Liang et al '06 failed std ~"bold"; local ~"local"

Perceptron: std, early, and max-violation

- standard perceptron (Liang et al's "bold") works poorly
- b/c invalid update ratio is very high (search quality is low)
- max-violation converges faster than early update
this explains why Liang et al '06 failed std ~"bold"; local ~"local"

Parallelized Perceptron

- mini-batch perceptron (Zhao and Huang, 2013) much faster than iterative parameter mixing (McDonald et al, 2010)
- 6 CPUs => ~4x speedup; 24 CPUs => ~7x speedup

Internal comparison with different features

- dense: II standard features for phrase-based MT
- ruleid: rule identification feature
- word-edges: word-edges features with back-offs
- non-local: non-local features with back-offs

Internal comparison with different features

- dense: II standard features for phrase-based MT
- ruleid: rule identification feature
- word-edges: word-edges features with back-offs
- non-local: non-local features with back-offs

Internal comparison with different features

- dense: II standard features for phrase-based MT
- ruleid: rule identification feature
- word-edges: word-edges features with back-offs
- non-local: non-local features with back-offs

Internal comparison with different features

- dense: II standard features for phrase-based MT
- ruleid: rule identification feature
- word-edges: word-edges features with back-offs
- non-local: non-local features with back-offs

Internal comparison with different features

- dense: II standard features for phrase-based MT
- ruleid: rule identification feature
- word-edges: word-edges features with back-offs
- non-local: non-local features with back-offs

External comparison with MERT \& PRO

- MERT, PRO-dense/medium/sparse all tune on dev-set
- PRO-sparse use the same feature as ours

Final Results on FBIS Data

- Moses: state-of-the-art phrase-based system in C++
- Cubit: phrase-based system (Huang and Chiang, 2007) in python
- almost identical baseline scores with MERT
- max-violation takes ~ 47 hours on 24 CPUs (23M features)

Final Results on FBIS Data

- Moses: state-of-the-art phrase-based system in C++
- Cubit: phrase-based system (Huang and Chiang, 2007) in python - almost identical baseline scores with MERT
- max-violation takes ~ 47 hours on 24 CPUs (23M features)

System	Alg.	Tune on	Features	Dev	Test
Moses	MERT	dev set	11	25.5	22.5
	MERT	dev set	11	25.4	22.5

Cubit

Final Results on FBIS Data

- Moses: state-of-the-art phrase-based system in C++
- Cubit: phrase-based system (Huang and Chiang, 2007) in python - almost identical baseline scores with MERT
- max-violation takes ~ 47 hours on 24 CPUs (23M features)

System	Alg.	Tune on	Features	Dev	Test
Moses	MERT	dev set	11	25.5	22.5
Cubit	MERT	dev set	11	25.4	22.5
	PRO	dev set	11	25.6	22.6

Final Results on FBIS Data

- Moses: state-of-the-art phrase-based system in C++
- Cubit: phrase-based system (Huang and Chiang, 2007) in python - almost identical baseline scores with MERT
- max-violation takes ~ 47 hours on 24 CPUs (23M features)

System	Alg.	Tune on	Features	Dev	Test
Moses	MERT	dev set	11	25.5	22.5
Cubit	MERT	dev set	11	25.4	22.5
	PRO	dev set	11	25.6	22.6
			3k	26.3	23.0

Final Results on FBIS Data

- Moses: state-of-the-art phrase-based system in C++
- Cubit: phrase-based system (Huang and Chiang, 2007) in python - almost identical baseline scores with MERT
- max-violation takes ~ 47 hours on 24 CPUs (23M features)

System	Alg.	Tune on	Features	Dev	Test
Moses	MERT	dev set	11	25.5	22.5
Cubit	MERT	dev set	1 II	25.4	22.5
		PRO	dev set	1 I	25.6
		36 k	26.3	23.0	

Final Results on FBIS Data

- Moses: state-of-the-art phrase-based system in C++
- Cubit: phrase-based system (Huang and Chiang, 2007) in python
- almost identical baseline scores with MERT
- max-violation takes ~ 47 hours on 24 CPUs (23M features)

System	Alg.	Tune on	Features	Dev	Test
Moses	MERT	dev set	11	25.5	22.5
Cubit	MERT	dev set	11	25.4	22.5
		PRO	dev set	11	25.6
		36 k	26.3	23.0	
	MaxForce	Train set	$\mathbf{2 3 M}$	$\mathbf{2 7 . 7}$	14.3

