
Span-Based Constituency Parsing with
Provably Optimal Dynamic Oracles

James Cross and Liang Huang
Oregon State University

EMNLP, Austin, TX
November 2, 2016

Dependency vs. Constituency

2

search UAS

Zhang & Nivre 2011 beam 92.9

Chen & Manning 2014 greedy 91.8

Zhou et al. (2015) beam 93.3

Weiss et al. (2015) beam 94.0

our work (ACL 2016) greedy 93.4

Andor et al. (2016) beam 94.4

search F1

Carreras et al. (2008) cubic 91.1

Shindo et al. (2012) cubic 91.1

Thang et al. (2015) (A*) ~cubic 91.1

Watanabe et al. (2015) beam 90.7

Vinyals et al. (2015) (WSJ) beam 90.5

Red = Neural

S

VP

S

VP

NP

NN

fish

VBG

eating

VBP

like

MD

do

NP

PRP

I

I do like eating fish

PRP MD VBP VBG NN

ROOT

subj

aux dobj dobj

Dependency vs. Constituency

2

search UAS

Zhang & Nivre 2011 beam 92.9

Chen & Manning 2014 greedy 91.8

Zhou et al. (2015) beam 93.3

Weiss et al. (2015) beam 94.0

our work (ACL 2016) greedy 93.4

Andor et al. (2016) beam 94.4

search F1

Carreras et al. (2008) cubic 91.1

Shindo et al. (2012) cubic 91.1

Thang et al. (2015) (A*) ~cubic 91.1

Watanabe et al. (2015) beam 90.7

Vinyals et al. (2015) (WSJ) beam 90.5

This Work greedy 91.3

Red = Neural

S

VP

S

VP

NP

NN

fish

VBG

eating

VBP

like

MD

do

NP

PRP

I

I do like eating fish

PRP MD VBP VBG NN

ROOT

subj

aux dobj dobj

Outline

• Span-Based Constituency Parsing

• Bi-Directional LSTM Span Features

• Provably Optimal Dynamic Oracle

• Experiments

3

Span-Based Parsing

• Previous work uses tree structures on stack

• We simplify to operate directly on sentence spans

• Simple-to-implement linear-time parsing

4

do/MD like/VBPI/PRP
0 1

eating/VBG fish/NN
3 4 5

Stack Queue

do/MDI/PRP eating/VBG fish/NN

Stack Queue
VP’NP

like/VBP
previous work

our work

current
brackets

5

S

VP

S

VP

NP

NN

fish

VBG

eating

VBP

like

MD

do

NP

PRP

I

Structural
(even step)

Shift

Combine

Label
(odd step)

Label-X

No-Label

do/MDI/PRP like/VBP
0 1 2

eating/VBG fish/NN
3 4 5

t = {}

current
brackets

5

S

VP

S

VP

NP

NN

fish

VBG

eating

VBP

like

MD

do

NP

PRP

I

Structural
(even step)

Shift

Combine

Label
(odd step)

Label-X

No-Label

do/MDI/PRP like/VBP
0 1 2

eating/VBG fish/NN
3 4 5

t = {}

Shift

do/MDI/PRP like/VBP
0 1 2

eating/VBG fish/NN
3 4 5

current
brackets

5

S

VP

S

VP

NP

NN

fish

VBG

eating

VBP

like

MD

do

NP

PRP

I

Structural
(even step)

Shift

Combine

Label
(odd step)

Label-X

No-Label

do/MDI/PRP like/VBP
0 1 2

eating/VBG fish/NN
3 4 5

t = {}

Shift

do/MDI/PRP like/VBP
0 1 2

eating/VBG fish/NN
3 4 5

t = {0NP1}Label-NP

current
brackets

5

S

VP

S

VP

NP

NN

fish

VBG

eating

VBP

like

MD

do

NP

PRP

I

Structural
(even step)

Shift

Combine

Label
(odd step)

