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Language is Hard: Ambiguity Explosion

® how many interpretations?
But humans can resolve these ambiguities incremental in linear-time!
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Challenge:Word Order Difference

® e.g. translate from Subj-Obj-Verb (Japanese, German) to Subj-Verb-Obj (English)
® German is underlyingly SOV, and Chinese is a2 mix of SYO and SOV

® human simultaneous interpreters routinely “anticipate” (e.g., predicting German verb)

ich bin mit dem Zug nach Ulm gefahren
I am with the train to Ulm traveled Grissom et al, 2014

| (...... waiting. . . . .. ) traveled by train to Ulm
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Experimental Results (German=>English)

German source:
doch wihrend man sich im kongress nicht aut ein vorgehen einigen kann , warten mehrere bundesstaaten nicht langer .

but  while they self in congress not on one action agree can  wait  several states not longer

English translation (simultaneous, wait 3):
but , while congress does not agree on a course of action , several states no longer wait .

English translation (full-sentence baseline):
but , while congressional action can not be agreed , several states are no longer waiting .
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Summary of Innovations and Impact

® first simultaneous translation approach with integrated anticipation
® inspired by human simultaneous interpreters who routinely anticipate

® first simultaneous translation approach with arbitrary controllable latency

® previous RL-based approaches can encourage but can’t enforce latency limit
® very easy to train and scalable — minor changes to any neural MT codebase

® prefix-to-prefix is very general; can be used in other tasks with simultaneity
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Next: Integrate Incremental Predictive Parsing

® how to be smarter about when to wait and when to translate?

mandatory reordering (i.e., wait): optional reordering:
x ijinping y ¢ nian zai bé&ijing dangxuin guanyl keélindunzhuy] méiydu zhinqué de dingyi
SHE¥E F 2012 & £ bR SHik KT EMIMEN, *E HER N EX
Xidiping in 2012 yr in Beljing elected about Clintonism no  accurate def.
reference
translation Xl dJinping was elected in Beijing in 2012” “There is no accurate definition of Clintonism.”
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mandatory reordering (i.e., wait):

X i jinping y u nian zai béijing dangxuan

S F 2012 F 7 bR Hik
Xidiping in 2012 yr in Beljing elected

reference o | o
translation Xl Jinping was elected in Beijing in 2012”

Ideal

simultaneous Xl Jinping ...

was elected...

optional reordering:

guanyu kelindunzhuyi meiyou zhunque de dingyi

KT EMEEN , B ER B EX

about Clintonism no accurate def.

“There is no accurate definition of Clintonism.”

About Clintonism, there is no accurate definition.
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Next: Integrate Incremental Predictive Parsing

® how to be smarter about when to wait and when to translate?
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(Chinese) PP VP => (English) VP PP
S

/ \
NP /VP\
/\ PP< >VP
ZERN
PP« —VP
A A
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optional reordering:
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guanyu kelindunzhuyi

KT EMEEN , B ER B EX

meéiyou zhunqué de dingyi

about Clintonism no accurate def.

“There is no accurate definition of Clintonism.”

About Clintonism, there is no accurate definition.
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the man bit the dog the man bit the dog
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/\
NP VP NN /A
/\ /\ .
DT NN VB Sp the man bit the dog
I I I N
the man bit DT NN
I I
the dog
constituency parsing dependency parsing

Part Il: Linear-Iime Incremental Parsing
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Cross & Huang, ACL 2016; Cross & Huang, EMNLP 2016™
Hong and Huang, ACL 2018)

" best paper nominee ™ best paper honorable mention
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Motivations for Incremental Parsing

® simultaneous translation

® auto completion (search suggestions)
® question answering

® dialog

® speech recognition

® input method editor siri is SO

® ... siri is so dumb
siri is so bad
Siri IS so useless
Siri IS so slow
Siri IS SO rude

