
Liang Huang
The City University of New York (CUNY)

includes joint work with S. Phayong, Y. Guo, and K. Zhao

Structured Learning

with Inexact Search

the man bit the dog

DT NN VBD DT NN

x

y

x

y=-1y=+1

x
the man hit the dog

那 人 咬 了 狗

Structured Perceptron (Collins 02)

• challenge: search efficiency (exponentially many classes)

• often use dynamic programming (DP)

• but still too slow for repeated use, e.g. parsing is O(n3)

• and can’t use non-local features in DP
2

the man bit the dog

DT NN VBD DT NN

x

y y

update weights
if y ≠ z

w

x zexact
inference

x

y=-1y=+1

x

y

update weights
if y ≠ z

w

x zexact
inference

trivial

hard

constant
of classes

exponential
of classes

binary classification

structured classification

Perceptron w/ Inexact Inference

• routine use of inexact inference in NLP (e.g. beam search)

• how does structured perceptron work with inexact search?

• so far most structured learning theory assume exact search

• would search errors break these learning properties?

• if so how to modify learning to accommodate inexact search?
3

the man bit the dog

DT NN VBD DT NN

x

y

x zinexact
inference

y

update weights
if y ≠ z

w

does it still work???

beam searchgreedy search

Liang Huang (CUNY)

Idea: Search-Error-Robust Model

• train a “search-specific” or “search-error-robust” model

• we assume the same “search box” in training and testing

• model should “live with” search errors from search box

• exact search => convergence; greedy => no convergence

• how can we make perceptron converge w/ greedy search?
4

x zinexact
inference

y

update weights
if y ≠ z

w

x zinexact
inference

training

testingw

Our Contributions

• theory: a framework for perceptron w/ inexact search

• explains previous work (early update etc) as special cases

• practice: new update methods within the framework

• converges faster and better than early update

• real impact on state-of-the-art parsing and tagging

• more advantageous when search error is severer

5

x zgreedy
or beam

y

early update on

prefixes y’, z’

w

In this talk...

• Motivations: Structured Learning and Search Efficiency

• Structured Perceptron and Inexact Search

• perceptron does not converge with inexact search

• early update (Collins/Roark ’04) seems to help; but why?

• New Perceptron Framework for Inexact Search

• explains early update as a special case

• convergence theory with arbitrarily inexact search

• new update methods within this framework

• Experiments
6

Structured Perceptron (Collins 02)

• simple generalization from binary/multiclass perceptron

• online learning: for each example (x, y) in data

• inference: find the best output z given current weight w

• update weights when if y ≠ z

7

the man bit the dog

DT NN VBD DT NN

x

y y

update weights
if y ≠ z

w

x zexact
inference

x

y=-1y=+1

x

y

update weights
if y ≠ z

w

x zexact
inference

trivial

hard

constant
classes

exponential
classes

Convergence with Exact Search
• linear classification: converges iff. data is separable

• structured: converges iff. data separable & search exact

• there is an oracle vector that correctly labels all examples

• one vs the rest (correct label better than all incorrect labels)

• theorem: if separable, then # of updates ≤ R2 / δ2 R: diameter

8

y=+1y=-1

y100

z ≠ y100

x100

x100 x111

x2000

x3012

R: diameter
R: diameter

δδ

Rosenblatt => Collins
 1957 2002

Convergence with Exact Search

9

w
(k

)

V

V N

N V

N

V V training example
time flies
N V

output space
{N,V} x {N, V}

standard perceptron
converges with
exact search

correct
label

current
model

w(k+1)

up
dat

e

No Convergence w/ Greedy Search

10

w
(k)

�
�
(x
,

y

,

z

)

V

V N

N V

N

V V training example
time flies
N V

output space
{N,V} x {N, V}

N VV

V NN

V V

w
(k)

w
(k+

1)

standard perceptron
does not converge
with greedy search

correct
label

up
dat

e

current
model

new
model

Early update (Collins/Roark 2004) to rescue

11

w
(k)

�
�
(x
,

y

,

z

)

V

V N

N V

N

V V training example
time flies
N V

output space
{N,V} x {N, V}

N VV

V N

w
(k)

w
(k+

1)

�
�
(
x

,

y

,

z)w (k+1)

w
(k)

stop and update at the first mistake

V

N

standard perceptron
does not converge
with greedy search

correct
label

current
model

new
model

up
dat

e

new
model

Why?

• why does inexact search break convergence property?

• what is required for convergence? exactness?

• why does early update (Collins/Roark 04) work?

