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Structured Perceptron (Collins 02)
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® challenge: search efficiency (exponentially many classes)
® often use dynamic programming (DP)
® but still too slow for repeated use, e.g. parsing is O(n3)

® and can’t use non-local features in DP



Perceptron w/ Inexact Inference
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® routine use of inexact inference in NLP (e.g. beam search)

® how does structured perceptron work with inexact search!?
® so far most structured learning theory assume exact search
® would search errors break these learning properties?

® if so how to modify learning to accommodate inexact search!?
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ldea: Search-Error-Robust Model
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® train a “‘search-specific” or “search-error-robust” model
® we assume the same “search box” in training and testing
® model should “live with” search errors from search box
® exact search => convergence; greedy => no convergence

® how can we make perceptron converge w/ greedy search?
Liang Huang (CUNY) 4



Our Contributions
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® theory: a framework for perceptron w/ inexact search
® explains previous work (early update etc) as special cases
® practice: new update methods within the framework
® converges faster and better than early update
® real impact on state-of-the-art parsing and tagging

® more advantageous when search error is severer



In this talk...

® Structured Perceptron and Inexact Search

® perceptron does not converge with inexact search

® early update (Collins/Roark ’04) seems to help; but why!?
® New Perceptron Framework for Inexact Search

® explains early update as a special case

® convergence theory with arbitrarily inexact search

® new update methods within this framework

® Experiments



Structured Perceptron (Collins 02)

® simple generalization from binary/multiclass perceptron

® online learning: for each example (x, y) in data

® inference: find the best output z given current weight w

® update weights when ify # z
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Convergence with Exact Search

® |inear classification: converges iff. data is separable

® structured: converges iff. data separable & search exact
® there is an oracle vector that correctly labels all examples
® one vs the rest (correct label better than all incorrect labels)

® theorem:if separable, then # of updates < 12/ 02  ::diameter
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Convergence with Exact Search
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No Convergence w/ Greedy Search
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Early update (Collins/Roark 2004) TO rescue
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® why does inexact search break convergence property?
® what is required for convergence! exactness?

® why does early update (Collins/Roark 04) work?
® it works well in practice and is now a standard method

® but there has been no theoretical justification

® we answer these Qs by inspecting the convergence proof,



Geometry of Convergence Proof pt |

1: repeat

2:  for each example (z,y) in D do w <

3: z + EXACT(z,w)
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Geometry of Convergence Proof pt 2
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Violation is All we need!

® exact search is hot really required by the proof

® rather, it is onl(_y
| £
a

utsed to ensure violation!
acC

| -best

violation: incorrect label scored higher

the proof only uses 3 facts:

c : .
G |. separation (margin)
(o 5y .
© 2. diameter (always finite)

current
model (%)

3. violation (but no need for exact)
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Violation-Fixing Perceptron

® if we guarantee violation, we don’t care about exactness!

® violation is good b/c we can at least fix a mistake

all
violations

same mistake bound as before!
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What if can’t guarantee violation

® this is why perceptron doesn’t work well w/ inexact search
® because not every update is guaranteed to be a violation
® thus the proof breaks; no convergence guarantee

® example: beam or greedy search

® the model might prefer the correct label (if exact search)

® but the search prunes it away ®
. . o €¢ ’» . d
® such a non-violation update is “bad \‘;’%3&6 w
because it doesn’t fix any mistake
. . . O
® the new model still misguides the search
current

model
>



Standard Update: No Guarantee
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Early Update: Guarantees Violation
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early update: incorrect prefix

scores higher: a violation!
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Early Update: from Greedy to Beam

® beam search is a generalization of greedy (where b=1)

® at each stage we keep top b hypothesis < . -
® widely used: tagging, parsing, translation... \k )

® carly update -- when correct label first falls off the beam

® up to this point the incorrect prefix should score higher

® standard update (full update) -- no guarantee!

violation guaranteed:
incorrect prefix scores
higher up to this point

Q
s
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o
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correct label standard update

falls off beam (no guarantee!)
(pruned) 20



Early Update as Violation-Fixing

also new definition of
“beam separability’:
a correct prefix should  « 2o e
score higher than el
any incorrect prefix y

of the same length
(maybe too strong)

cf. Kulesza and Pereira,2007 J f

standard update
(bad!)

correct label
falls off beam

(pruned)
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New Update Methods: max-violation, ...

standard

early (bad!)

max-=violation

® we now established a theory for early update (Collins/Roark)
® but it learns too slowly due to partial updates

® max-violation: use the prefix where violation is maximum

® “worst-mistake” in the search space

® 3|l these update methods are violation-fixing perceptrons
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Experiments

trigram part-of-speech tagging incremental dependency parsing
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|) Trigram Part of Speech Tagging

® standard update performs terribly with greedy search (b=1)
® because search error is severe at b=I: half updates are bad!