-
X b 2
-
2
. -
’ L
. i D .
- _ - I,-
Rs
‘ _ LR
»
i
.
5 .
-
2.1 TH
1
|

THIS 1;980-MILE'RIVER: THA'T!
STARIIS'IINNCANADATIS THE

LONGESTIN THE WESTERIN

HEMISPHERE THAT ELOWS
TO'THE PACIEIC OCEAN
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Human Parsing vs. Compilers vs. NL Parsing

x 1d const
| |

A/\Kf-\\/\ Y :

| eat sushi with tuna from Japan x =y + 3;

—_—

| eat sushi with tuna from Japan
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Human Parsing vs. Compilers vs. NL Parsing

id +
| —

x 1d const
| |

A/\Kf-\\/\ Y :

| eat sushi with tuna from Japan x =y + 3;

- > | eat sushi with tuna from Japan
O(n) O(n) O(n°)
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Human Parsing vs. Compilers vs. NL Parsing

id +
| —

x 1d const
| |

A/\K/-'\\/\ Y .

| eat sushi with tuna from |apan x =y + 3;

- > | eat sushi with tuna from Japan
O(n) O(n) O(n°)

® can we design NL parsing algorithms that is both fast and accurate,
inspired by human sentence processing and compilers!?

® our idea: generalize PL parsing (LR algorithm) to NL parsing, but keep it O(n)
® challenge: how to deal with ambiguity explosion in NL?

® solution: linear-time dynamic programming — both fast and accurate!
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Solution: linear-time, DP. and accurate!

® very fast linear-time dynamic programming parser
® explores exponentially many trees (and outputs forest)

® accurate parsing accuracy on English & Chinese
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Solution: linear-time, DP. and accurate!

® very fast linear-time dynamic programming parser
® explores exponentially many trees (and outputs forest)

® accurate parsing accuracy on English & Chinese
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Solution: linear-time, DP. and accurate!

® very fast linear-time dynamic programming parser
® explores exponentially many trees (and outputs forest)

® accurate parsing accuracy on English & Chinese
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Incremental Parsing (Shift-Reduce)

| eat sushi with tuna from Japan
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| eat sushi with tuna from Japan

action stack queue
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Incremental Parsing (Shift-Reduce)

| eat sushi with tuna from Japan

==
action stack queue
) | eat sushi ...
shift | eat sushi with ...
shift | eat sushi with tuna ...
I-reduce &t sushi with tuna ...
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Incremental Parsing (Shift-Reduce)

| eat sushi with tuna from Japan

S —
action stack queue

0 ] | eat sushi ...

| shift | eat sushi with ...

2 shift | eat sushi with tuna ...

3 I-reduce &t sushi with tuna ...
I

4 shift L,eat sushi with tuna from ...
I

)2 r-reduce L/eat \l with tuna from ...
| sushi
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Incremental Parsing (Shift-Reduce)

| eat sushi with tuna from Japan

>
action stack queue

0 - | eat sushi ...

| shift | eat sushi with ...

2 shift | eat sushi with tuna ...

3 I-reduce &t sushi with tuna ...
I

4 shift L,eat sushi with tuna from ...
I

)2 r-reduce L/eat \l with tuna from ...
| sushi

ob shift Leat sushi with tuna from Japan ...

|
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Incremental Parsing (Shift-Reduce)

| eat sushi with tuna from Japan

==
action stack queue
0 - | eat sushi ...
| shift | eat sushi with ...
2 shift | eat sushi with tuna ...
3 I-reduce &t sushi with tuna ...
shift L,eat sushi with tuna from ...
| shift-reduce
r-reduce L/eat \i conflict with tuna from
| sushi
shift Leat sushi with tuna from Japan ...
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Greedy Search

® cach state => three new states (shift, I-reduce, r-reduce)

® sreedy search: always pick the best next state

® “best” is defined by a score learned from data
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Greedy Search

® cach state => three new states (shift, I-reduce, r-reduce)

® greedy search: always pick the best next state

® “best” is defined by a score learned from data
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Beam Search