Label-X

No-Label

do/MDI/PRP like/VBP
0 1 2

eating/VBG fish/NN
3 4 5

t = {}

Shift

do/MDI/PRP like/VBP
0 1 2

eating/VBG fish/NN
3 4 5

Shift

do/MDI/PRP like/VBP
0 1 2

eating/VBG fish/NN
3 4 5

t = {0NP1}Label-NP

current
brackets

5

S

VP

S

VP

NP

NN

fish

VBG

eating

VBP

like

MD

do

NP

PRP

I

Structural
(even step)

Shift

Combine

Label
(odd step)

Label-X

No-Label

do/MDI/PRP like/VBP
0 1 2

eating/VBG fish/NN
3 4 5

t = {}

Shift

do/MDI/PRP like/VBP
0 1 2

eating/VBG fish/NN
3 4 5

Shift

do/MDI/PRP like/VBP
0 1 2

eating/VBG fish/NN
3 4 5

t = {0NP1}Label-NP

t = {0NP1}No-Label

current
brackets

5

S

VP

S

VP

NP

NN

fish

VBG

eating

VBP

like

MD

do

NP

PRP

I

Structural
(even step)

Shift

Combine

Label
(odd step)

Label-X

No-Label

do/MDI/PRP like/VBP
0 1 2

eating/VBG fish/NN
3 4 5

t = {}

Shift

do/MDI/PRP like/VBP
0 1 2

eating/VBG fish/NN
3 4 5

Shift

do/MDI/PRP like/VBP
0 1 2

eating/VBG fish/NN
3 4 5

Shift

do/MDI/PRP like/VBP
0 1 2

eating/VBG fish/NN
3 4 5

t = {0NP1}Label-NP

t = {0NP1}No-Label

current
brackets

5

S

VP

S

VP

NP

NN

fish

VBG

eating

VBP

like

MD

do

NP

PRP

I

Structural
(even step)

Shift

Combine

Label
(odd step)

Label-X

No-Label

do/MDI/PRP like/VBP
0 1 2

eating/VBG fish/NN
3 4 5

t = {}

Shift

do/MDI/PRP like/VBP
0 1 2

eating/VBG fish/NN
3 4 5

Shift

do/MDI/PRP like/VBP
0 1 2

eating/VBG fish/NN
3 4 5

Shift

do/MDI/PRP like/VBP
0 1 2

eating/VBG fish/NN
3 4 5

t = {0NP1}Label-NP

t = {0NP1}No-Label

t = {0NP1}No-Label

6

Structural
(even step)

Shift

Combine

Label
(odd step)

Label-X

No-Label

do/MDI/PRP like/VBP
0 1 2

eating/VBG fish/NN
3 4 5

t = {0NP1}

S

VP

S

VP

NP

NN

fish

VBG

eating

VBP

like

MD

do

NP

PRP

I

6

Structural
(even step)

Shift

Combine

Label
(odd step)

Label-X

No-Label

do/MDI/PRP like/VBP
0 1 2

eating/VBG fish/NN
3 4 5

t = {0NP1}

Combine

do/MD like/VBPI/PRP
0 1

eating/VBG fish/NN
3 4 5

S

VP

S

VP

NP

NN

fish

VBG

eating

VBP

like

MD

do

NP

PRP

I

6

Structural
(even step)

Shift

Combine

Label
(odd step)

Label-X

No-Label

do/MDI/PRP like/VBP
0 1 2

eating/VBG fish/NN
3 4 5

t = {0NP1}

Combine

do/MD like/VBPI/PRP
0 1

eating/VBG fish/NN
3 4 5

t = {0NP1}No-Label

S

VP

S

VP

NP

NN

fish

VBG

eating

VBP

like

MD

do

NP

PRP

I

6

Structural
(even step)

Shift

Combine

Label
(odd step)

Label-X

No-Label

do/MDI/PRP like/VBP
0 1 2

eating/VBG fish/NN
3 4 5

t = {0NP1}

Combine

do/MD like/VBPI/PRP
0 1

eating/VBG fish/NN
3 4 5

Shift

do/MD like/VBPI/PRP
0 1

eating/VBG fish/NN
3 4 5

t = {0NP1}No-Label

S

VP

S

VP

NP

NN

fish

VBG

eating

VBP

like

MD

do

NP

PRP

I

6

Structural
(even step)

