
Human-Inspired Structured Prediction for 

Language and Biology

Liang Huang
Principal Scientist, Baidu Research

Assistant Professor, Oregon State University



Human-Inspired Structured Prediction for 

Language and Biology

Liang Huang
Principal Scientist, Baidu Research

Assistant Professor, Oregon State University

incremental & linear-time



Human-Inspired Structured Prediction for 

Language and Biology

Liang Huang
Principal Scientist, Baidu Research

Assistant Professor, Oregon State University

simultaneous interpretation

incremental & linear-time



Human-Inspired Structured Prediction for 

Language and Biology

Liang Huang
Principal Scientist, Baidu Research

Assistant Professor, Oregon State University

I eat sushi with tuna from Japan

natural language sequence

syntactic structure

simultaneous interpretation

incremental & linear-time



Human-Inspired Structured Prediction for 

Language and Biology

Liang Huang
Principal Scientist, Baidu Research

Assistant Professor, Oregon State University

I eat sushi with tuna from Japan GCGGGAAUAGCUCAGUUGGUAGAGCACGACCUUGCCAAGGUCGGGGUCGCGAGUUCGAGUCUCGUUUCCCGCUCCA

RNA sequencenatural language sequence

syntactic structure

secondary structure

G
C
G
G
G
A
A

U

A

GCUC

AG
U

U

G

G
U A

G A G C

A

C
G
A
C
C

U

U

G C C

A

A
G
G
U
C
G

G
G

G

U

C

G C G A G

U U
C

G

A
GU

CUCGUU
U
C
C
C
G
C U C C A1

10

20

30 40

50

60

70 76

simultaneous interpretation

incremental & linear-time



A Bit about Myself…

 2

Ashish Vaswani (USC, 2014) 
(co-advised by David Chiang) 

 

 

Senior Research Scientist 
Google Brain


 

first author of Transformer 
“Attention is All You Need”

James Cross (OSU, 2016) 
(co-advised by David Chiang) 

 

Research Scientist 
 

Facebook

 

EMNLP 2016 Best Paper 
Honorable Mention

Kai Zhao (OSU, 2017) 
(co-advised by David Chiang) 

 

Research Scientist 
Google


 

11 top-conference papers 
(ACL/EMNLP/NAACL)

Mingbo Ma (OSU, 2018) 
(co-advised by David Chiang) 

 

Research Scientist 
Baidu Research USA


breakthrough in  
simultaneous translation

…
My PhD Graduates



A Bit about Myself…

 2

Ashish Vaswani (USC, 2014) 
(co-advised by David Chiang) 

 

 

Senior Research Scientist 
Google Brain


 

first author of Transformer 
“Attention is All You Need”

James Cross (OSU, 2016) 
(co-advised by David Chiang) 

 

Research Scientist 
 

Facebook

 

EMNLP 2016 Best Paper 
Honorable Mention

Kai Zhao (OSU, 2017) 
(co-advised by David Chiang) 

 

Research Scientist 
Google


 

11 top-conference papers 
(ACL/EMNLP/NAACL)

Mingbo Ma (OSU, 2018) 
(co-advised by David Chiang) 

 

Research Scientist 
Baidu Research USA


breakthrough in  
simultaneous translation

…
My PhD Graduates

I eat sushi with tuna from Japan GCGGGAAUAGCUCAGUUGGUAGAGCACGACCUUGCCAAGGUCGGGGUCGCGAGUUCGAGUCUCGUUUCCCGCUCCA

RNA sequencenatural language sentence

My Research: Efficient Structured Prediction

Bush met Putin in Moscow

source language sentence



A Bit about Myself…

 2

Ashish Vaswani (USC, 2014) 
(co-advised by David Chiang) 

 

 

Senior Research Scientist 
Google Brain


 

first author of Transformer 
“Attention is All You Need”

James Cross (OSU, 2016) 
(co-advised by David Chiang) 

 

Research Scientist 
 

Facebook

 

EMNLP 2016 Best Paper 
Honorable Mention

Kai Zhao (OSU, 2017) 
(co-advised by David Chiang) 

 

Research Scientist 
Google


 

11 top-conference papers 
(ACL/EMNLP/NAACL)

Mingbo Ma (OSU, 2018) 
(co-advised by David Chiang) 

 

Research Scientist 
Baidu Research USA


breakthrough in  
simultaneous translation

…
My PhD Graduates

I eat sushi with tuna from Japan GCGGGAAUAGCUCAGUUGGUAGAGCACGACCUUGCCAAGGUCGGGGUCGCGAGUUCGAGUCUCGUUUCCCGCUCCA

RNA sequencenatural language sentence

syntactic structure
secondary structure

My Research: Efficient Structured Prediction

Bush met Putin in Moscow

source language sentence

布什什在莫斯科与普京会晤

target-language sequence



Language is Hard, Even for Humans

• how many interpretations?