® ecach state => three new states (shift, I-reduce, r-reduce)

® beam search: always keep top-b states

® still just a tiny fraction of the whole search space

— =
S

—_— —>
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Beam Search

® ecach state => three new states (shift, I-reduce, r-reduce)

® beam search: always keep top-b states

® still just a tiny fraction of the whole search space

— =
S

—_— —>

psycholinguistic evidence:
parallelism (Fodor et al, 1974; Gibson, 1991)
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Dynamic Programming

® each state => three new states (shift, I-reduce, r-reduce)

® key idea of DP: share common subproblems

® merge equivalent states => polynomial space

(Huang and Sagae, 2010)
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® merge equivalent states => polynomial space

(Huang and Sagae, 2010)
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Dynamic Programming

® each state => three new states (shift, I-reduce, r-reduce)

® key idea of DP: share common subproblems

® merge equivalent states => polynomial space

—

=7 o

(Huang and Sagae, 2010)
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Dynamic Programming

® each state => three new states (shift, I-reduce, r-reduce)

® key idea of DP: share common subproblems

® merge equivalent states => polynomial space

each DP state corresponds to
exponentially many non-DP states

g S=

— —

graph-structured stack
(Tomita, 1986)

(Huang and Sagae, 2010)

0
"\~
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Dynamic Programming

® each state => three new states (shift, I-reduce, r-reduce)

® key idea of DP: share common subproblems

® merge equivalent states => polynomial space

each DP state corresponds to 1010
exponentially many non-DP states

8

g
=z

102

10°

(Huang and Sagae, 2010)
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Dynamic Programming

® each state => three new states (shift, I-reduce, r-reduce)

® key idea of DP: share common subproblems

® merge equivalent states => polynomial space

each DP state corresponds to 1010
exponentially many non-DP states

8

10

\,/ 10°
I=T

102

10°

graph-structured stack
(Tomita, 1986)

(Huang and Sagae, 2010)

10 20 30 40 50 60 70
sentence length
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Merging (Ambiguity Packing)

® two states are equivalent if they agree on features

® because same features guarantee same cost

® example: if we only care about the last 2 words on stack

| sushi

A\ A

eat sushi

AN N

eat sushi

- A
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Merging (Ambiguity Packing)

® two states are equivalent if they agree on features
® because same features guarantee same cost

® example: if we only care about the last 2 words on stack

| sushi f |

{ ... eat sushi |

_eat SUShI/
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Merging (Ambiguity Packing)

® two states are equivalent if they agree on features

® because same features guarantee same cost

® example: if we only care about the last 2 words on stack

two equivalent classes

/

et i

i,

/l/egtt sushi
Q_\

_eat sushi/

e

{ ... eat sushi |

psycholinguistic evidence
(eye-tracking experiments):

delayed disambiguation

John and Mary had 2 papers
John and Mary had 2 papers

Frazier and Rayner (1990), Frazier (1999)
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Merging (Ambiguity Packing)

® two states are equivalent if they agree on features

® because same features guarantee same cost

® example: if we only care about the last 2 words on stack

two equivalent classes

—

et i

S
/I/eat sushi

QA_&AA

_eat SUShI/

e

| sushi f |

{ ... eat sushi |

psycholinguistic evidence
(eye-tracking experiments):

delayed disambiguation

John and Mary had 2 papers each
John and Mary had 2 papers together

Frazier and Rayner (1990), Frazier (1999)
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Constituency parsing, PTB only, Single Model, End-to-End

Parsre

Results: Fast and Accurate

Note

F1 Score

Durett + Klein

Cross + Huang
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Liu + Zhang
2016
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Part lll: Linear-Time RNA Structure Prediction

(Huang et al, 2019; under review)



Part lll: Linear-Time RNA Structure Prediction

(Huang et al, 2019; under review)



