Forest-Based Search Algorithms

for Parsing and Machine Translation

Liang Huang University of Pennsylvania

Google Research, March 14th, 2008

• is not trivial!

is not trivial!

• is not trivial!

- how about...
 - I saw her duck with a telescope.

- how about...
 - I saw her duck with a telescope.

- how about...
 - I saw her duck with a telescope.
 - I saw her duck with a telescope in the garden...

- how about...
 - I saw her duck with a telescope.
 - I saw her duck with a telescope in the garden...

Parsing/NLP is HARD!

- exponential explosion of the search space
 - solution: locally factored space => packed forest
 - efficient algorithms based on dynamic programming
- non-local dependencies
 - solution: ???

Parsing/NLP is HARD!

- exponential explosion of the search space
 - solution: locally factored space => packed forest
 - efficient algorithms based on dynamic programming
- non-local dependencies
 - solution: ???

• How to efficiently incorporate non-local information?

- How to efficiently incorporate non-local information?
- Solution I: pipelined reranking / rescoring
 - postpone disambiguation by propagating k-best lists
 - examples: tagging => parsing => semantics
 - need very efficient algorithms for k-best search

- How to efficiently incorporate non-local information?
- Solution I: pipelined reranking / rescoring
 - postpone disambiguation by propagating k-best lists
 - examples: tagging => parsing => semantics
 - need very efficient algorithms for *k*-best search
- Solution 2: joint approximate search
 - integrate non-local information in the search
 - intractable; so only approximately
 - largely open

Outline

- Packed Forests and Hypergraph Framework
- Exact k-best Search in the Forest (for Solution I)
- Approximate Joint Search (Solution 2) with Non-Local Features
 - Forest Reranking
- Machine Translation
 - Decoding w/ Language Models
 - Forest Rescoring
- Future Directions

Packed Forests and Hypergraph Framework

Packed Forests

- a compact representation of many parses
 - by sharing common sub-derivations
 - polynomial-space encoding of exponentially large set

 $_{0}$ I $_{1}$ saw $_{2}$ him $_{3}$ with $_{4}$ a $_{5}$ mirror $_{6}$

(Klein and Manning, 2001; Huang and Chiang, 2005)

Packed Forests

- a compact representation of many parses
 - by sharing common sub-derivations
 - polynomial-space encoding of exponentially large set

0 I 1 saw 2 him 3 with 4 a 5 mirror 6

(Klein and Manning, 2001; Huang and Chiang, 2005)

Lattices vs. Forests

- forest generalizes "lattice" from finite-state world
 - both are compact encodings of exponentially many derivations (paths or trees)
 - graph => hypergraph; regular grammar => CFG

Weight Functions

- Each hyperedge e has a weight function fe
 - monotonic in each argument
 - e.g. in CKY, $f_e(a, b) = a \times b \times Pr$ (rule)
- optimal subproblem property in dynamic programming
 - optimal solutions include optimal sub-solutions

update along a hyperedge

 $d(v) = d(v) \oplus f_e(d(u))$

Generalized Viterbi Algorithm

- I. topological sort (assumes acyclicity)
- 2. visit each node v in sorted order and do updates
 - for each incoming hyperedge e = ((u₁, .., u_{|e|}), v, f_e)
 - use d(u_i)'s to update d(v)
 - key observation: d(u_i)'s are fixed to optimal at this time

time complexity: O(V+E) = O(E)

I-best => k-best

- we need k-best for pipelined reranking / rescoring
 - since I-best is not guaranteed to be correct
 - rerank k-best list with non-local features
 - we need fast algorithms for very big values of k

I eat sushi with tuna.

