When to Finish? Optimal Beam Search for Neural Text Generation (modulo beam size)

Kai Zhao[†] Liang Huang Mingbo Ma

THE PROBLEM – WHEN TO STOP?

Neural beam search (e.g. NMT) is great, but nobody knows when/how to stop!

- greedy search: easy, just stop at the first </s>
- beam search: has to return a complete hypothesis which ends at </s>,
- but how to guarantee it's the best-scoring one?
- it's possible some currently incomplete hypothesis can lead to high-scoring complete hypothesis
- when can you guarantee no other complete hypotheses (in the future) can score better?

Existing approaches can't establish optimality:

- **• RNNsearch**: shrink beam heuristic: decrement beam size for each complete hypothesis in beam (too hacky)
- **OpenNMT-py**: stop whenever the top item at any step is a complete one, and return it (we'll show it's neither optimal nor efficient)

OUR CONTRIBUTIONS

Our first algorithm:

- we devise the first provably-optimal neural beam search algorithm (optimal modulo beam size)
- 2 this means if you follow standard beam search pruning, then for a given beam size, you can't find a higher-scoring complete hypothesis than ours
- our algorithm is not only optimal, but also efficient: it finishes beam search earlier than OpenNMT-py

Our second algorithm:

- but higher model score leads to short translations!
- e we devise a bounded length reward to encourage longer translations
- 3 a variant of our optimal beam search is still optimal with bounded length reward

BEAM SEARCH BACKGROUND

 $\mathbf{y}^* = \operatorname{argmax} p(\mathbf{y} \mid \mathbf{x}) = \operatorname{argmax} \prod p(y_i \mid \mathbf{x}, \mathbf{y}_{< i})$ $\mathbf{y}:comp(\mathbf{y})$ $i < |\mathbf{y}|$ $\mathbf{y}:comp(\mathbf{y})$

where $comp(\mathbf{y}) \stackrel{\Delta}{=} (\mathbf{y}_{|\mathbf{y}|} = </s>)$ returns the completeness of a hypothesis, and beam search expands B_{i-1} to B_i :

$$B_0 = [\langle \langle \mathbf{s} \rangle, \ p(\langle \mathbf{s} \rangle | \mathbf{x}) \rangle]$$
$$B_i = \mathbf{top}^b \{ \langle \mathbf{y}' \circ y_i, \ s \cdot p(y_i | \mathbf{x}, \mathbf{y}) \rangle | \langle \mathbf{y}', s \rangle \in B_{i-1} \}$$

School of EECS, Oregon State University

{kzhao.hf, liang.huang.sh, cosmmb}@gmail.com

[†]Kai is now with Google Inc., New York

FIRST ALGORITHM: OPTIMAL BEAM

Current Candidate: define $best_{[0:i]} \stackrel{\Delta}{=} max\{\mathbf{y} \in \bigcup_{j \leq i} B_j \mid comp(\mathbf{y} \in \bigcup_{j \leq i} B_j)\}$

Stopping Criteria: $B_{i,1} \leq best_{[0:i]}$, i.e., when the top-scoring iter the best complete hypothesis so far. Then return the latter (bes

Optimality Proof: $B_{i,j} \leq B_{i,1} \leq best_{[0:i]}$ for all items $B_{i,j}$ in bea steps are even worse, so all items in the current and future ste

OpenNMT-py's Method: $comp(B_{i,1})$, i.e., when the top-scorin

Efficiency: Our algorithm terminates no later than OpenNMT-py (which is neither optimal nor efficient).

SECOND ALGORITHM: Optimal Beam Search w/ Bounded Length Reward

The Problem: Higher-scoring hypotheses lead to extremely short translations.

Existing Solutions: However, both break the optimality of our optimal beam search algorithm!

- score normalization: the score of a hypothesis / its length; aiming for optimal average per-step score. used in RNNsearch (Bahdanau et al., 2014) and Google NMT (Wu et al., 2016).
- length reward: explicit reward for each word; used in Baidu NMT (He et al., 2016).

Our Bounded Length Reward: We only reward each target word up to an estimated "optimal" length, proportional to source length $|\mathbf{x}|$; in Chinese-to-English exps we use $1.27 \cdot |\mathbf{x}|$ estimated on the dev set.

Modified Optimal Beam Search: use new score $\tilde{sc}(\mathbf{y}) \stackrel{\Delta}{=} sc(\mathbf{y}) + r \cdot \min\{c|\mathbf{x}|, |\mathbf{y}|\}$, where c = 1.27, and we tune the length reward r on dev set. **Optimality Proof:** similar to A* with admissible heuristics.

EXPERIMENTAL SETUP

- Based on OpenNMT-py, a PyTorch reimplementation of Torch-based OpenNMT (Klein et al., 2017). PyTorch made it much easier than Theano-based RNNsearch.
- IM Chinese-English sentence pairs (28M/23M tokens) for training (also tried 2M sentence pairs).
- ³ Used byte-pair encoding (BPE) (Senrich et al., 2015) to reduce vocabulary sizes from 112k/93k to 18k/10k. BPE improved BLEU score (by at least 2+) and reduced training time.
- Chinese to English: NIST 06 newswire portion (616 sentences) for dev; NIST 08 newswire portion (691 sentences) for test; case-insensitive 4-reference BLEU-4 scores.
- **6** 20 epochs local greedy training (excluding (15%) sentences w / 50+ source tokens). About an hour per epoch on Geforce 980 Ti, epoch 15 reaches the lowest perplexity on the dev set (9.10).

6 Baseline is very competitive: 29.2 BLEU with b = 1 (greedy), 33.2 with default b = 5. By-product: We also found and fixed an obscure but serious bug in OpenNMT-py's beam search code (not related to this paper), which boosts BLEU scores by about +0.7 in all cases.

SEARCH (modulo beam size)		-12000
)} to be best complete hypothesis so far . m in the current step <i>i</i> is already worse than $st_{[0:i]}$).	nodel score (dev)	-13000
		-14000
		-15000
		-16000
am B_i . Descendants of these items in future eps are no better than $best_{[0:i]}$.		-17000
	la	-18000
	to	-19000
ng item in any step is complete. Return it.		-20000

our optimal beam search stops at step 3 (triggered by 0.2 < 0.36) and returns the best candidate so far "hello </s>" (score 0.36), while OpenNMT-py stops at step 5 and returns "how are you doing </s>" (score 0.12).

Figure 2: BLEU score and length ratio against beam size (on dev).

shrii optimal Table 1: Final BLEU

Figure 1: Comparison between optimal beam search and OpenNMT-py's default search, in terms of search quality (model score, \uparrow is better).

beam size

decoder	b	dev	test
Moses	70	30.14	29.41
penNMT-py default	16	33.60	29.75
nrinking, len. norm.	17	33.71	30.11
nking, reward $r=1.3$	15	34.42	30.37
beam search, <i>r</i> =1.2	15	34.70	30.61
EU scores on test set using	best	settings	from dev

scores on test set using best sett