Computational Linguistics => Computational Biology

linguistics

1955 Chomsky:
context-free grammars

S

/\
NP VP

/\ /\
DT NN VB NP

the man  bit DT NN

| |
the dog

K\K\/A

the man bit the dog

computer science biology

1953 Watson & Crick: ' 5
DNA double-helix

: L —

: —— e ———

. i pr— et - C— e

: B = —_— ——
: — —— —

1960s CKY Parsing: O(n?3)

'

1965 Knuth: LR Parsing: O(n)

|

| 986 Tomita: Generalized LR Parsing

|

2010: linear-time DP parsing
(Huang & Sagae)

1958 Backus & Naur:
CFGs in programming lang.

- | —
—

GCGGGAAUAGCUCAGUUGGUAGAGCACGACCUUGCCAAGGUCGGGGUCGCGAGUUCGAGUCUCGUUUCCCGCUCCA

1980s: O(n3) CKY for RNA structures

\ 2018: linear-time

RNA structure prediction e
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RNAs and Structure Prediction

RNA has dual roles:

informational (DNA=>RNA=>protein)
functional (hon-coding RNAS)
knowing structures can infer function

NNNNNNA

* Chromatin modifications
* Polll activity regulation

Transcription i :
» Transcriptional interference
INCRNAS
RNA
N NN
™™\

MiRNAS
and IncRNAs

* Splicing

Translation * Editing
i » MRNA stability

* Translation initiation

Protein

RNA sequence
GCGGGAAUAGCUCAGUUGGUAGAGCACGACCUUGCCAAGGUCGGGGUCGCGAGUUCGAGUCUCGUUUCCCGCUCCA

—

Transcription

NCRNA

I\I I\I |\
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RNAs and Structure Prediction

RNA has dual roles: RNA sequence

informational (DNA=>RNA=>protein) GCGGGAAUAGCUCAGUUGGUAGAGCACGACCUUGCCAAGGUCGGGGUCGCGAGUUCGAGUCUCGUUUCCCGCUCCA
functional (non-coding RNAS) o

knowing structures can infer function structure prediction ‘

(“RNA folding”)

tRNA 3’ amino acid
attachment site

NNNNNNA —

* Chromatin modifications

* Transcriptional interference 5’
J J secondary structure ‘
INCRNAS
RNA NcRNA »
v Ll AN v Ll ol T B intr:
and IncRNAs |
» Splicing
Translation * Editing
* MRNA stability
* Translation initiation 11
Protein cCuUcC
GUC CAG $2C CUA UAG
TARANE A NTA AN
MRNA

tRNA 2-dimensional structure
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RNA Secondary Structure Prediction

allowed pairs: G-C A-U G-U example: transfer RNA (tRNA)
assume no crossing pairs

Inp ut X GCGGGAAUAGCUCAGUUGGUAGAGCACGACCUUGCCAAGGUCGGGGUCGCGAGUUCGAGUCUCGUUUCCCGCUCCA
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RNA Secondary Structure Prediction

allowed pairs: G-C A-U G-U example: transfer RNA (tRNA)
assume no crossing pairs
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RNA Secondary Structure Prediction

allowed pairs: G-C A-U G-U example: transfer RNA (tRNA)
assume no crossing pairs

77NN e e
INpUt X  GCGEGAAUAGCUCAGUUGGUAGAGCACGACCUUGCCAAGGUCGGGGUCGCGAGUUCGAGUCUCGUUUCCCGCUCCA
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RNA Secondary Structure Prediction

allowed pairs: G-C A-U G-U example: transfer RNA (tRNA)
assume no crossing pairs

iNnpUt X  GCGEGAAUAGCUCAGUUGGUAGAGCACGACCUUGCCAAGGUCGGGGUCGCGAGUUCGAGUCUCGUUUCCCGCUCCA
output y CCCCCCC. - (CCCeeeeenn. )))) - ((C((eeeeenn ))))) ... (CC(Ceveeenn )))))))))))) .-

