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Dependency vs. Constituency

2

search UAS

Zhang & Nivre 2011 beam 92.9

Chen & Manning 2014 greedy 91.8

Zhou et al. (2015) beam 93.3

Weiss et al. (2015) beam 94.0

our work (ACL 2016) greedy 93.4

Andor et al. (2016) beam 94.4

search F1

Carreras et al. (2008) cubic 91.1

Shindo et al. (2012) cubic 91.1

Thang et al. (2015) (A*) ~cubic 91.1

Watanabe et al. (2015) beam 90.7

Vinyals et al. (2015) (WSJ) beam 90.5
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Outline

• Span-Based Constituency Parsing

• Bi-Directional LSTM Span Features

• Provably Optimal Dynamic Oracle

• Experiments
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Span-Based Parsing

• Previous work uses tree structures on stack

• We simplify to operate directly on sentence spans

• Simple-to-implement linear-time parsing
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Advantages of Span-Based System

• Linear-time and fixed number of steps (well-suited 
for beam search)

• Separates prediction of structure and labels

• Predicts rules of arbitrary arity with no binarization

8
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Q: How to decide which action to take?  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Outline

• Span-Based Constituency Parsing

• Bi-Directional LSTM Span Features

• Provably Optimal Dynamic Oracle

• Experiments
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Bi-LSTM Span Features

10

Sentence segment “eating fish” represented by two vectors: 
• Forward component: f5 - f3  (Wang and Chang, ACL 2016) 
• Backward component: b3 - b5

18

hsi I do like eating

fish

h/si0

f0

b0

1

f1

b1

2

f2

b2

3

f3

b3

4

f4

b4

5
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b5

Figure 3.4: Word spans are modeled by differences in LSTM output. Here the span 3 eating
fish 5 is represented by the vector differences (f5 � f3) and (b3 � b5). The forward difference
corresponds to LSTM-Minus [33].

such as language modeling [29] and translation [30].
LSTMs have also been incorporated into parsing in a variety of ways, such as directly en-

coding an entire sentence [32], separately modeling the stack, buffer, and action history [9], to
encode words based on their character forms [2], and as an element in a recursive structure to
combine dependency subtrees with their left and right children [19].

For our parsing system, however, we need a way to model arbitrary sentence spans in the
context of the rest of the sentence. We do this by representing each sentence span as the ele-
mentwise difference of the vector outputs of the LSTM outputs at different time steps, which
correspond to word boundaries. The spans are represented using output from both backward and
forward LSTM components, as can be seen in Figure 3.4. This is essentially the LSTM-Minus
feature representation described by Wang and Chang (2016) [33] extended to the bi-directional
case.

This model allows a sentence to be processed once, and then the same recurrent outputs
can be used to compute span features throughout the parse. Intuitively, this allows the span
differences to learn to represent the sentence spans in the context of the rest of the sentence,
not in isolation (especially true for LSTM given the extra hidden recurrent connection, typically
described as a “memory cell”). In practice, we use a two-layer bi-directional LSTM, where the
input to the second layer combines the forward and backward outputs from the first layer at that
time step. For each direction, the components from the first and second layers are concatenated
to form the vectors which go into the span features.

For the particular case of our transition constituency parser, we use only four span features to



Span Features for Structure Action

11

to predict: 
Combine

4 bi-LSTM span features 
(no tree-structure information used)

pre-s1 s1 s0 queue
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Span Features for Label Action
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to predict: 
Label-VP

pre-s0 s0 queue
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Training Scheme: Local

• Every parser state is paired with a correct action

• Separate multilayer perceptron for each action type

• Baseline training scheme (static oracle) uses 
canonical order with short-stack preference
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Training Scheme: Local

• Every parser state is paired with a correct action

• Separate multilayer perceptron for each action type

• Baseline training scheme (static oracle) uses 
canonical order with short-stack preference
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Outline

• Span-Based Constituency Parsing

• Bi-Directional LSTM Span Features

• Provably Optimal Dynamic Oracle

• Experiments

14



Dynamic Oracle: Motivation

• Static oracle training assumes all correct actions

• What to do after decoding mistakes?

15
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Dynamic Oracle: Motivation

• Static oracle training assumes all correct actions

• What to do after decoding mistakes?