Shift

Combine

Label
(odd step)

Label-X

No-Label

do/MDI/PRP like/VBP
0 1 2

eating/VBG fish/NN
3 4 5

t = {0NP1}

Combine

do/MD like/VBPI/PRP
0 1

eating/VBG fish/NN
3 4 5

Shift

do/MD like/VBPI/PRP
0 1

eating/VBG fish/NN
3 4 5

t = {0NP1}No-Label

t = {0NP1}No-Label

S

VP

S

VP

NP

NN

fish

VBG

eating

VBP

like

MD

do

NP

PRP

I

6

Structural
(even step)

Shift

Combine

Label
(odd step)

Label-X

No-Label

do/MDI/PRP like/VBP
0 1 2

eating/VBG fish/NN
3 4 5

t = {0NP1}

Combine

do/MD like/VBPI/PRP
0 1

eating/VBG fish/NN
3 4 5

Shift

do/MD like/VBPI/PRP
0 1

eating/VBG fish/NN
3 4 5

t = {0NP1}No-Label

t = {0NP1}No-Label

Shift

do/MD like/VBPI/PRP
0 1 3 5

eating/VBG fish/NN
4

S

VP

S

VP

NP

NN

fish

VBG

eating

VBP

like

MD

do

NP

PRP

I

6

Structural
(even step)

Shift

Combine

Label
(odd step)

Label-X

No-Label

do/MDI/PRP like/VBP
0 1 2

eating/VBG fish/NN
3 4 5

t = {0NP1}

Combine

do/MD like/VBPI/PRP
0 1

eating/VBG fish/NN
3 4 5

Shift

do/MD like/VBPI/PRP
0 1

eating/VBG fish/NN
3 4 5

t = {0NP1}No-Label

t = {0NP1}No-Label

Label-NP
t = {0NP1, 4NP5}

Shift

do/MD like/VBPI/PRP
0 1 3 5

eating/VBG fish/NN
4

S

VP

S

VP

NP

NN

fish

VBG

eating

VBP

like

MD

do

NP

PRP

I

7

Structural
(even step)

Shift

Combine

Label
(odd step)

Label-X

No-Label

do/MD like/VBPI/PRP
0 1

eating/VBG fish/NN
3 4 5

t = {0NP1, 4NP5}

S

VP

S

VP

NP

NN

fish

VBG

eating

VBP

like

MD

do

NP

PRP

I

7

Structural
(even step)

Shift

Combine

Label
(odd step)

Label-X

No-Label

do/MD like/VBPI/PRP
0 1

eating/VBG fish/NN
3 4 5

t = {0NP1, 4NP5}

Combine

do/MD like/VBPI/PRP
0 1

eating/VBG fish/NN
3 5

S

VP

S

VP

NP

NN

fish

VBG

eating

VBP

like

MD

do

NP

PRP

I

7

Structural
(even step)

Shift

Combine

Label
(odd step)

Label-X

No-Label

do/MD like/VBPI/PRP
0 1

eating/VBG fish/NN
3 4 5

t = {0NP1, 4NP5}

Combine

do/MD like/VBPI/PRP
0 1

eating/VBG fish/NN
3 5

Label-S-VP t = {0NP1, 4NP5,
3S5, 3VP5}

S

VP

S

VP

NP

NN

fish

VBG

eating

VBP

like

MD

do

NP

PRP

I

7

Structural
(even step)

Shift

Combine

Label
(odd step)

Label-X

No-Label

do/MD like/VBPI/PRP
0 1

eating/VBG fish/NN
3 4 5

t = {0NP1, 4NP5}

Combine

do/MD like/VBPI/PRP
0 1

eating/VBG fish/NN
3 5

Combine

do/MD like/VBP eating/VBG fish/NNI/PRP
0 1 5

Label-S-VP t = {0NP1, 4NP5,
3S5, 3VP5}

S

VP

S

VP

NP

NN

fish

VBG

eating

VBP

like

MD

do

NP

PRP

I

`

7

Structural
(even step)