Paired
®* Unpaired

1—O—O V- OO®

|
@ ‘70 76 S
g‘z 0 .
g'g \ - |
060006
10 L ‘ © I
0@ \® QUEO®_ A |
O © e\ ©e
©) ® L) °O ~— " 4 .
@ 0 Q @ ’ E
& © ! .
| @
20 O—©) a o
l%‘ m
30 —(©—G)— 40
(O—©
O (B
0 (A parse tree
©C

37



RNA Secondary Structure Prediction

allowed pairs: G-C A-U G-U example: transfer RNA (tRNA)
assume no crossing pairs

IN p Ut X GCGGGAAUAGCUCAGUUGGUAGAGCACGACCUUGCCAAGGUCGGGGUCGCGAGUUCGAGULCUCGUUUCCCCGCUCceAa

output y (CCCCCC. - (CCCeeeeenn. )))) - (CCCCeeeeeen ))))) - (CCCCeeeene. )))))))))))) .-

® Paired
S ®  Unpaired

/\
NP VP r/l\-
.
'S
¢
¢
.
¢

O(n3)

—ggo00oe

DT NN VB NP

the man bit DT NN

I I
the dog

problem: standard structure prediction . .
algorithms are way too slow: O(n3) ! :

parse tree
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RNA Secondary Structure Prediction

allowed pairs: G-C A-U G-U —— example: transfer RNA (tRNA)
assume no crossing pairs

: e
np ut X  GCGGGAAUAGCUCAGUUGGUAGAGCACGACCUUGCCAAGGUCGGGGUCGCGAGUUCGAGUCUCGUUUCCCGCUCCA
output Y CCCCCCC - (((Cenennnnn )))) - CCC(Ceeennnn ))))) e (CCCCeennens )))))))))))) - - -
S ® Paired
O(n3) — *  Unpaired
NP VP 71NN
S — )i
DT NN VB NP
| | | PR 1
the man bit DT NN N
| | s
the dog !
. . e ® —
problem: standard structure prediction ,
algorithms are way too slow: O(n3) !
solution: adapt my linear-time dynamic
parse tree

programming algorithms from parsing
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How to Fold RNAs in Linear-Time!?

GCGGGAAUAGCUCAGUUGGUAGAGCACGACCUUGCCAAGGUCGGGGUCGCGAGUUCGAGUCUCGUUUCCCGCUCCA

® idea 0: tag each nucleotide from left to right

€€

® maintain a stack: push“(”, pop )", skip®.

® exhaustive: O(3")

38



How to Fold RNAs in Linear-Time!?

GCGGGAAUAGCUCAGUUGGUAGAGCACGACCUUGCCAAGGUCGGGGUCGCGAGUUCGAGUCUCGUUUCCCGCUCCA
(CCCCCC . COCC o nnnnn )))) - CCCCC e e ))))) ... .. (CCCC. . nnnn )))))))))) ...

® idea 0O: tag each nucleotide from left to right

€€

® maintain a stack: push“(”, pop®)”, skip®.

o exhaustive: O(3") %’,
/
2oL

A
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How to Fold RNAs in Linear-Time!?

GCGGGAAUAGCUCAGUUGGUAGAGCACGACCUUGCCAAGGUCGGGGUCGCGAGUUCGAGUCUCGUUUCCCGCUCCA
(CCCCCC . COCC o nnnnn )))) - CCCCC e e ))))) ... .. (CCCC. . nnnn )))))))))) ...

® idea |: DP by merging “equivalent states”

® maintain graph-structured stacks

® DP: O(n3) /%'7
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How to Fold RNAs in Linear-Time!?

GCGGGAAUAGCUCAGUUGGUAGAGCACGACCUUGCCAAGGUCGGGGUCGCGAGUUCGAGUCUCGUUUCCCGCUCCA
(CCCCCC . COCC o nnnnn )))) - CCCCC e e ))))) ... .. (CCCC. . nnnn )))))))))) ...