- straightforward k-best extension
 - a vector of k (sorted) values for each node
 - now what's the result of f_e (a, b) ?
 - $k \ge k = k^2$ possibilities! => then choose top k

- key insight: do not need to enumerate all k^2
 - since vectors a and b are sorted
 - and the weight function f_e is monotonic
- (a₁, b₁) must be the best
 - either (a_2, b_1) or (a_1, b_2) is the 2nd-best
- use a priority queue for the frontier
 - extract best
 - push two successors
- time complexity: O(k log k E)

b

- key insight: do not need to enumerate all k^2
 - since vectors a and b are sorted
 - and the weight function f_e is monotonic
- (a_1, b_1) must be the best
 - either (a₂, b₁) or (a₁, b₂) is the 2nd-best
- use a priority queue for the frontier
 - extract best
 - push two successors
- time complexity: O(k log k E)

b

- key insight: do not need to enumerate all k^2
 - since vectors a and b are sorted
 - and the weight function f_e is monotonic
- (a₁, b₁) must be the best
 - either (a_2, b_1) or (a_1, b_2) is the 2nd-best
- use a priority queue for the frontier
 - extract best
 - push two successors
- time complexity: O(k log k E)

- key insight: do not need to enumerate all k^2
 - since vectors a and b are sorted
 - and the weight function f_e is monotonic
- (a₁, b₁) must be the best
 - either (a_2, b_1) or (a_1, b_2) is the 2nd-best
- use a priority queue for the frontier
 - extract best
 - push two successors
- time complexity: O(k log k E)

- Algorithm I works on each hyperedge sequentially
 - $O(k \log k E)$ is still too slow for big k
- Algorithm 2 processes all hyperedges in parallel
 - dramatic speed-up: O(E + V k log k)

- Algorithm I works on each hyperedge sequentially
 - $O(k \log k E)$ is still too slow for big k
- Algorithm 2 processes all hyperedges in parallel
 - dramatic speed-up: $O(E + V k \log k)$

- Algorithm 2 computes k-best for each node
 - but we are only interested in k-best of the root node
- Algorithm 3 computes as many as really needed
 - forward-phase
 - same as I-best Viterbi, but stores the forest (keeping alternative hyperedges)
 - backward-phase
 - recursively asking "what's your 2nd-best" top-down
 - asks for more when need more

- only I-best is known after the forward phase
- recursive backward phase

- only I-best is known after the forward phase
- recursive backward phase what's your 2nd-best? S1,9 hyperedge NP1,5 VP5, 9 **NP**1,3 **VP**3,9 **PP**5,9 **S**1,5

- only I-best is known after the forward phase
- recursive backward phase what's your 2nd-best? **S**1,9 hyperedge **NP**1,5 VP5, 9 **NP**1,3 **VP**3,9 **PP**5,9 **S**1,5

- only I-best is known after the forward phase
- recursive backward phase what's your 2nd-best? S1,9 hyperedge **NP**1,5 **VP**5, 9 **NP**1,3 **VP**3,9 **PP**5, 9 **S**1,5 VB5,6 **PP**_{2,9} **PP**6, 9 **NN**1,2

Summary of Algorithms

- Algorithms I => 2 => 3
 - lazier and lazier (computation on demand)
 - larger and larger locality
 - Algorithm 3 is very fast, but requires storing forest

	locality	time	space
Algorithm I	hyperedge	O(E <mark>k log k</mark>)	O(<mark>k</mark> V)
Algorithm 2	node	O(E + V k log k)	O(<mark>k</mark> V)
Algorithm 3	global	O(E + D k log k)	O(E + <u>k</u> D)

E - hyperedges: $O(n^3)$; V - nodes: $O(n^2)$; D - derivation: O(n)

Experiments - Efficiency

- on state-of-the-art Collins/Bikel parser (Bikel, 2004)
- average parsing time per sentence using Algs. 0, 1, 3

Reranking and Oracles

- oracle the candidate closest to the correct parse among the k-best candidates
- measures the potential of real reranking

Outline

- Packed Forests and Hypergraph Framework
- Exact k-best Search in the Forest (Solution I)
- Approximate Joint Search (Solution 2) with Non-Local Features
 - Forest Reranking
- Machine Translation
 - Decoding w/ Language Models
 - Forest Rescoring
- Future Directions

Why *n*-best reranking is bad?

- too few variations (limited scope)
 - 41% correct parses are not in ~30-best (Collins, 2000)
 - worse for longer sentences
- too many redundancies
 - 50-best usually encodes 5-6 binary decisions (2⁵<50<2⁶)

Reranking on a Forest?