 3

I saw her duck Aravind Joshi
(1929-2018)



Language is Hard, Even for Humans

• how many interpretations?

 3

I saw her duck Aravind Joshi
(1929-2018)



Language is Hard, Even for Humans

• how many interpretations?

 3

I saw her duck Aravind Joshi
(1929-2018)

lexical ambiguity



Language is Hard, Even for Humans

• how many interpretations?

 4

I  eat  sushi  with  tuna Aravind Joshi
(1929-2018)



Language is Hard, Even for Humans

• how many interpretations?

 4

I  eat  sushi  with  tuna Aravind Joshi
(1929-2018)



Language is Hard, Even for Humans

• how many interpretations?

 4

I  eat  sushi  with  tuna

structural ambiguity

Aravind Joshi
(1929-2018)



Language is Hard, Even for Humans

• how many interpretations?

 4

I  eat  sushi  with  tuna

structural ambiguity

Aravind Joshi
(1929-2018)



Unexpected Structural Ambiguity

 5



Language is Hard: Ambiguity Explosion

• how many interpretations?

 6

I saw her duck



Language is Hard: Ambiguity Explosion

• how many interpretations?

 6

I saw her duck with a telescope



Language is Hard: Ambiguity Explosion

• how many interpretations?

 6

I saw her duck with a telescope



Language is Hard: Ambiguity Explosion

• how many interpretations?

 6

I saw her duck with a telescope in the garden ...

...



Language is Hard: Ambiguity Explosion

• how many interpretations?

 6

I saw her duck with a telescope in the garden ...

...

But humans can resolve these ambiguities incremental in linear-time!
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Figure 3.4: Word spans are modeled by differences in LSTM output. Here the span 3 eating
fish 5 is represented by the vector differences (f5 � f3) and (b3 � b5). The forward difference
corresponds to LSTM-Minus [33].

such as language modeling [29] and translation [30].
LSTMs have also been incorporated into parsing in a variety of ways, such as directly en-

coding an entire sentence [32], separately modeling the stack, buffer, and action history [9], to
encode words based on their character forms [2], and as an element in a recursive structure to
combine dependency subtrees with their left and right children [19].

For our parsing system, however, we need a way to model arbitrary sentence spans in the
context of the rest of the sentence. We do this by representing each sentence span as the ele-
mentwise difference of the vector outputs of the LSTM outputs at different time steps, which
correspond to word boundaries. The spans are represented using output from both backward and
forward LSTM components, as can be seen in Figure 3.4. This is essentially the LSTM-Minus
feature representation described by Wang and Chang (2016) [33] extended to the bi-directional
case.

This model allows a sentence to be processed once, and then the same recurrent outputs
can be used to compute span features throughout the parse. Intuitively, this allows the span
differences to learn to represent the sentence spans in the context of the rest of the sentence,
not in isolation (especially true for LSTM given the extra hidden recurrent connection, typically
described as a “memory cell”). In practice, we use a two-layer bi-directional LSTM, where the
input to the second layer combines the forward and backward outputs from the first layer at that
time step. For each direction, the components from the first and second layers are concatenated
to form the vectors which go into the span features.

For the particular case of our transition constituency parser, we use only four span features to
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江 泽⺠民 对 法国 总统    的            来华   访问           表示  感谢    。 
jiāng  zé mín d u ì fǎ guó zǒng tǒng d e l á i huá fǎng wèn biǎo shì gǎn xiè

jiang zemin  to    French  President ’s                     to-China  visit                      express  gratitude 

                    jiang  zemin   expressed his       appreciation  for      the      visit by french president . 
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full-sentence baseline: CW = 8

wait 2 wait 6 words I traveled to Ulm by train
Gu et al. (2017): CW = (2+6)/2 = 4

wait 4 tookI a train to Ulm1 1 1 1
our wait 4 model: CW = (4+1+1+1+1)/5 = 1.6



Summary of Innovations and Impact
• first simultaneous translation approach with integrated anticipation

• inspired by human simultaneous interpreters who routinely anticipate

• first simultaneous translation approach with arbitrary controllable latency

• previous RL-based approaches can encourage but can’t enforce latency limit

• very easy to train and scalable — minor changes to any neural MT codebase

• prefix-to-prefix is very general; can be used in other tasks with simultaneity
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Next: Integrate Incremental Predictive Parsing
• how to be smarter about when to wait and when to translate?

 19

关于 克林林顿主义 ， 没有  准确   的  定义

guānyú  k è l í n d ù n z h ǔ y ì   mé iyǒu  zhǔnquè   d e d ì n g y ì

about   Clintonism             no      accurate         def.


“There is no accurate definition of Clintonism.”