® idea |: DP by merging “equivalent states”

® maintain graph-structured stacks

e DP: O(n?)
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How to Fold RNAs in Linear-Time!?

GCGGGAAUAGCUCAGUUGGUAGAGCACGACCUUGCCAAGGUCGGGGUCGCGAGUUCGAGUCUCGUUUCCCGCUCCA
(CCCCCC . COCC o nnnnn )))) - CCCCC e e ))))) ... .. (CCCC. . nnnn )))))))))) ...

® idea 2: approximate search: beam pruning

® keep only top b states per step

® DP+beam: O(n)

= l‘.

— —
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How to Fold RNAs in Linear-Time!?

GCGGGAAUAGCUCAGUUGGUAGAGCACGACCUUGCCAAGGUCGGGGUCGCGAGUUCGAGUCUCGUUUCCCGCUCCA
(CCCCCC . COCC o nnnnn )))) - CCCCC e e ))))) ... .. (CCCC. . nnnn )))))))))) ...

® idea 2: approximate search: beam pruning

® keep only top b states per step

e DP+beam: O(n) each DP state corresponds to
exponentially many non-DP states

= l’.
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How to Fold RNAs in Linear-Time!?

GCGGGAAUAGCUCAGUUGGUAGAGCACGACCUUGCCAAGGUCGGGGUCGCGAGUUCGAGUCUCGUUUCCCGCUCCA
(CCCCCC . COCC o nnnnn )))) - CCCCC e e ))))) ... .. (CCCC. . nnnn )))))))))) ...

® idea 2: approximate search: beam pruning

® keep only top b states per step

e DP+beam: O(n) each DP state corresponds to

exponentially many non-DP states
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Ambiguity Packing in Biology and Language

® two states are “temporarily equivalent” if their rightmost unpaired brackets are the same

1 2 3 4 5
C CC CCA CCAG CCAGG S
o (— > ((—— (= > () —1—> ((.)) psycholinguistic evidence

(eye-tracking experiments):
. (. () (L)

delayed disambiguation

John and Mary had 2 papers
John and Mary had 2 papers

Frazier and Rayner (1990), Frazier (1999)
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Ambiguity Packing in Biology and Language

® two states are “temporarily equivalent” if their rightmost unpaired brackets are the same

1 2 3 4 5
C CC CCA CCAG CCAGG S,
o (— > ((— > (= > () —1—> (()) psycholinguistic evidence
(eye-tracking experiments):
. (. (L) () .
delayed disambiguation
packing 4 unpacking
A A S )((e.az:h_>_)((.)) John and Mary had 2 papers each
T . John and Mary had 2 papers together
" John and Mary fogether

... had 2 papers Frazier and Rayner (1990), Frazier (1999)
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Our Linear-Time Prediction is Much Faster...

10,000nt (~HIV) 244,296nt (longest in RNAcentral)
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with even slightly better prediction accuracy!!



... and Also More Accurate!
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Example. B. Subtilis 16S rRNA (length: 1,552nt)
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World’s Fastest RNA Structure Prediction Server

LinearFold Web Server (beta)

~ Interactive demo

Add a sequence

Paste or type your sequence here:

>tRNA_tdbRO0000566-Homo_sapiens-9606-Tyr-9PA
CCUUCGAUAGCUCAGCUGGUAGAGCGGAGGACUGUAGAUCCUUAGGUCGCUGGUUCGAUUCCGGCUCGAAGGACCA

Or upload a file in FASTA format:
Choose File  No file chosen...

— Set beam size
Beam size (1-200): 100

— Choose model(s)

LinearFold-C (using CONTRAfold v2.0 machine-learned model, Do et al 2006)
LinearFold-V (using Vienna RNAfold thermodynamic model, Lorenz et al 2011, with parameters from Mathews et al 2004)

Run >> Reset

http://linearfold.eecs.oregonstate.edu:8080/ 46
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