® no real difference beyond b=2: search error becomes rare
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best tagging accuracy on held-out

Max-Violation Reduces Training Time

® max-violation peaks at b=2, greatly reduced training time

® carly update achieves the highest dev/test accuracy

® comparable to best published accuracy (Shen et al ‘07)

® future work: add non-local features to tagging

beam iter time test

standard

early

max-violation —+—
GaMlYy === =

standard
11111111

e T Shen et al (2007) 97.33

max-violation




2) Incremental Dependency Parsing

® DP incremental dependency parser (Huang and Sagae 2010)

® non-local history-based features rule out exact DP
® we use beam search, and search error is severe

® baseline: early update. extremely slow: 38 iterations
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Max-violation converges much faster

® carly update: 38 iterations, |5.4 hours (92.24)

® max-violation: 10 iterations, 4.6 hours (92.25)

parsing accuracy on held-out

|2 iterations, 5.5 hours (92.32)

92.25

92

91.75

91.5

91.25

max-violation
ea}rly

| | | | | |

|
0 2 4 6 8 10 12 14 16 18
training time (hours)

91
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Comparison b/w tagging & parsing

® search error is much more severe in parsing than in tagging
® standard update is OK in tagging except greedy search (b=1)
® but performs horribly in parsing even at large beam (b=8)

® because ~50% of standard updates are bad (non-violation)!

100 ———————— take-home message:
f:g;;g our methods are more helpful
75 1 for harder search problems!
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Related Work and Discussions

® our “violation-fixing” framework include as special cases
® early-update (Collins and Roark, 2004)
® a variant of LaSO (Daume and Marcu, 2005)
® not sure about Searn (Daume et al, 2009)

® “beam-separability” or “greedy-separability’”’ related to:
® “algorithmic-separability” of (Kulesza and Pereira, 2007)
® but these conditions are too strong to hold in practice

® under-generating (beam) vs. over-generating (LP-relax.)

® Kulesza & Pereira and Martins et al (201 1): LP-relaxation

® Finley and Joachims (2008): both under and over for SVM

29



Conclusions

® Structured Learning with Inexact Search is Important

® [wo contributions from this work:

® theory: a general violation-fixing perceptron framework
convergence for inexact search under new defs of separability

subsumes previous work (early update & LaSO) as special cases

® practice: new update methods within this framework
“max-violation” learns faster and better than early update
dramatically reducing training time by 3-5 folds
improves over state-of-the-art tagging and parsing systems

our methods are more helpful to harder search problems! :)
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Thank you!
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Bonus Track: Parallelizing Online Learning

(K. Zhao and L. Huang, NAACL 201 3)



Perceptron still too slow

® even if we use very fast inexact search ‘)\‘
because

1 5 9

: .. 13
® there is too much training data, and Update | UBcale | [RCEE

5 6 10 u;;dzte
® has to go over the whole data many oais| [vpdate] [updaie] [update

. 11
times to converge 3 7 | [pdate] | 15

update

: : ) update 12 | |upsee
® can we parallelize online learning! g 16

S upcate ) [update
® harder than parallelizing batch ‘ﬂm\A % /-;

learning (e.g. CRF)

® |osing dependency b/w examples

® McDonald et al (2010): ~3-4x faster

Liang Huang (CUNY) 33



Minibatch Parallelization

N

® parallelize in
each minibach

® do aggregate
update after
each minibatch

® becomes batch
if minibatch size
is the whole set

Liang Huang (CUNY)
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Minibach helps in serial also

® minibatch perceptron
® use average of updates within minibatch
® “averaging effect” (cf. McDonal et al 2010)

® easy to prove convergence (still R2/5?)
® minibatch MIRA

® optimization over more constraints
® MIRA: online approximation of SVM

® minibatch MIRA: better approximation

approaches SVM at maximum batch size

middle-ground b/w MIRA and SVM

Liang Huang (CUNY)
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Parsing - MIRA - serial minibach

® on incremental dependency parser w/ max-violation
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accuracy

Liang Huang (CUiNT)
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Intrinsic and Extrinsic Speedups
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Tagging - Perceptron

® standard update with exact search
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Tagging vs. Parsing
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Conclusions

® Two Methods for Scaling Up Structured Learning

® New variant of perceptron that allows fast inexact search
theory: a general violation-fixing perceptron framework
practice: new update methods within this framework
“max-violation” learns faster and better than early update

our methods are more helpful to harder search problems! :)
® Minibatch parallelization offers significant speedups

much faster than previous parallelization (McDonald et al 2010)

even helpful in serial setting (MIRA with more constraints)
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