习近平 于 2012 年年 在 北北京  当选 

x í j ì n p í n g  y ú  nián  z à i  bě i j īn g  dāngxuǎn

Xi Jiping  in   2012   yr    in  Beijing  elected


“Xi Jinping was elected in Beijing in 2012”

mandatory reordering (i.e., wait): optional reordering: 

reference 
translation
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Motivations for Incremental Parsing
• simultaneous translation

• auto completion (search suggestions)

• question answering

• dialog

• speech recognition

• input method editor

• …

 21



Human Parsing vs. Compilers vs. NL Parsing
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Human Parsing vs. Compilers vs. NL Parsing

• can we design NL parsing algorithms that is both fast and accurate,  
inspired by human sentence processing and compilers?

• our idea: generalize PL parsing (LR algorithm) to NL parsing, but keep it O(n)

• challenge: how to deal with ambiguity explosion in NL?

• solution: linear-time dynamic programming — both fast and accurate!
 22
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Solution: linear-time, DP, and accurate!

• very fast linear-time dynamic programming parser

• explores exponentially many trees (and outputs forest)

• accurate parsing accuracy on English & Chinese

 23
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Incremental Parsing (Shift-Reduce)
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Incremental Parsing (Shift-Reduce)

 24

action stack queue

shift-reduce  
conflict

I eat sushi ...

eat sushi with ...

sushi with tuna ...

sushi with tuna ...

with tuna from ...

with tuna from ...

tuna from Japan ...

 I eat

I

eat
I
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I
eat

I sushi

   eat sushi with 

I

 0 -

1 shift

2 shift

3 l-reduce

4 shift

5a r-reduce

5b shift

I eat sushi with tuna from Japan



Greedy Search

• each state => three new states (shift, l-reduce, r-reduce)

• greedy search:  always pick the best next state

• “best” is defined by a score learned from data

 25
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• each state => three new states (shift, l-reduce, r-reduce)

• greedy search:  always pick the best next state

• “best” is defined by a score learned from data
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   Beam Search
• each state => three new states (shift, l-reduce, r-reduce)

• beam search:  always keep top-b states

• still just a tiny fraction of the whole search space
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   Beam Search
• each state => three new states (shift, l-reduce, r-reduce)

• beam search:  always keep top-b states

• still just a tiny fraction of the whole search space
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psycholinguistic evidence:
parallelism (Fodor et al, 1974; Gibson, 1991)



Dynamic Programming

• each state => three new states (shift, l-reduce, r-reduce)

• key idea of DP: share common subproblems

• merge equivalent states => polynomial space
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Merging (Ambiguity Packing)

• two states are equivalent if they agree on features

• because same features guarantee same cost

• example: if we only care about the last 2 words on stack

 32
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Results: Fast and Accurate

 33

Parsre Note F1 Score

Durett + Klein
2015 cubic-time parser 91.1

Cross + Huang 
2016

original span parser 
(greedy) 91.3

Liu + Zhang
2016 greedy / beam 91.7

Dyer et al. 
2016 greedy / beam 91.7

Stern 
2017a

cubic-time  
span-based parser 91.79

Our Work
linear-time dynamic 

programming,  
span-based

91.97

Constituency parsing, PTB only, Single Model, End-to-End

(Hong and Huang, 2018)
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Part III: Linear-Time RNA Structure Prediction

(Huang et al, 2019; under review)
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Computational Linguistics => Computational Biology

1955 Chomsky:  
        context-free grammars 1953 Watson & Crick:  

        DNA double-helix

linguistics biologycomputer science

1960s CKY Parsing: O(n3)

1965 Knuth: LR Parsing: O(n)

1958 Backus & Naur:
        CFGs in programming lang.

1986 Tomita: Generalized LR Parsing

2010: linear-time DP parsing 
        (Huang & Sagae)

1980s: O(n3) CKY for RNA structures

2018: linear-time  
RNA structure prediction
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RNAs and Structure Prediction
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GCGGGAAUAGCUCAGUUGGUAGAGCACGACCUUGCCAAGGUCGGGGUCGCGAGUUCGAGUCUCGUUUCCCGCUCCA

RNA sequenceRNA has dual roles:  
informational (DNA=>RNA=>protein)

functional (non-coding RNAs)

knowing structures can infer function



RNAs and Structure Prediction

 36

GCGGGAAUAGCUCAGUUGGUAGAGCACGACCUUGCCAAGGUCGGGGUCGCGAGUUCGAGUCUCGUUUCCCGCUCCA

RNA sequence

secondary structure

structure prediction 
(“RNA folding”)

RNA has dual roles:  
informational (DNA=>RNA=>protein)

functional (non-coding RNAs)

knowing structures can infer function



RNA Secondary Structure Prediction
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GCGGGAAUAGCUCAGUUGGUAGAGCACGACCUUGCCAAGGUCGGGGUCGCGAGUUCGAGUCUCGUUUCCCGCUCCA

allowed pairs:  G-C A-U G-U
assume no crossing pairs

x

 37
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example: transfer RNA (tRNA)
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algorithms are way too slow: O(n3)
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5’                                                                         3’  

GCGGGAAUAGCUCAGUUGGUAGAGCACGACCUUGCCAAGGUCGGGGUCGCGAGUUCGAGUCUCGUUUCCCGCUCCA 

How to Fold RNAs in Linear-Time?