- with only local features
 - dynamic programming, tractable (Taskar et al. 2004; McDonald et al., 2005)
- with non-local features
 - on-the-fly reranking at internal nodes
 - top k derivations at each node
 - use as many non-local features as possible at each node
 - chart parsing + discriminative reranking
- we use perceptron for simplicity

 $PP_{3,6}$

VP₁

 e_1

 $NP_{2,6}$

 e_2

 $NP_{2,3}$

 $VBD_{1,2}$

Generic Reranking by Perceptron

- for each sentence s_i , we have a set of candidates $cand(s_i)$
 - and an oracle tree y_i^+ , among the candidates
- a feature mapping from tree y to vector **f**(y)
 - 1: Input: Training examples $\{cand(s_i), y_i^+\}_{i=1}^N$

2:
$$\mathbf{w} \leftarrow \mathbf{0}$$
> initial weights

3: for $t \leftarrow 1 \dots T$ do
"decoder"
> T iterations

4: for $i \leftarrow 1 \dots N$ do
"decoder"
feature

5: $\hat{y} = \left(\operatorname{argmax}_{y \in cand(s_i)} \mathbf{w} \cdot \mathbf{f}(y) \right)$
feature

6: if $\hat{y} \neq y_i^+$ then
representation

7: $\mathbf{w} \leftarrow \mathbf{w} + \mathbf{f}(y_i^+) - \mathbf{f}(\hat{y})$
8: return \mathbf{w}

Features

- a feature **f** is a function from tree **y** to a real number
 - $f_1(y) = \log Pr(y)$ is the log Prob from generative parser
 - every other feature *counts* the number of times a particular configuration occurs in y

our features are from (Charniak & Johnson, 2005) (Collins, 2000)

instances of Rule feature

$$f_{100}(y) = f_{S \rightarrow NP VP}(y) = I$$

 $f_{200}(y) = f_{NP \rightarrow DT NN}(y) = 2$

Local vs. Non-Local Features

- a feature is local iff. it can be factored among local productions of a tree (i.e., hyperedges in a forest)
- local features can be pre-computed on each hyperedge in the forest; non-locals can not

- a WordEdges feature classifies a node by its label, (binned) span length, and surrounding words
- a **POSEdges** feature uses surrounding POS tags

$$f_{400}(y) = f_{NP 2 \text{ saw with }}(y) =$$

- a WordEdges feature classifies a node by its label, (binned) span length, and surrounding words
- a POSEdges feature uses surrounding POS tags

WordEdges is local

$$f_{400}(y) = f_{NP 2 \text{ saw with }}(y) =$$

- a WordEdges feature classifies a node by its label, (binned) span length, and surrounding words
- a POSEdges feature uses surrounding POS tags

WordEdges is local

$$f_{400}(y) = f_{NP 2 \text{ saw with }}(y) =$$

- a WordEdges feature classifies a node by its label, (binned) span length, and surrounding words
- a POSEdges feature uses surrounding POS tags

WordEdges is local

 $f_{400}(y) = f_{NP 2 \text{ saw with }}(y) = 1$

POSEdges is non-local

 $f_{800}(y) = f_{NP 2 VBD IN}(y) = 1$

- a WordEdges feature classifies a node by its label, (binned) span length, and surrounding words
- a POSEdges feature uses surrounding POS tags

WordEdges is local

 $f_{400}(y) = f_{NP 2 \text{ saw with }}(y) = 1$

POSEdges is non-local

 $f_{800}(y) = f_{NP 2 \vee BD IN}(y) = I$

local features comprise ~70% of all instances!

Factorizing non-local features

- going bottom-up, at each node
 - compute (partial values of) feature instances that become computable at this level
 - postpone those uncomputable to ancestors

unit instance of ParentRule feature at the TOP node

Factorizing non-local features

- going bottom-up, at each node
 - compute (partial values of) feature instances that become computable at this level
 - postpone those uncomputable to ancestors

unit instance of ParentRule feature at the TOP node

Factorizing non-local features

- going bottom-up, at each node
 - compute (partial values of) feature instances that become computable at this level
 - postpone those uncomputable to ancestors

unit instance of ParentRule feature at the TOP node

- an NGramTree captures the smallest tree fragment that contains a bigram (two consecutive words)
- unit instances are **boundary words** between subtrees

- an NGramTree captures the smallest tree fragment that contains a bigram (two consecutive words)
- unit instances are **boundary words** between subtrees