Shift

Combine

Label
(odd step)

Label-X

No-Label

do/MD like/VBPI/PRP
0 1

eating/VBG fish/NN
3 4 5

t = {0NP1, 4NP5}

Combine

do/MD like/VBPI/PRP
0 1

eating/VBG fish/NN
3 5

Combine

do/MD like/VBP eating/VBG fish/NNI/PRP
0 1 5

Label-S-VP t = {0NP1, 4NP5,
3S5, 3VP5}

Label-VP t = {0NP1, 4NP5,
3S5, 3VP5,

1VP5}

S

VP

S

VP

NP

NN

fish

VBG

eating

VBP

like

MD

do

NP

PRP

I

`

7

Structural
(even step)

Shift

Combine

Label
(odd step)

Label-X

No-Label

do/MD like/VBPI/PRP
0 1

eating/VBG fish/NN
3 4 5

t = {0NP1, 4NP5}

Combine

do/MD like/VBPI/PRP
0 1

eating/VBG fish/NN
3 5

Combine

do/MD like/VBP eating/VBG fish/NNI/PRP
0 1 5

Combine

I/PRP do/MD like/VBP eating/VBG fish/NN
0 5

Label-S-VP t = {0NP1, 4NP5,
3S5, 3VP5}

Label-VP t = {0NP1, 4NP5,
3S5, 3VP5,

1VP5}

S

VP

S

VP

NP

NN

fish

VBG

eating

VBP

like

MD

do

NP

PRP

I

`

7

Structural
(even step)

Shift

Combine

Label
(odd step)

Label-X

No-Label

do/MD like/VBPI/PRP
0 1

eating/VBG fish/NN
3 4 5

t = {0NP1, 4NP5}

Combine

do/MD like/VBPI/PRP
0 1

eating/VBG fish/NN
3 5

Combine

do/MD like/VBP eating/VBG fish/NNI/PRP
0 1 5

Combine

I/PRP do/MD like/VBP eating/VBG fish/NN
0 5

Label-S-VP t = {0NP1, 4NP5,
3S5, 3VP5}

Label-VP t = {0NP1, 4NP5,
3S5, 3VP5,

1VP5}

Label-S
t = {0NP1, 4NP5,

3S5, 3VP5,
1VP5, 0S5}

S

VP

S

VP

NP

NN

fish

VBG

eating

VBP

like

MD

do

NP

PRP

I `

Advantages of Span-Based System

• Linear-time and fixed number of steps (well-suited
for beam search)

• Separates prediction of structure and labels

• Predicts rules of arbitrary arity with no binarization

8

do/MD like/VBPI/PRP
0 1

eating/VBG fish/NN
3 4 5

Stack Queue

Advantages of Span-Based System

• Linear-time and fixed number of steps (well-suited
for beam search)

• Separates prediction of structure and labels

• Predicts rules of arbitrary arity with no binarization

8

do/MD like/VBPI/PRP
0 1

eating/VBG fish/NN
3 4 5

Stack Queue

Q: How to decide which action to take?  
 What features represent spans?

Outline

• Span-Based Constituency Parsing

• Bi-Directional LSTM Span Features

• Provably Optimal Dynamic Oracle

• Experiments

9

Bi-LSTM Span Features

10

Sentence segment “eating fish” represented by two vectors:
• Forward component: f5 - f3 (Wang and Chang, ACL 2016)
• Backward component: b3 - b5

18

hsi I do like eating

fish

h/si0

f0

b0

1

f1

b1

2

f2

b2

3

f3

b3

4

f4

b4

5

f5

b5

Figure 3.4: Word spans are modeled by differences in LSTM output. Here the span 3 eating
fish 5 is represented by the vector differences (f5 � f3) and (b3 � b5). The forward difference
corresponds to LSTM-Minus [33].

such as language modeling [29] and translation [30].
LSTMs have also been incorporated into parsing in a variety of ways, such as directly en-

coding an entire sentence [32], separately modeling the stack, buffer, and action history [9], to
encode words based on their character forms [2], and as an element in a recursive structure to
combine dependency subtrees with their left and right children [19].