• it works well in practice and is now a standard method

• but there has been no theoretical justification

• we answer these Qs by inspecting the convergence proof
12

V

V N

N V

N

V V �
�
(
x

,

y

,

z)w (k+1)

w
(k)

Geometry of Convergence Proof pt 1

13

y

update weights
if y ≠ z

w
x zexact

inference

y

w
(k

)

w
(k
+
1)

correct
label

�
�
(
x

,

y

,

z)
update

cu
rr

en
t

m
od

el

update

ne
w

m

od
el

perceptron update:

z
exact
1-best

(by induction)

δ
separation

unit oracle
vector u

margin� �

(part 1: upperbound)

<
90˚

Geometry of Convergence Proof pt 2

14

y

update weights
if y ≠ z

w
x zexact

inference

y

w
(k

)

w
(k
+
1)

violation: incorrect label scored higher

parts 1+2 => update bounds:

correct
label

�
�
(
x

,

y

,

z)
update

cu
rr

en
t

m
od

el

update

ne
w

m

od
el

perceptron update:

violation

by induction:

R: max diameter

z
exact
1-best

diameter
 R2

k  R2/�2
(part 2: upperbound)

<
90˚

Violation is All we need!

15

y

violation: incorrect label scored higher

correct
label

�
�
(
x

,

y

,

z)
update

• exact search is not really required by the proof

• rather, it is only used to ensure violation!

w
(k

)

w
(k
+
1)

cu
rr

en
t

m
od

el

update

ne
w

m

od
el

R: max diameter

all
 violations

z
exact
1-best

the proof only uses 3 facts:

1. separation (margin)
2. diameter (always finite)
3. violation (but no need for exact)

y

Violation-Fixing Perceptron
• if we guarantee violation, we don’t care about exactness!

• violation is good b/c we can at least fix a mistake

16

y

update weights
if y ≠ z

w
x zexact

inference
y

update weights
if y’ ≠ z

w
x zfind

violation y’

same mistake bound as before!

standard perceptron violation-fixing perceptron

all
 violations

all
 po

ssi
ble

up
da

tes

What if can’t guarantee violation
• this is why perceptron doesn’t work well w/ inexact search

• because not every update is guaranteed to be a violation

• thus the proof breaks; no convergence guarantee

• example: beam or greedy search

• the model might prefer the correct label (if exact search)

• but the search prunes it away

• such a non-violation update is “bad”
because it doesn’t fix any mistake

• the new model still misguides the search

17

beam

bad

update

current
model

Standard Update: No Guarantee

18

w
(k)

�
�
(x
,

y

,

z

)

V

V N

N V

N

V V training example
time flies
N V

output space
{N,V} x {N, V}

N VV

V NN

V V

w
(k)

w
(k+

1)

standard update
doesn’t converge

b/c it doesn’t
guarantee violation

correct label scores higher.
non-violation: bad update!

correct
label

Early Update: Guarantees Violation

19

w
(k)

�
�
(x
,

y

,

z

)

V

V N

N V

N

V V training example
time flies
N V

output space
{N,V} x {N, V}

N VV

V NN

V V

w
(k)

w
(k+

1)

�
�
(
x

,

y

,

z)w (k+1)

w
(k)

early update: incorrect prefix
scores higher: a violation!

V

N

standard update
doesn’t converge

b/c it doesn’t
guarantee violation

correct
label

Early Update: from Greedy to Beam

• beam search is a generalization of greedy (where b=1)

• at each stage we keep top b hypothesis

• widely used: tagging, parsing, translation...

• early update -- when correct label first falls off the beam

• up to this point the incorrect prefix should score higher

• standard update (full update) -- no guarantee!

20

ea
rl

y
up

da
te

correct label
falls off beam

(pruned)

correct

incorrect

violation guaranteed:
incorrect prefix scores
higher up to this point

standard update
(no guarantee!)

Early Update as Violation-Fixing

21

 beam

correct label
falls off beam

(pruned)

standard update
(bad!)

y

update weights
if y’ ≠ z

w

x z
find

violation
y’

prefix violations

y’

z

y

also new definition of
“beam separability”:

a correct prefix should
score higher than

any incorrect prefix
of the same length
(maybe too strong)

cf. Kulesza and Pereira,2007
ea

rl
y

up
da

te

New Update Methods: max-violation, ...

22

 beam

early
standard

(bad!)

max-violation

latest

• we now established a theory for early update (Collins/Roark)

• but it learns too slowly due to partial updates

• max-violation: use the prefix where violation is maximum

• “worst-mistake” in the search space

• all these update methods are violation-fixing perceptrons

Experiments

the man bit the dog

DT NN VBD DT NN

x

y

the man bit the dog x

y

bit

man

the

dog

the

trigram part-of-speech tagging incremental dependency parsing

local features only,
exact search tractable

(proof of concept)

non-local features,
exact search intractable

(real impact)

1) Trigram Part of Speech Tagging

24

• standard update performs terribly with greedy search (b=1)

• because search error is severe at b=1: half updates are bad!

