Structured Learning

with Inexact Search

o © E the man bit the dog X the man hit the dog
O o
- < -
" DT NN VBD DT NN| vy B A B T 5
y= ! | e City
University
o of
Liang Huang h New York
USC The City University of New York (CUNY) Em
==
IS u2=
includes joint work with S. Phayong, Y. Guo, and K. Zhao OO

Information Sciences Institute CITY UNIVERSITY

USC School of Engineering OF NEW YORK

,,_
-

Structured Perceptron (Collins 02)

binary classification trivial s
o e y = % :
e o /o & constant* ‘3 y update weights
i s ® Hofclasses ¥ if y = z
" Y
y=+1 y=-1
, ~ exponential hard
structured classification # of classes | t— <
the man bit the dog| x = s exact = Update weights

\
; \Y inference "

DT NN VBD DT NN| y Y

if y =z

® challenge: search efficiency (exponentially many classes)
® often use dynamic programming (DP)
® but still too slow for repeated use, e.g. parsing is O(n3)

® and can’t use non-local features in DP

Perceptron w/ Inexact Inference

0 <
the man bit the dog| x xz—> update weights
‘ inference :
if y#z
y Y g

DT NN VBD DT NN

T2 does it still work???

/ <&
\Qreedy search \kbeam searcIJ

® routine use of inexact inference in NLP (e.g. beam search)

® how does structured perceptron work with inexact search!?
® so far most structured learning theory assume exact search
® would search errors break these learning properties?

® if so how to modify learning to accommodate inexact search!?
3

ldea: Search-Error-Robust Model

(7

W

training
x inexact 7 —>
inference

Y >

update weights

if y =z

testing
x inexact z

inference

® train a “‘search-specific” or “search-error-robust” model
® we assume the same “search box” in training and testing
® model should “live with” search errors from search box
® exact search => convergence; greedy => no convergence

® how can we make perceptron converge w/ greedy search?
Liang Huang (CUNY) 4

Our Contributions

w <
X and carly update on
or beam ;
prefixes y’, 2’

Y >

® theory: a framework for perceptron w/ inexact search
® explains previous work (early update etc) as special cases
® practice: new update methods within the framework
® converges faster and better than early update
® real impact on state-of-the-art parsing and tagging

® more advantageous when search error is severer

In this talk...

® Structured Perceptron and Inexact Search

® perceptron does not converge with inexact search

® early update (Collins/Roark ’04) seems to help; but why!?
® New Perceptron Framework for Inexact Search

® explains early update as a special case

® convergence theory with arbitrarily inexact search

® new update methods within this framework

® Experiments

Structured Perceptron (Collins 02)

® simple generalization from binary/multiclass perceptron

® online learning: for each example (x, y) in data

® inference: find the best output z given current weight w

® update weights when ify # z

X X trivial zogs— <
o e e ¢ o constant v = | .
: " classes . ! update weights
© ;
7 if y#z
. P~ y
y=+1 y=-1

exponential hard
classes AP

the man bit the dog| x

iy Sxact update weights

k
\Y inference F

<5

DT NN VBD DT NN| y Yy

if y =z

Convergence with Exact Search

® |inear classification: converges iff. data is separable

® structured: converges iff. data separable & search exact
® there is an oracle vector that correctly labels all examples
® one vs the rest (correct label better than all incorrect labels)

® theorem:if separable, then # of updates < 12/ 02 ::diameter

X100

. / ° ¢ ©
O f
O ® ® Y100
O ® e O
X3012 g O ® O
.xzooo @ o
y=-1 y=+1 Rosenblatt => Collins 27~ Y10

1957 2002

Convergence with Exact Search

currgnlt training example
mode , .
time flies
- correct
—_— W) N V

label

—
s 7
R output space
R (4

R\ {N,V} x {N,V}

standard perceptron
converges with
exact search

No Convergence w/ Greedy Search

current INVi training example
model s .)
time flies
< correct
/ N V
label

output space

{N,V} x {N,V}

standard perceptron
does not converge
with greedy search

Early update (Collins/Roark 2004) TO rescue

current
model

k)
=

training example
time flies
N \'

correct
label

output space

{N,V} x {N,V}

standard perceptron
does not converge
with greedy search

VIV V>

— update —| skip —

Wik, stop and update at the first mistake

new
mOdel N

WP D
"9"
€~2
W (A4 :

YARY

— update —| skip —

® why does inexact search break convergence property?
® what is required for convergence! exactness?