For our parsing system, however, we need a way to model arbitrary sentence spans in the
context of the rest of the sentence. We do this by representing each sentence span as the ele-
mentwise difference of the vector outputs of the LSTM outputs at different time steps, which
correspond to word boundaries. The spans are represented using output from both backward and
forward LSTM components, as can be seen in Figure 3.4. This is essentially the LSTM-Minus
feature representation described by Wang and Chang (2016) [33] extended to the bi-directional
case.

This model allows a sentence to be processed once, and then the same recurrent outputs
can be used to compute span features throughout the parse. Intuitively, this allows the span
differences to learn to represent the sentence spans in the context of the rest of the sentence,
not in isolation (especially true for LSTM given the extra hidden recurrent connection, typically
described as a “memory cell”). In practice, we use a two-layer bi-directional LSTM, where the
input to the second layer combines the forward and backward outputs from the first layer at that
time step. For each direction, the components from the first and second layers are concatenated
to form the vectors which go into the span features.

For the particular case of our transition constituency parser, we use only four span features to

Span Features for Structure Action

11

to predict:
Combine

4 bi-LSTM span features
(no tree-structure information used)

pre-s1 s1 s0 queue

do/MD like/VBPI/PRP eating/VBG fish/NN ./.

Span Features for Label Action

12

to predict:
Label-VP

pre-s0 s0 queue

do/MD like/VBP eating/VBG fish/NNI/PRP ./.

3 bi-LSTM span features
(no tree-structure information used)

Training Scheme: Local

• Every parser state is paired with a correct action

• Separate multilayer perceptron for each action type

• Baseline training scheme (static oracle) uses
canonical order with short-stack preference

13

S

VP

S

VP

NP

NN

fish

VBG

eating

VBP

like

MD

do

NP

PRP

I

…sh
ift

lab
el-

NP
sh

ift no
-la

be
l

sh
ift no
-la

be
l

co
mbin

e
no

-la
be

l

Training Scheme: Local

• Every parser state is paired with a correct action

• Separate multilayer perceptron for each action type

• Baseline training scheme (static oracle) uses
canonical order with short-stack preference

13

S

VP

S

VP

NP

NN

fish

VBG

eating

VBP

like

MD

do

NP

PRP

I

…sh
ift

lab
el-

NP
sh

ift no
-la

be
l

sh
ift no
-la

be
l

co
mbin

e
no

-la
be

l

co
mbin

e Correct action
after mistake?

?

Outline

• Span-Based Constituency Parsing

• Bi-Directional LSTM Span Features

• Provably Optimal Dynamic Oracle

• Experiments

14

Dynamic Oracle: Motivation

• Static oracle training assumes all correct actions

• What to do after decoding mistakes?

15

gold path

?

?
?

Dynamic Oracle: Motivation

• Static oracle training assumes all correct actions

• What to do after decoding mistakes?

• Need a way to decide best action in arbitrary state:
Dynamic Oracle (everywhere-defined optimal policy)

15

gold path

best action?

)

Dynamic Oracle!

16

doI like eating fish

Dynamic Oracle: Example

.

s0s1

S

.VP

S

VP

NP

NN

VBG

VBPMD

NP

PRP

16

doI like eating fish

Dynamic Oracle: Example

.

s0s1

S

.VP

S

VP

NP

NN

VBG

VBPMD

NP

PRP

16

doI like eating fish

Dynamic Oracle: Example

.

s0s1

smallest reachable
gold bracket incl. s0

S

.VP

S

VP

NP

NN

VBG

VBPMD

NP

PRP

16

doI like eating fish

Dynamic Oracle: Example

.

s0s1

smallest reachable
gold bracket incl. s0

S

.VP

S

VP

NP

NN

VBG

VBPMD

NP

PRP

16

doI like eating fish

Dynamic Oracle: Example

.

s0s1

s0

next reachable

smallest reachable
gold bracket incl. s0

S

.VP

S

VP

NP

NN

VBG

VBPMD

NP

PRP

16

doI like eating fish

Dynamic Oracle: Example

.