Forest Reranking

unit instance of node A

- an NGramTree captures the smallest tree fragment that contains a bigram (two consecutive words)
- unit instances are **boundary words** between subtrees

unit instance of node A

- an NGramTree captures the smallest tree fragment that contains a bigram (two consecutive words)
- unit instances are **boundary words** between subtrees

unit instance of node A

- an NGramTree captures the smallest tree fragment that contains a bigram (two consecutive words)
- unit instances are **boundary words** between subtrees

unit instance of node A

- an NGramTree captures the smallest tree fragment that contains a bigram (two consecutive words)
- unit instances are **boundary words** between subtrees

 $A_{i,k}$ $B_{i,j}$ $C_{j,k}$ $w_i \dots w_{j-1}$ $w_j \dots w_{k-1}$

unit instance of node A

- an NGramTree captures the smallest tree fragment that contains a bigram (two consecutive words)
- unit instances are **boundary words** between subtrees

unit instance of node A

- an NGramTree captures the smallest tree fragment that contains a bigram (two consecutive words)
- unit instances are **boundary words** between subtrees

unit instance of node A

- an NGramTree captures the smallest tree fragment that contains a bigram (two consecutive words)
- unit instances are **boundary words** between subtrees

unit instance of node A

- an NGramTree captures the smallest tree fragment that contains a bigram (two consecutive words)
- unit instances are **boundary words** between subtrees

unit instance of node A

Heads (C&J 05, Collins 00)

- head-to-head lexical dependencies
- we percolate heads bottom-up
- unit instances are between the head word of the head child and the head words of non-head children

Heads (C&J 05, Collins 00)

- head-to-head lexical dependencies
- we percolate heads bottom-up
- unit instances are between the head word of the head child and the head words of non-head children

Heads (C&J 05, Collins 00)

- head-to-head lexical dependencies
- we percolate heads bottom-up
- unit instances are between the head word of the head child and the head words of non-head children

- bottom-up, keeps top k derivations at each node
 - non-monotonic grid due to non-local features

- bottom-up, keeps top k derivations at each node
 - non-monotonic grid due to non-local features

- bottom-up, keeps top k derivations at each node
 - non-monotonic grid due to non-local features

- bottom-up, keeps top k derivations at each node
 - non-monotonic grid due to non-local features
- priority queue for next-best
 - each iteration pops the best and pushes successors
 - extract unit non-local features on-the-fly

	2 man	Engpus	
The sea	1.0	3.0	8.0
1.0	2.5	9.0	9.5
1.1	2.4	9.5	9.4
3.5	5.1	17.0	2.1

Algorithm 2 => Cube Pruning

 process all hyperedges simultaneously! significant savings of computation

bottom-neck: the time for on-the-fly non-local feature extraction

Forest vs. n-best Oracles

- on top of Charniak parser (modified to dump forest)
- forests enjoy higher oracle scores than n-best lists
 - with much smaller sizes

Main Results

- pre-comp. is for feature-extraction (can be parallelized)
- # of training iterations is determined on the dev set
- forest reranking outperforms both 50- and 100-best

baseline: I-best Charniak parser			89.72	
features	n or k	pre-comp.	training	Fı%
local	50	I.4G / 25h	I x 0.3h	91.01
all	50	2.4G / 34h	5 x 0.5h	91.43
all	100	5.3G / 77h	5 x I.3h	91.47
local	-		3 x I.4h	91.25
all	k=15	1.2G / 5.1N	4 x I I h	91.69

Comparison with Others

type	system	Fı%
	Collins (2000)	89.7
	Henderson (2004)	90.I
D	Charniak and Johnson (2005)	91.0
	updated (2006)	91.4
	Petrov and Klein (2008)	88.3
	this work	91.7
(Bod (2000)	90.7
G	Petrov and Klein (2007)	90.I
S	McClosky et al. (2006)	92.I

best accuracy to date on the Penn Treebank

Outline

- Packed Forests and Hypergraph Framework
- Exact k-best Search in the Forest
- Approximate Joint Search with Non-Local Features
 - Forest Reranking
- Machine Translation
 - Decoding w/ Language Models
 - Forest Rescoring
- Future Directions

