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Discriminative Training for SMT
• discriminative training is dominant in parsing / tagging

• can use arbitrary, overlapping, lexicalized features

• but not very successful yet in machine translation

• most efforts on MT training tune feature weights on 
the small dev set (~1k sents) not the training set!

• as a result can only use ~10 dense features (MERT)

• or ~10k rather impoverished features (MIRA/PRO)

• Liang et al (2006) train on the training set but failed
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Why previous work fails 

• their learning methods are based on exact search

• MT has huge search spaces => severe search errors

• learning algorithms should fix search errors

• full updates (perceptron/MIRA/PRO) can’t fix search errors

• MT involves latent variables (derivations not annotated)

• perceptron/MIRA was not designed for latent variables

• we need better variants for perceptron
4



Why our approach works

• use a variant of perceptron tailored for inexact search

• fix search errors in the middle of the search

• “partial updates” instead of “full updates”

• use forced decoding lattice as the target to update to

• use parallelized minibatch to speed up learning

• result: scaled to a large portion of the training data

• 20M sparse features => +2.0 BLEU over MERT/PRO 5
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MT as Structured Classification

• with latent variables (hidden derivations)

6

x

ythe   man   bit    the    dog

那    人    咬    了    狗

...
x

ythe   dog   bit    the    man

那    人    咬    了    狗

best 
derivation

best gold
derivation

update: penalize best derivation
and reward best gold derivation

all gold derivations wrong translation

--++



Outline

• Motivations

• Phrase-based Translation and Forced Decoding 

• Violation-Fixing Perceptron for SMT 

• Update Strategies: Early Update and Max-Violation

• Feature Design

• Experiments
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Forced Decoding
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Sentence/Word Reachability Ratio
• how many sentences pairs pass forced decoding?

• the ratio drops dramatically as sentences get longer

• prefixes boost coverage
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Number of Gold Derivations

• exponential in sentence length (on fully reachables)

• these are the “latent variables” in learning
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Outline

• Background: Phrase-based Translation (Koehn, 2004)

• Forced Decoding 

• Violation-Fixing Perceptron for MT Training

• Update strategy

• Feature design

• Experiments
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Structured Perceptron (Collins 02)
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Structured Perceptron (Collins 02)

• challenges in applying perceptron for MT 

• the inference (decoding) is vastly inexact (beam search)

• we know standard perceptron doesn’t work for MT

• intuition: the learner should fix the search error first
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 Fixing Search Error 2: Max-Violation

19

• early update works but learns slowly due to partial updates

• max-violation: use the prefix where violation is maximum

• “worst-mistake” in the search space

• we call these methods “violation-fixing perceptrons” (Huang 
et al 2012)
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Latent-Variable Perceptron
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Feature Design

• Dense features: 

• standard phrase-based features (Koehn, 2004)

• Sparse Features:

• rule-identification features (unique id for each rule)

• word-edges features

• lexicalized local translation context within a rule

• non-local features

• dependency between consecutive rules

23
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Lexical backoffs and combos

• Lexical features are often too sparse

• 6 kinds of lexical backoffs with various budgets

• total budget can’t exceed 10 (bilexical)
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Perceptron: std, early, and max-violation
• standard perceptron (Liang et al’s “bold”) works poorly

• b/c invalid update ratio is very high (search quality is low)

• max-violation converges faster than early update
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Parallelized Perceptron

29

• mini-batch perceptron (Zhao and Huang, 2013) much faster 
than iterative parameter mixing (McDonald et al, 2010)

• 6 CPUs => ~4x speedup;  24 CPUs => ~7x speedup
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Internal comparison with different features

• dense: 11 standard features for phrase-based MT 

• ruleid: rule identification feature

• word-edges: word-edges features with back-offs

• non-local: non-local features with back-offs
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External comparison with MERT & PRO

31

• MERT, PRO-dense/medium/sparse all tune on dev-set

• PRO-sparse use the same feature as ours
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Final Results on FBIS Data

32

• Moses: state-of-the-art phrase-based system in C++

• Cubit: phrase-based system (Huang and Chiang, 2007) in python

• almost identical baseline scores with MERT

• max-violation takes ~47 hours on 24 CPUs (23M features)
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Results on Spanish-English set

• Data-set: Europarl corpus, 170k sentences

• dev/test set: newtest2012 / 2013 (one-reference only)

• +1 in 1-ref bleu ~ +2 in 4-ref bleu

• bleu improvement is comparable to Chinese w/ 4-refs
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Conclusion
• a simple yet effective online learning approach for MT

• scaled to (a large portion of) the training set for the first time

• able to incorporate 20M sparse lexicalized features

• no need to define BLEU+1, or hope/fear derivations

• no learning rate or hyperparameters

• +2.3/+2.0 BLEU points better than MERT/PRO

• the three ingredients that made it work

• violation-fixing perceptron: early-update and max-violation

• forced decoding lattice helps

• minibatch parallelization scales it up to big data
34
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20 years of Statistical MT
• word alignment: IBM models (Brown et al 90, 93)

• translation model (choose one from below)

• SCFG (ITG: Wu 95, 97; Hiero: Chiang 05, 07) or STSG (GHKM 04, 06; Liu+ 06; Huang+ 06)

• PBMT (Och+Ney 02; Koehn et al 03) 

• evaluation metric: BLEU (Papineni et al 02)

• decoding algorithm: cube pruning (Chiang 07; Huang+Chiang 07)

• training algorithm (choose one from below)

• MERT (Och 03): ~10 dense features on dev set

• MIRA (Chiang et al 08-12) or PRO (Hopkins+May 11): ~10k feats on dev set

• MaxForce: 20M+ feats on training set; +2/+1.5 BLEU over MERT/PRO

• Max-Violation Perceptron with Forced Decoding: fixes search errors

• first successful effort of online large-scale discriminative training for MT



When learning with vastly inexact search, you should use a 
principled method such as max-violation.

Thank you!

Max-violation