s0s1

Dynamic Oracle:
Shift or Combine

s0

next reachable

smallest reachable
gold bracket incl. s0

S

.VP

S

VP

NP

NN

VBG

VBPMD

NP

PRP

17

doI like eating fish

Dynamic Oracle: Example

.
s0s1

S

.VP

S

VP

NP

NN

VBG

VBPMD

NP

PRP

17

doI like eating fish

Dynamic Oracle: Example

.
s0s1

S

.VP

S

VP

NP

NN

VBG

VBPMD

NP

PRP

17

doI like eating fish

Dynamic Oracle: Example

.
s0s1

s0

next reachable

smallest reachable
gold bracket incl. s0

S

.VP

S

VP

NP

NN

VBG

VBPMD

NP

PRP

17

doI like eating fish

Dynamic Oracle: Example

.
s0s1

Dynamic Oracle: 
Combine

s0

next reachable

smallest reachable
gold bracket incl. s0

S

.VP

S

VP

NP

NN

VBG

VBPMD

NP

PRP

18

doI like fish

Dynamic Oracle: Example

.
s0s1

S

.VP

S

VP

NP

NN

VBG

VBPMD

NP

PRP

eating

18

doI like fish

Dynamic Oracle: Example

.
s0s1

S

.VP

S

VP

NP

NN

VBG

VBPMD

NP

PRP

eating

18

doI like fish

Dynamic Oracle: Example

.
s0s1

s0

next reachable

smallest reachable
gold bracket incl. s0

S

.VP

S

VP

NP

NN

VBG

VBPMD

NP

PRP

eating

18

doI like fish

Dynamic Oracle: Example

.
s0s1

Dynamic Oracle: 
Shift

s0

next reachable

smallest reachable
gold bracket incl. s0

S

.VP

S

VP

NP

NN

VBG

VBPMD

NP

PRP

eating

Dynamic Oracle: Full Definition

19

• Structure actions depend on next reachable
bracket in gold tree

• All non-bracket label states —> No-Label
• All gold-bracket label states —> Correct label(s)

s0

next

Shift —>

s0

next
<— Combine/Shift —>

s0

next
<—Combine

Dynamic Oracle: Full Definition

19

• Structure actions depend on next reachable
bracket in gold tree

• All non-bracket label states —> No-Label
• All gold-bracket label states —> Correct label(s)

s0

next

Shift —>

s0

next
<— Combine/Shift —>

s0

next
<—Combine

Gold Brackets

Current
Brackets

Reachable

Dynamic Oracle: Full Definition

19

• Structure actions depend on next reachable
bracket in gold tree

• All non-bracket label states —> No-Label
• All gold-bracket label states —> Correct label(s)

s0

next

Shift —>

s0

next
<— Combine/Shift —>

s0

next
<—Combine

Gold Brackets

Current
Brackets

Reachable

Dynamic Oracle: Full Definition

19

• Structure actions depend on next reachable
bracket in gold tree

• All non-bracket label states —> No-Label
• All gold-bracket label states —> Correct label(s)

s0

next

Shift —>

s0

next
<— Combine/Shift —>

s0

next
<—Combine

Gold Brackets

Current
Brackets

optimal
tree

Dynamic Oracle:
Optimality/Complexity

• First provably optimal oracle for constituency parsing (optimal
in both precision and recall)

• After each action next reachable may (or may not) be updated
by tracing parent link in gold tree

• Also O(n) steps, thus amortized O(1) time

• Dependency parsing oracle (arc-std): worst case O(n3) per step

20

Dynamic Oracle:
Optimality/Complexity

• First provably optimal oracle for constituency parsing (optimal
in both precision and recall)

• After each action next reachable may (or may not) be updated
by tracing parent link in gold tree

• Also O(n) steps, thus amortized O(1) time

• Dependency parsing oracle (arc-std): worst case O(n3) per step

20

shift
(oracle)

Dynamic Oracle:
Optimality/Complexity

• First provably optimal oracle for constituency parsing (optimal
in both precision and recall)