® why does early update (Collins/Roark 04) work?
® it works well in practice and is now a standard method

® but there has been no theoretical justification

® we answer these Qs by inspecting the convergence proof,

Geometry of Convergence Proof pt |

1: repeat

2: for each example (z,y) in D do w <

3: z + EXACT(z,w)

4: if z # y then X exact z—> update weights
5: W W+ A®(z,y, 2) EE s £

6: until converged Y > L e

perceptron update:

@
wlktD) = wk) L AP (2, vy, 2)
. u-wbt) = u.wk 4fu. A®P(x,y, ﬂ
) separation =0 margin
= N u-wktl) > ks (by induction)

o > unit oracle

52 vector u lull[[w®*D] > u - wh+D > kg

e

3 E

|wkD|| > k6 (part |: upperbound)
I

3

Geometry of Convergence Proof pt 2

repeat

-

2: for each example (z,y) in D do w <

3: z + EXACT(z,w)

4: if 2 # y then X exact z—> update weights
5: W W+ A®(z,y, 2) EE s £

6: until converged exact Y > U ZE

|-best . : : :
violation: incorrect label scored higher

o
. = perceptron update:
correct wikth) = w(k) A®(z,y,2)
7 label
e o w12 = |w® + A®(z,y, 2)|

~

)
% w2 H||A®(z,y,2)|* 4 2w®) . AdD(z,y, 2)
% <R <0

E L
o_ violation
55| o/ N /

S S by induction: |w(*+1)|2 < kR2 (part 2:upperbound)
& N0

parts |+2 => update bounds: \k < R2/52\ 4

Violation is All we need!

® exact search is hot really required by the proof

® rather, it is onl(_y
| £
a

utsed to ensure violation!
acC

| -best

violation: incorrect label scored higher

the proof only uses 3 facts:

c : .
G |. separation (margin)
(o 5y .
© 2. diameter (always finite)

current
model (%)

3. violation (but no need for exact)

|5

Violation-Fixing Perceptron

® if we guarantee violation, we don’t care about exactness!

® violation is good b/c we can at least fix a mistake

all
violations

same mistake bound as before!

repeat
for each example (z,y) in D do

B

2

3 (z,y’,z) = FINDVIOLATION(Z,y, W)

4: if 2 # vy then > (x,y’, z) is a viol
5.

6:

w—w+ AP(z,y, 2)
until converged

standard perceptron violation-fixing perceptron

w < <
X : efxact 2ad update weights ilafe g update weights
inference . g S
y S if y = z violation y— ifilRs

16

What if can’t guarantee violation

® this is why perceptron doesn’t work well w/ inexact search
® because not every update is guaranteed to be a violation
® thus the proof breaks; no convergence guarantee

® example: beam or greedy search

® the model might prefer the correct label (if exact search)

® but the search prunes it away ®
. . o €¢ ’» . d
® such a non-violation update is “bad \‘;’%3&6 w
because it doesn’t fix any mistake
. . . O
® the new model still misguides the search
current

model
>

Standard Update: No Guarantee

training example
time flies
N \

correct
label

output space

{N,V} x {N,V}
standard update
@@ doesn’t converge
o : :
> b/c it doesn’t
VN guarantee violation

correct label scores higher.
non-violation: bad update!

Early Update: Guarantees Violation

VV vV IN Vi training example
m—— time flies
8 correct
/ N \
label

output space

IN,V} x {N,V}
standard update
@@ doesn’t converge
o : :
> b/c it doesn’t
VN guarantee violation

VIV [V

— update —| skip —

early update: incorrect prefix

scores higher: a violation!
19

Wy,

Early Update: from Greedy to Beam

® beam search is a generalization of greedy (where b=1)

® at each stage we keep top b hypothesis < . -
® widely used: tagging, parsing, translation... \k)

® carly update -- when correct label first falls off the beam

® up to this point the incorrect prefix should score higher

® standard update (full update) -- no guarantee!

violation guaranteed:
incorrect prefix scores
higher up to this point

Q
s
(4]
o
ol
-]

correct label standard update

falls off beam (no guarantee!)
(pruned) 20

Early Update as Violation-Fixing

also new definition of
“beam separability’:
a correct prefix should « 2o e
score higher than el
any incorrect prefix y

of the same length
(maybe too strong)

cf. Kulesza and Pereira,2007 J f

standard update
(bad!)

correct label
falls off beam

(pruned)
21

New Update Methods: max-violation, ...

standard

early (bad!)

max-=violation

® we now established a theory for early update (Collins/Roark)
® but it learns too slowly due to partial updates

® max-violation: use the prefix where violation is maximum

® “worst-mistake” in the search space

® 3|l these update methods are violation-fixing perceptrons
22

Experiments

trigram part-of-speech tagging incremental dependency parsing

the man bit the dog| x the man bit the dog «x

- <

DT NN VBD DT NN| y bit
/ \
/man /dog y
the the
local features only, non-local features,
exact search tractable exact search intractable

(proof of concept) (real impact)

|) Trigram Part of Speech Tagging

® standard update performs terribly with greedy search (b=1)
® because search error is severe at b=I: half updates are bad!