• no real difference beyond b=2: search error becomes rare

% of bad (non-violation)
standard updates 53% 10% 1.5% 0.5%

Max-Violation Reduces Training Time

25

• max-violation peaks at b=2, greatly reduced training time

• early update achieves the highest dev/test accuracy

• comparable to best published accuracy (Shen et al ‘07)

• future work: add non-local features to tagging

beam iter time test

standard

early

max-violation

- 6 162m 97.28

4 6 37m 97.27

2 3 26m 97.27

Shen et al (2007)Shen et al (2007)Shen et al (2007)Shen et al (2007) 97.33

2) Incremental Dependency Parsing
• DP incremental dependency parser (Huang and Sagae 2010)

• non-local history-based features rule out exact DP

• we use beam search, and search error is severe

• baseline: early update. extremely slow: 38 iterations

26

Max-violation converges much faster

• early update: 38 iterations, 15.4 hours (92.24)

• max-violation: 10 iterations, 4.6 hours (92.25)
 12 iterations, 5.5 hours (92.32)

27

Comparison b/w tagging & parsing
• search error is much more severe in parsing than in tagging

• standard update is OK in tagging except greedy search (b=1)

• but performs horribly in parsing even at large beam (b=8)

• because ~50% of standard updates are bad (non-violation)!

28

test

standard

early

max-
violation

79.1

92.1

92.2

% of bad
standard updates

take-home message:
our methods are more helpful
for harder search problems!

Related Work and Discussions
• our “violation-fixing” framework include as special cases

• early-update (Collins and Roark, 2004)

• a variant of LaSO (Daume and Marcu, 2005)

• not sure about Searn (Daume et al, 2009)

• “beam-separability” or “greedy-separability” related to:

• “algorithmic-separability” of (Kulesza and Pereira, 2007)

• but these conditions are too strong to hold in practice

• under-generating (beam) vs. over-generating (LP-relax.)

• Kulesza & Pereira and Martins et al (2011): LP-relaxation

• Finley and Joachims (2008): both under and over for SVM
29

Conclusions
• Structured Learning with Inexact Search is Important

• Two contributions from this work:

• theory: a general violation-fixing perceptron framework

• convergence for inexact search under new defs of separability

• subsumes previous work (early update & LaSO) as special cases

• practice: new update methods within this framework

• “max-violation” learns faster and better than early update

• dramatically reducing training time by 3-5 folds

• improves over state-of-the-art tagging and parsing systems

• our methods are more helpful to harder search problems! :)
30

Thank you!

% of bad updates
in standard perceptron

liang.huang.sh@gmail.com

parsing accuracy
on held-out

my parser with max-violation update is available at:
http://acl.cs.qc.edu/~lhuang/#software

mailto:lhuang@isi.edu
mailto:lhuang@isi.edu
http://acl.cs.qc.edu/~lhuang/#software
http://acl.cs.qc.edu/~lhuang/#software

Bonus Track: Parallelizing Online Learning

(K. Zhao and L. Huang, NAACL 2013)

Liang Huang (CUNY)

Perceptron still too slow
• even if we use very fast inexact search

because

• there is too much training data, and

• has to go over the whole data many
times to converge

• can we parallelize online learning?

• harder than parallelizing batch
learning (e.g. CRF)

• losing dependency b/w examples

• McDonald et al (2010): ~3-4x faster

33

Liang Huang (CUNY)

Minibatch Parallelization

• parallelize in
each minibach

• do aggregate
update after
each minibatch

• becomes batch
if minibatch size
is the whole set

34

Liang Huang (CUNY)

Minibach helps in serial also
• minibatch perceptron

• use average of updates within minibatch

• “averaging effect” (cf. McDonal et al 2010)

• easy to prove convergence (still R2/δ2)

• minibatch MIRA

• optimization over more constraints

• MIRA: online approximation of SVM

• minibatch MIRA: better approximation

• approaches SVM at maximum batch size

• middle-ground b/w MIRA and SVM
35

4x constrains
in each update

Liang Huang (CUNY)

Parsing - MIRA - serial minibach

• on incremental dependency parser w/ max-violation

36

Liang Huang (CUNY)

Comparison w/ McDonald et al 2010

37

Liang Huang (CUNY)

Intrinsic and Extrinsic Speedups

38

Liang Huang (CUNY)

Tagging - Perceptron
• standard update with exact search

39

Liang Huang (CUNY)

Tagging vs. Parsing

40

Conclusions

• Two Methods for Scaling Up Structured Learning

• New variant of perceptron that allows fast inexact search

• theory: a general violation-fixing perceptron framework

• practice: new update methods within this framework

• “max-violation” learns faster and better than early update

• our methods are more helpful to harder search problems! :)

• Minibatch parallelization offers significant speedups

• much faster than previous parallelization (McDonald et al 2010)

• even helpful in serial setting (MIRA with more constraints)

41