• Need a way to decide best action in arbitrary state: 
Dynamic Oracle (everywhere-defined optimal policy)

15
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Dynamic Oracle: Full Definition

19

• Structure actions depend on next reachable 
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Dynamic Oracle:
Optimality/Complexity

• First provably optimal oracle for constituency parsing (optimal 
in both precision and recall)

• After each action next reachable may (or may not) be updated 
by tracing parent link in gold tree

• Also O(n) steps, thus amortized O(1) time

• Dependency parsing oracle (arc-std): worst case O(n3) per step

20



Dynamic Oracle:
Optimality/Complexity

• First provably optimal oracle for constituency parsing (optimal 
in both precision and recall)

• After each action next reachable may (or may not) be updated 
by tracing parent link in gold tree

• Also O(n) steps, thus amortized O(1) time

• Dependency parsing oracle (arc-std): worst case O(n3) per step

20

shift 
(oracle)



Dynamic Oracle:
Optimality/Complexity

• First provably optimal oracle for constituency parsing (optimal 
in both precision and recall)

• After each action next reachable may (or may not) be updated 
by tracing parent link in gold tree

• Also O(n) steps, thus amortized O(1) time

• Dependency parsing oracle (arc-std): worst case O(n3) per step

20

shift 
(oracle)

combine 
(incorrect)



Training with Dynamic Oracle

21

(scores on PTB 22) Recall Prec. F1

Static Oracle 91.34 91.43 91.38

static



Training with Dynamic Oracle
• Basic dynamic oracle: follow current model

21

(scores on PTB 22) Recall Prec. F1

Static Oracle 91.34 91.43 91.38

static
dynamic



Training with Dynamic Oracle
• Basic dynamic oracle: follow current model

21

(scores on PTB 22) Recall Prec. F1

Static Oracle 91.34 91.43 91.38

Dynamic Oracle 91.14 91.61 91.38

static
dynamic



Training with Dynamic Oracle
• Basic dynamic oracle: follow current model

• Problem: overfits training data, making fewer mistakes than test

21

(scores on PTB 22) Recall Prec. F1

Static Oracle 91.34 91.43 91.38

Dynamic Oracle 91.14 91.61 91.38

static
dynamic



Training with Dynamic Oracle
• Basic dynamic oracle: follow current model

• Problem: overfits training data, making fewer mistakes than test

• Exploration: sample from softmax distribution (Ballesteros et 
al., 2016) to encourage more mistakes

21

(scores on PTB 22) Recall Prec. F1

Static Oracle 91.34 91.43 91.38

Dynamic Oracle 91.14 91.61 91.38

static
dynamic

+ exploration



Training with Dynamic Oracle
• Basic dynamic oracle: follow current model

• Problem: overfits training data, making fewer mistakes than test

• Exploration: sample from softmax distribution (Ballesteros et 
al., 2016) to encourage more mistakes

21

(scores on PTB 22) Recall Prec. F1

Static Oracle 91.34 91.43 91.38

Dynamic Oracle 91.14 91.61 91.38

Dynamic + Exploration 91.07 92.22 91.64

static
dynamic

+ exploration



Outline

• Span-Based Constituency Parsing

• Bi-Directional LSTM Span Features

• Provably Optimal Dynamic Oracle

• Experiments
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Architecture

• 50-dim word and 20-dim tag embeddings

• No pre-training

• Each LSTM layer 200 units each direction

• 200 ReLU units for each of structure and label predictors
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Results on Penn Treebank
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Parser Search Recall Prec. F1

Carreras et al. (2008) cubic 90.7 91.4 91.1

Shindo et al. (2012) cubic 91.1

Thang et al. (2015) ~cubic 91.1

Watanabe et al. (2015) beam 90.7

Static Oracle greedy 90.7 91.4 91.0

Dynamic + Exploration greedy 90.5 92.1 91.3

• State of the art despite: simple system with greedy 
actions and small embeddings trained from scratch



Parsing Morphologically Rich Languages
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lemma = perspective 
coarse_POS = N 

gender = feminine 
number = plural 

subcategory = common

SENT

PONCT

?

NP-SUJ

NC

perspectives

DET

les

VN

V

sont

NP-ATS

DETWH

Quelles



Results on French Treebank

• Morphological feature embeddings (10 dim. each)

• Additional input to recurrent network

• For French, we used SPMRL 2014 predicted features

26

Parser Recall Prec. F1

Björkelund et al. (2014) 82.53

Static Oracle 83.50 82.87 83.18

Dynamic + Exploration 81.90 84.77 83.31



Summary

• Simple, easy-to-implement span-based parsing system

• No tree/label information in features (good candidate 
for dynamic programming)

• Linear time parsing with greedy decoding

• No pre-trained embeddings, small architecture, and 
minimal hyper-parameter tuning (trained on CPU)

• First optimal dynamic oracle for constituency parsing
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Thank You!

pre-s1 s1 s0 queue

do/MD   like/VBPI/PRP eating/VBG  fish/NN ./.
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