® no real difference beyond b=2: search error becomes rare

| | u | |

s - — - - -
=

972 B " — I i TE
5 / _

9.8 | | -

96.6 |-/ -
max-violation —+—

96.4 7 early ———- -

standard
| | | |

]
a2 3 4 5 6 7 8 9 10
7% of bad (non-violation) beam size

standard updates 53% 10% 1.5% 0.5%

| |]

best tagging accuracy on held-out

best tagging accuracy on held-out

Max-Violation Reduces Training Time

® max-violation peaks at b=2, greatly reduced training time

® carly update achieves the highest dev/test accuracy

® comparable to best published accuracy (Shen et al ‘07)

® future work: add non-local features to tagging

beam iter time test

standard

early

max-violation —+—
GaMlYy === =

standard
11111111

e T Shen et al (2007) 97.33

max-violation

2) Incremental Dependency Parsing

® DP incremental dependency parser (Huang and Sagae 2010)

® non-local history-based features rule out exact DP
® we use beam search, and search error is severe

® baseline: early update. extremely slow: 38 iterations

at | | | | | | | |

o 9225 -
O M

D

i o 92 = . -
=

O

S 91.75 -
©

= |

S 91.5 -
(4]

4

@ 9125 -
4]

Q. 91 1 | | | | ealrly | |

]
0 2 4 6 8 10 12 14 16 18

training time (hours) 26

Max-violation converges much faster

® carly update: 38 iterations, |5.4 hours (92.24)

® max-violation: 10 iterations, 4.6 hours (92.25)

parsing accuracy on held-out

|2 iterations, 5.5 hours (92.32)

92.25

92

91.75

91.5

91.25

max-violation
ea}rly

| | | | | |

|
0 2 4 6 8 10 12 14 16 18
training time (hours)

91

27

Comparison b/w tagging & parsing

® search error is much more severe in parsing than in tagging
® standard update is OK in tagging except greedy search (b=1)
® but performs horribly in parsing even at large beam (b=8)

® because ~50% of standard updates are bad (non-violation)!

100 ———————— take-home message:
f:g;;g our methods are more helpful
75 1 for harder search problems!
- _ R
° < 97/
7 of bad 5 ol
25 |- 4 &
standard updates g s N
Paf e
0 l | I l I g BrSre
2 4 6 8 10 12 14 16 wemwe [SSSSNONS 922
beam size ’ :

Related Work and Discussions

® our “violation-fixing” framework include as special cases
® early-update (Collins and Roark, 2004)
® a variant of LaSO (Daume and Marcu, 2005)
® not sure about Searn (Daume et al, 2009)

® “beam-separability” or “greedy-separability’”’ related to:
® “algorithmic-separability” of (Kulesza and Pereira, 2007)
® but these conditions are too strong to hold in practice

® under-generating (beam) vs. over-generating (LP-relax.)

® Kulesza & Pereira and Martins et al (201 1): LP-relaxation

® Finley and Joachims (2008): both under and over for SVM

29

Conclusions

® Structured Learning with Inexact Search is Important

® [wo contributions from this work:

® theory: a general violation-fixing perceptron framework
convergence for inexact search under new defs of separability

subsumes previous work (early update & LaSO) as special cases

® practice: new update methods within this framework
“max-violation” learns faster and better than early update
dramatically reducing training time by 3-5 folds
improves over state-of-the-art tagging and parsing systems

our methods are more helpful to harder search problems! :)
30

Thank you!

100 , , , , : : , I I l T I I I l
parsing —— 92.25 |
tagging —=—
- gging | -l)
parsing accuracy
50 _ 91.75 |- —
— t on held-out
7% of bad updates 91.5 |- -
25 : .
in standard perceptron | ... |)
: max-violation
0 ' ' : . 91 1 1 1 1 1 equy l 1
gl 2 Gb B 0 = an T 0 2 4 6 8 10 12 14 16 18
cam Size training time (hours)
The City
Universi
of Y my parser with max-violation update is available at:

New York

http://acl.cs.gc.edu/~1lhuang/#software

liang.huang.sh@gmail.com

mailto:lhuang@isi.edu
mailto:lhuang@isi.edu
http://acl.cs.qc.edu/~lhuang/#software
http://acl.cs.qc.edu/~lhuang/#software

Bonus Track: Parallelizing Online Learning

(K. Zhao and L. Huang, NAACL 201 3)

