# Joint Syntacto-Discourse Parsing and the Syntacto-Discourse Treebank

## Motivations

Most discourse parsers are pipelined (rather than end-toend), sophisticated, not self-contained:

- they assume gold segmentations (EDUs);
- they use external parsers for syntactic features.

### Here we propose:

- Syntacto-Discourse Treebank: a combined representation of the constituency and discourse trees
- facilitates parsing at both levels w/o explicit conversion
- a joint treebank based on Penn Treebank and RST Treebank
- the first **end-to-end** discourse parser
- jointly parses at constituency and discourse levels.
- do not use any explicit syntactic features.
- no need to do binarization.

# **Combined Representation & Treebank**

### **RST Discourse Tree** (Fig. 1 (a))

- Elementary Discourse Units (EDUs) as leaf nodes
- mostly binary branching
- *nucleus* (•): core semantic meaning of the branching
- *satellite* (°): semantically decorating nucleus
- *relations*: e.g., "Purpose", "Background"
- multi-branching for conjunctions
- e.g., "List", "Comparison"

### **Combined Representation**

- low-level lexical and syntactic info greatly help determining EDUs, structures, and relations.
- previously from pre-trained tools
- we directly determine the segmentations, syntactic trees, and discourse parses w/ a single joint parser. trained on combined trees of constituency and discourse.

### Step 1: Convert RST tree to constituency tree format

 binary branching: use relation + nucleus/satellite direction as label of the parent

Elaboration ← Elaboration • • • to • • • • • •

• multi-branching: use the relation as the label

Step 2: Replace the leaf EDUs with syntactic (sub)trees

- in most cases, one EDU aligns to one single (sub)tree
- when one EDU corresponds to multiple (sub)trees, we take the lowest common ancestor as parent node

Kai Zhao<sup>†</sup> Liang Huang

{kzhao.hf, liang.huang.sh}@gmail.com

School of EECS, Oregon State University







<sup>†</sup>Kai is now with Google Inc., New York

• alternate between structural (sh, comb) and label (label<sub>X</sub>, nolabel) actions

• after structural actions, keep branching point k,

• k will be used later in determing the relations b/w EDUs

• k disappears after label action

nolabel makes binarization of the

discourse/constituency tree unnecessary





## Deductive System

$$w_{0} \dots w_{n-1}$$

$$\langle -1 \bigtriangleup 0 \rangle : (0, \emptyset) \quad \text{goal} \quad \langle -1 \bigtriangleup 0 \bigtriangleup n \rangle : (\_, t)$$

$$\frac{\langle \dots i \bigtriangleup j \rangle : (c, t)}{\langle \dots i \bigtriangleup j \swarrow j + 1 \rangle : (c + sc_{\text{sh}}(i, j), t)} \quad j < n$$

$$\langle \dots i \bigtriangleup k \bigtriangleup j \rangle : (c, t)$$

$$\langle \dots i \bigtriangleup k \leftthreetimes j \rangle : (c + sc_{\text{comb}}(i, k, j), t)$$

$$\langle \dots i \bigtriangleup k \leftthreetimes j \rangle : (c, t)$$

$$\langle \dots i \bigtriangleup j \rangle : (c + sc_{\text{label}_{X}}(i, k, j), t \cup \{iX_{j}\})$$

$$\langle \dots i \bigtriangleup j \rangle : (c + sc_{\text{nolabel}}(i, k, j), t)$$

### **Recurrent Neural Models**

 bi-directional LSTM in Cross & Huang (2016) no explicit discourse/syntactic tree structures represented in features

span boundaries LSTM representations are passed to FF network to calc. likelihoods of actions/labels

## **Training & Emiprical Evaluation**

#### • use "training with exploration" & dynamic oracle

 set most hyperparams based on Cross & Huang 2016 • use higher  $\beta$  (= 0.8) to discourage exploration • lower  $\beta$  leads to more diversions to wrong trajectories for larger discourse trees

#### **End-to-End Comparison** (F1 scores)

|                    | description      | synt. feats | seg. | struct. | +nuc. | +rel. |
|--------------------|------------------|-------------|------|---------|-------|-------|
|                    | segment. only    | Stanford    | 95.1 | -       | -     | -     |
| )                  | end-to-end pipe. | PTB         | 94.0 | 72.3    | 59.1  | 47.3  |
| -discourse parsing |                  | -           | 95.4 | 78.8    | 65.0  | 52.2  |

#### **Comparison w/ Gold Segmentation** (F1 scores)

|                          | syntactic feats       |                      | struct. | +nuc. | +rel. |
|--------------------------|-----------------------|----------------------|---------|-------|-------|
| human annotation -       |                       | -                    | 88.7    | 77.7  | 65.8  |
|                          | Hernault et al. 2010  | Penn Treebank        | 83.0    | 68.4  | 54.8  |
| e                        | Joty et al. 2013      | Charniak (retrained) | 82.7    | 68.4  | 55.7  |
| spars                    | Joty + Moschitti 2014 | Charniak (retrained) | -       | -     | 57.3  |
|                          | Feng & Hirst 2014     | Stanford             | 85.7    | 71.0  | 58.2  |
|                          | Heilman + Sagae 2015  | ZPar (retraied)      | 83.5    | 68.1  | 55.1  |
|                          | Wang et al. 2017      | Stanford             | 86.0    | 72.4  | 59.7  |
| al                       | Li et al. 2014        | Stanford             | 82.4    | 69.2  | 56.8  |
| neura                    | + sparse features     | Stanioru             | 84.0    | 70.8  | 58.6  |
|                          | Ji & Eisenstein 2014  | ΝΛΑΙΤ                | 80.5    | 68.6  | 58.3  |
|                          | + sparse features     |                      | 81.6    | 71.1  | 61.8  |
| span-based disc. parsing |                       | -                    | 84.2    | 67.7  | 56.0  |