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Structured Perceptron (Collins 02)

• challenge: search efficiency (exponentially many classes)

• often use dynamic programming (DP)

• but still too slow for repeated use, e.g. parsing is O(n3)

• and can’t use non-local features in DP
2

the   man   bit    the    dog

DT   NN   VBD  DT   NN

x

y y

update weights
if y ≠ z

w

x zexact
inference

x

y=-1y=+1

x

y

update weights
if y ≠ z

w

x zexact
inference

trivial

hard

constant
# of classes

exponential 
# of classes

binary classification

structured classification



Perceptron w/ Inexact Inference

• routine use of inexact inference in NLP (e.g. beam search)

• how does structured perceptron work with inexact search?

• so far most structured learning theory assume exact search

• would search errors break these learning properties?

• if so how to modify learning to accommodate inexact search?
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Idea: Search-Error-Robust Model

• train a “search-specific” or “search-error-robust” model

• we assume the same “search box” in training and testing

• model should “live with” search errors from search box

• exact search => convergence;  greedy => no convergence

• how can we make perceptron converge w/ greedy search?
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Our Contributions

• theory: a framework for perceptron w/ inexact search

• explains previous work (early update etc) as special cases

• practice: new update methods within the framework

• converges faster and better than early update

• real impact on state-of-the-art parsing and tagging

• more advantageous when search error is severer
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In this talk...

• Motivations: Structured Learning and Search Efficiency

• Structured Perceptron and Inexact Search

• perceptron does not converge with inexact search

• early update (Collins/Roark ’04) seems to help; but why?

• New Perceptron Framework for Inexact Search

• explains early update as a special case

• convergence theory with arbitrarily inexact search

• new update methods within this framework

• Experiments
6



Structured Perceptron (Collins 02)

• simple generalization from binary/multiclass perceptron

• online learning: for each example (x, y) in data

• inference: find the best output z given current weight w

• update weights when if y ≠ z
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Convergence with Exact Search
• linear classification: converges iff. data is separable

• structured: converges iff. data separable & search exact

• there is an oracle vector that correctly labels all examples

• one vs the rest (correct label better than all incorrect labels)

• theorem: if separable, then # of updates ≤ R2 / δ2     R: diameter
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Convergence with Exact Search
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No Convergence w/ Greedy Search
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Early update (Collins/Roark 2004) to rescue
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Why?

• why does inexact search break convergence property?

• what is required for convergence? exactness?

• why does early update (Collins/Roark 04) work?

• it works well in practice and is now a standard method

• but there has been no theoretical justification

• we answer these Qs by inspecting the convergence proof
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Geometry of Convergence Proof pt 1
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Geometry of Convergence Proof pt 2
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Violation is All we need!
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Violation-Fixing Perceptron
• if we guarantee violation, we don’t care about exactness!

• violation is good b/c we can at least fix a mistake
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What if can’t guarantee violation
• this is why perceptron doesn’t work well w/ inexact search

• because not every update is guaranteed to be a violation

• thus the proof breaks; no convergence guarantee

• example: beam or greedy search

• the model might prefer the correct label (if exact search)

• but the search prunes it away

• such a non-violation update is “bad”
because it doesn’t fix any mistake

• the new model still misguides the search
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Standard Update: No Guarantee
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Early Update: Guarantees Violation
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Early Update: from Greedy to Beam

• beam search is a generalization of greedy (where b=1)

• at each stage we keep top b hypothesis

• widely used: tagging, parsing, translation...

• early update -- when correct label first falls off the beam

• up to this point the incorrect prefix should score higher

• standard update (full update) -- no guarantee!
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Early Update as Violation-Fixing
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New Update Methods: max-violation, ...
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Experiments
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1) Trigram Part of Speech Tagging
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• standard update performs terribly with greedy search (b=1)

• because search error is severe at b=1: half updates are bad!