Perceptron still too slow

® even if we use very fast inexact search ‘)\‘
because

1 5 9

: .. 13
® there is too much training data, and Update | UBcale | [RCEE

5 6 10 u;;dzte
® has to go over the whole data many oais| [vpdate] [updaie] [update

. 11
times to converge 3 7 | [pdate] | 15

update

: :) update 12 | |upsee
® can we parallelize online learning! g 16

S upcate) [update
® harder than parallelizing batch ‘ﬂm\A % /-;

learning (e.g. CRF)

® |osing dependency b/w examples

® McDonald et al (2010): ~3-4x faster

Liang Huang (CUNY) 33

Minibatch Parallelization

N

® parallelize in
each minibach

® do aggregate
update after
each minibatch

® becomes batch
if minibatch size
is the whole set

Liang Huang (CUNY)

-uaﬁlte\uatj

1 5 9
update update update 13
1 update
2 6 0 14
update | |update | |update update
11
3 7 update 15
pdat
update g e update
4 8 16

ff

34

Minibach helps in serial also

® minibatch perceptron
® use average of updates within minibatch
® “averaging effect” (cf. McDonal et al 2010)

® easy to prove convergence (still R2/5?)
® minibatch MIRA

® optimization over more constraints
® MIRA: online approximation of SVM

® minibatch MIRA: better approximation

approaches SVM at maximum batch size

middle-ground b/w MIRA and SVM

Liang Huang (CUNY)

1 3 o 7
2 4 6 8
—\Y-/_

4x constrains
in each update

35

Parsing - MIRA - serial minibach

® on incremental dependency parser w/ max-violation

ey -o- ‘ _)3-8-51

= 92.25 |- -
Q
O 92 I , , | , -
= G175 |l o i _
S I
1Y ol T s -
(41) I & S < ¢ Th | - JrOSE SR
3 91.25 1 —
: i

87 |

90.75 —
0 1 2 8 4 5 6 /7 8

wall-clock time (hours)
Liang Huang (C—. ..,

accuracy

accuracy

Liang Huang (CUiNT)

92.4
92.2

92
91.8
91.6
914

92.4
92.2

92
91:8
91.6
914

0 1 2 3 4 5 6
wall-clock time (hours)

Comparison w/ McDonald et al 2010

37

Intrinsic and Extrinsic Speedups

I I I I | K
12 Finibatch(extrinsic) = 35
11 " minibatch(intrinsic) ---=--- 1 1
10 IPM(extrinsic) .~ 10
9 IPM(intrinsic) e e I
&5 7
O
a 6 6
wn
+ 0
4 4
3 3
2 2
1 1

number of processors

Liang Huang (CUNY)

Tagging - Perceptron

® standard update with exact search

97.05 T | T Bt I 97 2 " e
o7 ' G o Ml g 96.95 baseline —— -
g 96.9 m=24,p=1 —— _
96.95 S ; m=24,p=4 —
2082 1 M=24,p=12
96.9 06.8) l | l | l L l
0 02040608 1 1.2 1.4 1.6 1.8
96.85
97 --,.,«--l | T | e | | Fore | e 4 o | -
96.8 T G
12 _minibatch(extrinsic) - 12 § B A baseline .
11 I minibatch(intrinsic) ------- A g S IPMp=4 o
10 | IPM(extrinsic) I IPM,p=I12 A
- IPM(intrinsi .
o % s ° 0 02040608 1 1.2 1.4 16 1.8
€« 8 18
a 7 4 7
8 6 {6
& 5 5
4 4
3 3
2 2
1 1

Liang Huang (CUR number of processors 39

Tagging vs. Parsing

| 1

 minibatch(extrinsic
" minibatch(intrinsic
& IPM(extrinsic
- IPM(intrinsic

—

R G— Y
e \®]

ek
o
N N S S

(o]

speedup ratio

- NN W s 01T ON @

number of processors

Liang Huang (CUNY)

60
50
40
30
20
10

0

% of waiting time

TEE sk il
o - N

- N W S OO0 N O®©

speedups

|

G g— g
O = N

p —

 minibatch(extrinsic)
" minibatch(intrinsic) ---=---

IPM(extrinsic)

IPM(intrinsic) e

- D W HOTOO N OO O

p—

tagger

number of processors

k. anll’ sk
O = N

- N W A OO N OO OO

40

Conclusions

® Two Methods for Scaling Up Structured Learning

® New variant of perceptron that allows fast inexact search
theory: a general violation-fixing perceptron framework
practice: new update methods within this framework
“max-violation” learns faster and better than early update

our methods are more helpful to harder search problems! :)
® Minibatch parallelization offers significant speedups

much faster than previous parallelization (McDonald et al 2010)

even helpful in serial setting (MIRA with more constraints)

4]