Statistical Machine Translation

Statistical Machine Translation

Statistical Machine Translation

Syntax-based Translation

- synchronous context-free grammars (SCFGs)
 - context-free grammar in two dimensions
 - generating pairs of strings/trees simultaneously
 - co-indexed nonterminal further rewritten as a unit

 $VP \rightarrow PP^{(1)} VP^{(2)}, VP^{(2)} PP^{(1)}$ $VP \rightarrow juxing le huitan, held a meeting$ $PP \rightarrow yu Shalong, with Sharon$ $VP \qquad VP \qquad VP$ $PP \qquad VP \qquad VP \qquad PP$ $| \qquad | \qquad | \qquad | \qquad |$ yu Shalong juxing le huitan held a meeting with Sharon

Translation as Parsing

- translation with SCFGs => monolingual parsing
- parse the source input with the source projection
 - build the corresponding target sub-strings in parallel
- $\mathbf{VP} \rightarrow \mathbf{PP}^{(1)} \mathbf{VP}^{(2)},$
- **VP** \rightarrow *juxing le huitan*,
- $\mathbf{PP} \rightarrow yu \ Shalong,$

Translation as Parsing

- translation with SCFGs => monolingual parsing
- parse the source input with the source projection
 - build the corresponding target sub-strings in parallel

Adding a Bigram Model

- exact dynamic programming
 - nodes now split into +LM items
 - with English boundary words
- search space too big for exact search

+LM items

- beam search: keep at most k +LM items each node
- but can we do better?

Non-Monotonic Grid

PP 1,3 PP 1,3 PP 1,3 PP 1,3

non-monotonicity due to LM combo costs

 $(VP_{3,6}^{held \star meeting})$

 $(VP_{3,6}^{held \star talk})$

 $(\mathrm{VP}_{3,6}^{\text{hold}} \star \mathrm{conference})$

	1.0	3.0	8.0
1.0	2.0 + <mark>0.5</mark>	4.0 + <mark>5.0</mark>	9.0 + <mark>0.5</mark>
1.1	2.1 + 0.3	4.1 + <mark>5.4</mark>	9.1 + <mark>0.3</mark>
3.5	4.5 + <mark>0.6</mark>	6.5 + <mark>10.5</mark>	11.5 + <mark>0.6</mark>

Non-Monotonic Grid

Algorithm 2 - Cube Pruning

$\mathbf{\overline{VD}}$	held	*	meeting	
	3,6		-)	

$$\left(\mathrm{VP}_{3,6}^{\text{held} \star \text{talk}}\right)$$

 $(\mathrm{VP}_{3,6}^{\text{hold}} \star \mathrm{conference})$

	1.0	3.0	8.0
1.0	2.5	9.0	9.5
1.1	2.4	9.5	9.4
3.5	5.I	17.0	12.1

Algorithm 2 => Cube Pruning

k-best Algorithm 2, with search errors

process all hyperedges simultaneously! significant savings of computation

Phrase-based: Translation Accuracy

Syntax-based: Translation Accuracy

Conclusion so far

- General framework of DP on hypergraphs
 - monotonicity => exact I-best algorithm
- Exact *k*-best algorithms
- Approximate search with non-local information
 - Forest Reranking for discriminative parsing
 - Forest Rescoring for MT decoding
- Empirical Results
 - orders of magnitudes faster than previous methods
 - best Treebank parsing accuracy to date

Impact

- These algorithms have been widely implemented in
 - state-of-the-art parsers
 - Charniak parser
 - McDonald's dependency parser
 - MIT parser (Collins/Koo), Berkeley and Stanford parsers
 - DOP parsers (Bod, 2006/7)
 - major statistical MT systems
 - Syntax-based systems from ISI, CMU, BBN, ...
 - Phrase-based system: Moses [underway]

Future Directions

Further work on Forest Reranking

- Better Decoding Algorithms
 - pre-compute most non-local features
 - use Algorithm 3 cube growing
 - intra-sentence level parallelized decoding
- Combination with Semi-supervised Learning
 - easy to apply to self-training (McClosky et al., 2006)
- Deeper and deeper Decoding (e.g., semantic roles)
- Other Machine Learning Algorithms
- Theoretical and Empirical Analysis of Search Errors

Machine Translation / Generation

- Discriminative training using non-local features
 - local-features showed modest improvement on phrase-base systems (Liang et al., 2006)
 - plan for syntax-based (tree-to-string) systems
 - fast, linear-time decoding
- Using packed parse forest for
 - tree-to-string decoding (Mi, Huang, Liu, 2008)
 - rule extraction (tree-to-tree)
- Generation / Summarization: non-local constraints

Thanks!