• no real difference beyond b=2: search error becomes rare

% of bad (non-violation)
standard updates 53% 10% 1.5% 0.5%



Max-Violation Reduces Training Time
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• max-violation peaks at b=2, greatly reduced training time

• early update achieves the highest dev/test accuracy

• comparable to best published accuracy (Shen et al ‘07)

• future work: add non-local features to tagging

beam iter time test

standard

early

max-violation

- 6 162m 97.28

4 6 37m 97.27

2 3 26m 97.27

Shen et al (2007)Shen et al (2007)Shen et al (2007)Shen et al (2007) 97.33



2) Incremental Dependency Parsing
• DP incremental dependency parser (Huang and Sagae 2010)

• non-local history-based features rule out exact DP

• we use beam search, and search error is severe

• baseline: early update. extremely slow: 38 iterations
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Max-violation converges much faster

• early update:   38 iterations, 15.4 hours  (92.24)

• max-violation: 10 iterations,  4.6 hours   (92.25)
                     12 iterations,  5.5 hours   (92.32)
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Comparison b/w tagging & parsing
• search error is much more severe in parsing than in tagging

• standard update is OK in tagging except greedy search (b=1)

• but performs horribly in parsing even at large beam (b=8)

• because ~50% of standard updates are bad (non-violation)!
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Related Work and Discussions
• our “violation-fixing” framework include as special cases

• early-update (Collins and Roark, 2004)

• a variant of LaSO (Daume and Marcu, 2005)

• not sure about Searn (Daume et al, 2009)

• “beam-separability” or “greedy-separability” related to:

• “algorithmic-separability” of (Kulesza and Pereira, 2007)

• but these conditions are too strong to hold in practice

• under-generating (beam) vs. over-generating (LP-relax.)

• Kulesza & Pereira and Martins et al (2011): LP-relaxation

• Finley and Joachims (2008): both under and over for SVM
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Conclusions
• Structured Learning with Inexact Search is Important

• Two contributions from this work:

• theory: a general violation-fixing perceptron framework

• convergence for inexact search under new defs of separability

• subsumes previous work (early update & LaSO) as special cases

• practice: new update methods within this framework

• “max-violation” learns faster and better than early update

• dramatically reducing training time by 3-5 folds

• improves over state-of-the-art tagging and parsing systems

• our methods are more helpful to harder search problems! :)
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Thank you!

% of bad updates
in standard perceptron

liang.huang.sh@gmail.com

parsing accuracy 
on held-out

my parser with max-violation update is available at:
http://acl.cs.qc.edu/~lhuang/#software

mailto:lhuang@isi.edu
mailto:lhuang@isi.edu
http://acl.cs.qc.edu/~lhuang/#software
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Bonus Track: Parallelizing Online Learning

(K. Zhao and L. Huang, NAACL 2013)



Liang Huang (CUNY)

Perceptron still too slow
• even if we use very fast inexact search 

because

• there is too much training data, and

• has to go over the whole data many 
times to converge

• can we parallelize online learning?

• harder than parallelizing batch 
learning (e.g. CRF)

• losing dependency b/w examples

• McDonald et al (2010): ~3-4x faster
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Minibatch Parallelization

• parallelize in 
each minibach

• do aggregate 
update after 
each minibatch

• becomes batch 
if minibatch size 
is the whole set
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Minibach helps in serial also
• minibatch perceptron

• use average of updates within minibatch

• “averaging effect” (cf. McDonal et al 2010)

• easy to prove convergence (still R2/δ2)

• minibatch MIRA

• optimization over more constraints

• MIRA: online approximation of SVM

• minibatch MIRA: better approximation

• approaches SVM at maximum batch size 

• middle-ground b/w MIRA and SVM
35
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Parsing - MIRA - serial minibach

• on incremental dependency parser w/ max-violation
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Comparison w/ McDonald et al 2010
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Intrinsic and Extrinsic Speedups
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Tagging - Perceptron
• standard update with exact search
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Tagging vs. Parsing
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Conclusions

• Two Methods for Scaling Up Structured Learning

• New variant of perceptron that allows fast inexact search

• theory: a general violation-fixing perceptron framework

• practice: new update methods within this framework

• “max-violation” learns faster and better than early update

• our methods are more helpful to harder search problems! :)

• Minibatch parallelization offers significant speedups

• much faster than previous parallelization (McDonald et al 2010)

• even helpful in serial setting (MIRA with more constraints)
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