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THE PROBLEM – WHEN TO STOP?

Neural beam search (e.g. NMT) is great, but nobody
knows when/how to stop!

• greedy search: easy, just stop at the first </s>
• beam search: has to return a complete hypothesis

which ends at </s>,
• but how to guarantee it’s the best-scoring one?
• it’s possible some currently incomplete hypothesis

can lead to high-scoring complete hypothesis
• when can you guarantee no other complete

hypotheses (in the future) can score better?

Existing approaches can’t establish optimality:

1 RNNsearch: shrink beam heuristic: decrement
beam size for each complete hypothesis in beam
(too hacky)

2 OpenNMT-py: stop whenever the top item at any
step is a complete one, and return it
(we’ll show it’s neither optimal nor efficient)

OUR CONTRIBUTIONS

Our first algorithm:
1 we devise the first provably-optimal neural beam

search algorithm (optimal modulo beam size)
2 this means if you follow standard beam search

pruning, then for a given beam size, you can’t find a
higher-scoring complete hypothesis than ours

3 our algorithm is not only optimal, but also efficient:
it finishes beam search earlier than OpenNMT-py

Our second algorithm:
1 but higher model score leads to short translations!
2 we devise a bounded length reward to encourage

longer translations
3 a variant of our optimal beam search is still optimal

with bounded length reward

BEAM SEARCH BACKGROUND

y∗ = argmax
y:comp(y)

p(y | x) = argmax
y:comp(y)

∏
i≤|y|

p(yi | x, y<i)

where comp(y) ∆= (y|y| = </s>) returns the completeness
of a hypothesis, and beam search expands Bi−1 to Bi:

B0 =[〈<s>, p(<s> | x)〉]

Bi =
b

top{〈y′◦ yi, s·p(yi|x, y)〉 | 〈y′, s〉 ∈ Bi−1}

FIRST ALGORITHM: OPTIMAL BEAM SEARCH (modulo beam size)

Current Candidate: define best [0:i]
∆= max{y ∈ ∪j≤iBj | comp(y)} to be best complete hypothesis so far.

Stopping Criteria: Bi,1 ≤ best [0:i], i.e., when the top-scoring item in the current step i is already worse than
the best complete hypothesis so far. Then return the latter (best [0:i]).

Optimality Proof: Bi,j ≤ Bi,1 ≤ best [0:i] for all items Bi,j in beam Bi. Descendants of these items in future
steps are even worse, so all items in the current and future steps are no better than best [0:i].

OpenNMT-py’s Method: comp(Bi,1), i.e., when the top-scoring item in any step is complete. Return it.

Efficiency: Our algorithm terminates no later than OpenNMT-py (which is neither optimal nor efficient).
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our optimal beam search
stops at step 3 (triggered by
0.2 < 0.36) and returns the
best candidate so far “hello
</s>” (score 0.36), while
OpenNMT-py stops at step
5 and returns “how are you
doing </s>” (score 0.12).

SECOND ALGORITHM: Optimal Beam Search w/ Bounded Length Reward

The Problem: Higher-scoring hypotheses lead to extremely short translations.

Existing Solutions: However, both break the optimality of our optimal beam search algorithm!
1 score normalization: the score of a hypothesis / its length; aiming for optimal average per-step score.

used in RNNsearch (Bahdanau et al., 2014) and Google NMT (Wu et al., 2016).
2 length reward: explicit reward for each word; used in Baidu NMT (He et al., 2016).

Our Bounded Length Reward: We only reward each target word up to an estimated “optimal” length,
proportional to source length |x|; in Chinese-to-English exps we use 1.27 · |x| estimated on the dev set.

Modified Optimal Beam Search: use new score s̃c(y) ∆= sc(y) + r · min{c|x|, |y|}, where c = 1.27, and we
tune the length reward r on dev set. Optimality Proof: similar to A* with admissible heuristics.

EXPERIMENTAL SETUP

1 Based on OpenNMT-py, a PyTorch reimplementation of Torch-based OpenNMT (Klein et al., 2017).
PyTorch made it much easier than Theano-based RNNsearch.

2 1M Chinese-English sentence pairs (28M/23M tokens) for training (also tried 2M sentence pairs).
3 Used byte-pair encoding (BPE) (Senrich et al., 2015) to reduce vocabulary sizes from 112k/93k to

18k/10k. BPE improved BLEU score (by at least 2+) and reduced training time.
4 Chinese to English: NIST 06 newswire portion (616 sentences) for dev; NIST 08 newswire portion

(691 sentences) for test; case-insensitive 4-reference BLEU-4 scores.
5 20 epochs local greedy training (excluding (15%) sentences w/ 50+ source tokens). About an hour

per epoch on Geforce 980 Ti, epoch 15 reaches the lowest perplexity on the dev set (9.10).
6 Baseline is very competitive: 29.2 BLEU with b = 1 (greedy), 33.2 with default b = 5.

By-product: We also found and fixed an obscure but serious bug in OpenNMT-py’s beam search code (not
related to this paper), which boosts BLEU scores by about +0.7 in all cases.
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Figure 1: Comparison between optimal beam search and OpenNMT-py’s
default search, in terms of search quality (model score, ↑ is better).
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Figure 2: BLEU score and length ratio against beam size (on dev).

decoder b dev test
Moses 70 30.14 29.41

OpenNMT-py default 16 33.60 29.75
shrinking, len. norm. 17 33.71 30.11

shrinking, reward r=1.3 15 34.42 30.37
optimal beam search, r=1.2 15 34.70 30.61

Table 1: Final BLEU scores on test set using best settings from dev set.