Comments?

Speed vs. Search Quality

tested on our faithful clone of Pharaoh

Huang and Chiang

Speed vs. Search Quality

tested on our faithful clone of Pharaoh

Huang and Chiang

Speed vs. Search Quality

tested on our faithful clone of Pharaoh

Huang and Chiang

Syntax-based: Search Quality

Tree-to-String System

- syntax-directed, English to Chinese (Huang, Knight, Joshi, 2006)
- first parse input, and then recursively transfer

synchronous treesubstitution grammars (STSG) (Galley et al., 2004; Eisner, 2003)

> extended to translate a packed-forest instead of a tree (Mi, Huang, Liu, 2008)

Tree-to-String System

- syntax-directed, English to Chinese (Huang, Knight, Joshi, 2006)
- first parse input, and then recursively transfer

synchronous treesubstitution grammars (STSG) (Galley et al., 2004; Eisner, 2003)

> extended to translate a packed-forest instead of a tree (Mi, Huang, Liu, 2008)

Features

- extract features on the 50-best parses of train set
- cut off low-freq. features with count < 5
 - counts are "relative" -- change on at least 5 sentences
- feature templates
 - 4 local from (Charniak and Johnson, 2005)
 - 4 local from (Collins, 2000)
 - 7 non-local from (Charniak and Johnson, 2005)
- 800, 582 feature instances (30% non-local)

cf. C & J: I.3 M feature instances (60% non-local)
Penn

Forest Oracle

the candidate tree that is closest to gold-standard

Optimal Parseval F-score

 $y_i^+ \triangleq \operatorname*{argmax}_{y \in cand(s_i)} F(y, y_i^*) \qquad F(y, y^*) \triangleq \frac{2PR}{P+R} = \frac{2|y \cap y^*|}{|y| + |y^*|}$

- Parseval F₁-score is the harmonic mean between labeled precision and labeled recall
 - can not optimize F-scores on sub-forests separately
- we instead use dynamic programming
 - optimizes the number of matched brackets per given number of test brackets
 - "when the test (sub-) parse has 5 brackets, what is the max. number of matched brackets?"

 $ora[v]: \mathbb{N} \mapsto \mathbb{N}$ $ora[v](t) \triangleq \max_{y_v:|y_v|=t} |y_v \cap y^*|$

Combining Oracle Functions

combining two oracle functions along a hyperedge
e = <(v,u), w> needs a convolution operator ⊗

Combining Oracle Functions

combining two oracle functions along a hyperedge
e = <(v,u), w> needs a convolution operator ⊗

5

4

Ν

t	(f⊗g)↑(1,0) (t)
7	5
8	6
9	6

ora[w]

2

this node matched?

3

Y

Combining Oracle Functions

combining two oracle functions along a hyperedge
e = <(v,u), w> needs a convolution operator ⊗

final answer:

F(

$$(y^+, y^*) = \max_t \frac{2 \cdot ora[\text{TOP}](t)}{t + |y^*|}$$

ora[w]

f(t)

2

t

2

3

this node matched?

t

6

7

8

 $(f \otimes g)(t)$

5

6

6

 $(f \otimes g)(t) \triangleq \max_{t_1+t_2=t} f(t_1) + g(t_2)$

4

5

 \otimes

g(t)

4

4

=

Forest Pruning

a variant of Inside-Outside Algorithm
Pruning (J. Graehl, unpublished)

- prune by marginal probability (Charniak and Johnson, 2005)
 - but we prune hyperedges as well as nodes
- compute Viterbi inside cost $\beta(v)$ and outside cost $\alpha(v)$
- compute merit $\alpha\beta(e) = \alpha(head(e)) + sum_{u \in tails(e)}\beta(u)$
 - cost of the best derivation that traverses e
- prune away hyperedges that have $\alpha\beta(e) \beta(TOP) > p$
- difference: a node can "partially" survive the beam
- can prune on average 15% more hyperedges than C&J