• idea 0: tag each nucleotide from left to right

• maintain a stack:  push “(”,   pop “)”,   skip “.”

• exhaustive: O(3n)
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Ambiguity Packing in Biology and Language

• two states are “temporarily equivalent” if their rightmost unpaired brackets are the same

 42
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Our Linear-Time Prediction is Much Faster…

 43
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… and Also More Accurate!
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Example: B. Subtilis 16S rRNA (length: 1,552nt)

 45

ground-truth our work: 
linear-time

standard method: 
cubic-time



World’s Fastest RNA Structure Prediction Server

 46http://linearfold.eecs.oregonstate.edu:8080/



Incremental Parsing <=> Incremental Folding
• humans process sentences incrementally

• human language sentences evolve to be 
incrementally parsable

 47

• RNAs & proteins fold while being assembled

• RNA & protein sequences evolve to be 
incrementally foldable

• these might explain why linear-time search performs better than exact search
Chinese 
speech

English 
text

Chinese 
text



Fast Structure Prediction Enables RNA Design

 48

GCGGGAAUAGCUCAGUUGGUAGAGCACGACCUUGCCAAGGUCGGGGUCGCGAGUUCGAGUCUCGUUUCCCGCUCCA

RNA sequence

RNA secondary structure RNA 3D structure

designstructure prediction 
(“folding”)

Professor Rhiju Das 
Stanford Medical School

EteRNA game 
(RNA design)

detecting active TB using RNA design 
which needs our fast RNA folding



Other Work, Recap, and Vision
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Other Work: Structured Prediction: Linear-Time Learning
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new convergence theorems:  
(modified) online learning still converges with inexact search



Other Work: Incremental Semantic Parsing

• parse NL (e.g., English) into a formal meaning representation

• type-driven parsing (formal semantics) + polymorphism (PL theory)

• future work: (simultaneously) translating NL into PL (e.g., SQL)

 51

What is the capital of the largest state by area?



Longer-Term Vision

 52

linear-time search 
algorithms

grammar formalisms 
(context-free & beyond)

structured prediction 
with deep learning

efficiently analyze and generate sequences with hierarchical structures: 
natural language, RNA/proteins, programming languages, music, etc.

real-time accompaniment

protein  
folding

self.plural is an lambda function with 
an argument n, which returns result of 
boolean expression n not equal to 1

NL <=> PL translation

那    ⼈人    咬    了了    狗

the  man  bit  the  dog

NL translation
self.plural = lambda n: int(n!=1)



5-Year Vision in Natural Language Processing

 53



5-Year Vision in Natural Language Processing
• simultaneous translation: from speech-to-text to speech-to-speech

• incremental text-to-speech synthesis (language production is also incremental!)

• incremental predictive parsing on the source side (improve reordering)

• incremental predictive parsing on the target side (improve prosody)
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helping people communicate across linguistic and 
accessibility barriers



5-Year Vision in Computational Biology
• linear-time incremental folding: from RNA to protein structure prediction

• predicting crossing structures in RNAs/proteins: use linear-time parsing and 
mildly context-sensitive grammars (polynomial-time parsable)

• how does our beam search compare to real incremental folding in nature?

 54Chomsky Hierarchy
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reestablishing the forgotten link between 
computational linguistics and structural biology





⾮非常 感谢 您    来  听  我    的 演讲
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I eat sushi with tuna from Japan GCGGGAAUAGCUCAGUUGGUAGAGCACGACCUUGCCAAGGUCGGGGUCGCGAGUUCGAGUCUCGUUUCCCGCUCCA

RNA sequencenatural language sentence

Bush met Putin in Moscow

source language sentence



⾮非常 感谢 您    来  听  我    的 演讲

                Thank you very much for listening to my speech

I eat sushi with tuna from Japan GCGGGAAUAGCUCAGUUGGUAGAGCACGACCUUGCCAAGGUCGGGGUCGCGAGUUCGAGUCUCGUUUCCCGCUCCA

RNA sequencenatural language sentence

syntactic structure
secondary structure

Bush met Putin in Moscow

source language sentence

布什什在莫斯科与普京会晤

target-language sequence

Happy Chinese New Year!



Backup Slide

 56



Backup Slide

 56



Translation with Noisy Speech Input

• neural MT is fragile, and automatic speech recognition output is noisy

• our work (Liu et al, ArXiv 2018): Robust Neural MT using phonetic information

 57


