Applied Machine Learning EX 1 (10 pts, 5%)

due Saturday April 14 (submit pdf on Canvas; LaTeXing is recommended but not required)

- 1. In 2D, what are the x_1 and x_2 intercepts for the line $w_1x_1 + w_2x_2 + b = 0$? In *n*-dimensions, what are the x_i intercept for $\mathbf{w} \cdot \mathbf{x} + b = 0$? What's the distance from the origin to $\mathbf{w} \cdot \mathbf{x} + b = 0$?
- 2. What are your understanding of hyperplane, half-plane, and half-space in the context of linear classifiers?
- 3. The perceptron algorithm on slides assumed augmented space (implicit bias). State the perceptron algorithm with explicit bias, the corresponding linear separability condition and the convergence theorem.
- 4. State the exact definition of "linear separability": a dataset D is said to be linearly separable under a feature map Φ (which converts every input \mathbf{x} to a feature vector $\Phi(\mathbf{x})$), if there exists $\mathbf{u} : \|\mathbf{u}\| = 1$ and $\delta > 0$, such that for every example $(\mathbf{x}, y) \in D$ where $y = \pm 1$, _______.
- 5. Under the above definition, prove the perceptron converges regardless of initial weight vector.
- 6. Follow-up: is this new convergence bound worse than the original bound, R^2/δ^2 ? If so, does it imply that the perceptron always converges slower with a non-zero initial weight vector?
- 7. For each of the following, find a feature map Φ that makes it linearly separable. Draw a picture for each.
 - (a) $D = \{((0,2),+1),((-2,0),+1),((0,-2),+1),((2,0),+1),((0,0),-1)\}$
 - (b) $D = \{((2,2),+1),((1,1),-1)\}$
- 8. For the XOR data set, run perceptron for 8 iterations ($\mathbf{w}^{(0)} = \mathbf{0}$) and verify the perceptron cycling theorem.
- 9. For real-valued features (such as "lot size" in classifying whether this home is a "hot home" on redfin.com), we often transform each feature to be zero-mean and unit-variance. Geometrically, why this would help perceptron training?
- 10. If we extend the definition of Φ to allow it to have access to the index i of each example $(\mathbf{x}^{(i)}, y^{(i)}) \in D$, so that Φ maps $\mathbf{x}^{(i)}$ to $\Phi(\mathbf{x}^{(i)}, i)$, then every dataset becomes (trivially) linearly separable. Why?

Debriefing (required):

- 1. Approximately how many hours did you spend on this assignment?
- 2. Would you rate it as easy, moderate, or difficult?
- 3. Did you work on it mostly alone, or mostly with other people?
- 4. How deeply do you feel you understand the material it covers (0%-100%)?
- 5. Any other comments?