• After each action next reachable may (or may not) be updated
by tracing parent link in gold tree

• Also O(n) steps, thus amortized O(1) time

• Dependency parsing oracle (arc-std): worst case O(n3) per step

20

shift
(oracle)

combine
(incorrect)

Training with Dynamic Oracle

21

(scores on PTB 22) Recall Prec. F1

Static Oracle 91.34 91.43 91.38

static

Training with Dynamic Oracle
• Basic dynamic oracle: follow current model

21

(scores on PTB 22) Recall Prec. F1

Static Oracle 91.34 91.43 91.38

static
dynamic

Training with Dynamic Oracle
• Basic dynamic oracle: follow current model

21

(scores on PTB 22) Recall Prec. F1

Static Oracle 91.34 91.43 91.38

Dynamic Oracle 91.14 91.61 91.38

static
dynamic

Training with Dynamic Oracle
• Basic dynamic oracle: follow current model

• Problem: overfits training data, making fewer mistakes than test

21

(scores on PTB 22) Recall Prec. F1

Static Oracle 91.34 91.43 91.38

Dynamic Oracle 91.14 91.61 91.38

static
dynamic

Training with Dynamic Oracle
• Basic dynamic oracle: follow current model

• Problem: overfits training data, making fewer mistakes than test

• Exploration: sample from softmax distribution (Ballesteros et
al., 2016) to encourage more mistakes

21

(scores on PTB 22) Recall Prec. F1

Static Oracle 91.34 91.43 91.38

Dynamic Oracle 91.14 91.61 91.38

static
dynamic

+ exploration

Training with Dynamic Oracle
• Basic dynamic oracle: follow current model

• Problem: overfits training data, making fewer mistakes than test

• Exploration: sample from softmax distribution (Ballesteros et
al., 2016) to encourage more mistakes

21

(scores on PTB 22) Recall Prec. F1

Static Oracle 91.34 91.43 91.38

Dynamic Oracle 91.14 91.61 91.38

Dynamic + Exploration 91.07 92.22 91.64

static
dynamic

+ exploration

Outline

• Span-Based Constituency Parsing

• Bi-Directional LSTM Span Features

• Provably Optimal Dynamic Oracle

• Experiments

22

Architecture

• 50-dim word and 20-dim tag embeddings

• No pre-training

• Each LSTM layer 200 units each direction

• 200 ReLU units for each of structure and label predictors

23

Results on Penn Treebank

24

Parser Search Recall Prec. F1

Carreras et al. (2008) cubic 90.7 91.4 91.1

Shindo et al. (2012) cubic 91.1

Thang et al. (2015) ~cubic 91.1

Watanabe et al. (2015) beam 90.7

Static Oracle greedy 90.7 91.4 91.0

Dynamic + Exploration greedy 90.5 92.1 91.3

• State of the art despite: simple system with greedy
actions and small embeddings trained from scratch

Parsing Morphologically Rich Languages

25

lemma = perspective
coarse_POS = N

gender = feminine
number = plural

subcategory = common

SENT

PONCT

?

NP-SUJ

NC

perspectives

DET

les

VN

V

sont

NP-ATS

DETWH

Quelles

Results on French Treebank

• Morphological feature embeddings (10 dim. each)

• Additional input to recurrent network

• For French, we used SPMRL 2014 predicted features

26

Parser Recall Prec. F1

Björkelund et al. (2014) 82.53

Static Oracle 83.50 82.87 83.18

Dynamic + Exploration 81.90 84.77 83.31

Summary

• Simple, easy-to-implement span-based parsing system

• No tree/label information in features (good candidate
for dynamic programming)

• Linear time parsing with greedy decoding

• No pre-trained embeddings, small architecture, and
minimal hyper-parameter tuning (trained on CPU)

• First optimal dynamic oracle for constituency parsing

27

Thank You!

pre-s1 s1 s0 queue

do/MD like/VBPI/PRP eating/VBG fish/NN ./.

s0

next

Shift —>

s0

next
<— Combine/Shift —>

s0

next
<—Combine