Final Results on FBIS Data

- Moses: state-of-the-art phrase-based system in C++
- Cubit: phrase-based system (Huang and Chiang, 2007) in python
- almost identical baseline scores with MERT
- max-violation takes ~ 47 hours on 24 CPUs (23M features)

System	Alg.	Tune on	Features	Dev	Test
Moses	MERT	dev set	11	25.5	22.5
Cubit	MERT	dev set	11	25.4	22.5
	PRO	dev set	11	25.6	22.6
			3 k	26.3	23.0
			36k	17.7	14.3
	MaxForce	Train set	23M	27.8	24.5

Final Results on FBIS Data

- Moses: state-of-the-art phrase-based system in C++
- Cubit: phrase-based system (Huang and Chiang, 2007) in python
- almost identical baseline scores with MERT
- max-violation takes ~ 47 hours on 24 CPUs (23M features)

System	Alg.	Tune on	Features	Dev	Test
Moses	MERT	dev set	11	25.5	22.5
Cubit	MERT	dev set	11	25.4	22.5
	PRO	dev set	11	25.6	22.6
			3k	26.3	23.0
			36k	17.7	14.3
	MaxForce	Train set	23M	27.8	24.5
				+2.3	+2.0

Results on Spanish-English set

- Data-set: Europarl corpus, I70k sentences
- dev/test set: newtest2012 / 2013 (one-reference only)
- +1 in I-ref bleu ~+2 in 4-ref bleu
- bleu improvement is comparable to Chinese w/ 4-refs

system	algorithm	\#feat.	dev	test
Moses	Mert	11	27.4	24.4
Cubit	MaxForce	21 M	28.7	25.5

Sp-En	sent.	word.
Reachable ratio	55%	43.9%

Results on Spanish-English set

- Data-set: Europarl corpus, I70k sentences
- dev/test set: newtest2012 / 2013 (one-reference only)
- +1 in I-ref bleu ~+2 in 4-ref bleu
- bleu improvement is comparable to Chinese w/ 4-refs

system	algorithm	\#feat.	dev	test
Moses	Mert	11	27.4	24.4
Cubit	MaxForce	21 M	$\mathbf{2 8 . 7}$	$\mathbf{2 5 . 5}$
+1.3				
Sp-En	sent.	word.		
Reachable ratio	55%	43.9%		

Conclusion

- a simple yet effective online learning approach for MT
- scaled to (a large portion of) the training set for the first time
- able to incorporate 20 M sparse lexicalized features
- no need to define BLEU+I, or hope/fear derivations
- no learning rate or hyperparameters
- +2.3/+2.0 BLEU points better than MERT/PRO
- the three ingredients that made it work
- violation-fixing perceptron: early-update and max-violation
- forced decoding lattice helps
- minibatch parallelization scales it up to big data

Roadmap of the techniques
 structured
 perceptron
 (Collins, 2002)

Roadmap of the techniques

structured
perceptron
(Collins, 2002)
latent-variable perceptron
(Zettlemoyer and Collins, 2005; Sun et al., 2009)

Roadmap of the techniques

structured perceptron
(Collins, 2002)
latent-variable perceptron
(Zettlemoyer and Collins, 2005; Sun et al., 2009)
perceptron w/
inexact search (Collins \& Roark, 2004; Huang et al 2012)

Roadmap of the techniques

Roadmap of the techniques

Roadmap of the techniques

20 years of Statistical MT

- word alignment: IBM models (Brown et al 90, 93)
- translation model (choose one from below)
- SCFG (ITG:Wu 95, 97; Hiero: Chiang 05, 07) or STSG (GHKM 04, 06; Liu 06; Huang+ 06)
- PBMT (Och+Ney 02; Koehn et al 03)
- evaluation metric: BLEU (Papineni et al 02)
- decoding algorithm: cube pruning (Chiang 07; Huang+Chiang 07)
- training algorithm (choose one from below)
- MERT (Och 03): ~ 10 dense features on dev set
- MIRA (Chiang et al 08-12) or PRO (Hopkins+May II): $\sim 10 \mathrm{k}$ feats on dev set
- MaxForce: $20 \mathrm{M}+$ feats on training set; +2/+l. 5 BLEU over MERT/PRO
- Max-Violation Perceptron with Forced Decoding: fixes search errors
- first successful effort of online large-scale discriminative training for MT

When learning with vastly inexact search, you should use a principled method such as max-violation.

Thank you!

