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Reasoning under uncertainty

e In many settings, we must try to understand what is going on in a system
when we have imperfect or incomplete information.

e Two reasons why we might reason under uncertainty:
1. laziness (modeling every detail of a complex system is costly)
2. ignorance (we may not completely understand the system)

e Example: deploy a network of smoke sensors to detect fires in a building.
Our model will reflect both laziness and ignorance:
— We are too lazy to model what, besides fire, can trigger the sensors;

— We are too ignorant to model how fire creates smoke, what density of
smoke is required to trigger the sensors, etc.



Using Probability Theory
to reason under uncertainty

Probabilities quantify uncertainty regarding the occurrence of events.

Are there alternatives? Yes, e.q., Dempster-Shafer Theory, disjunctive

uncertainty, etc. (Fuzzy Logic is about imprecision, not uncertainty.)

Why is Probability Theory better? de Finetti: Because if you do not
reason according to Probability Theory, you can be made to act irrationally.
Probability Theory is key to the study of action and communication:

— Decistion Theory combines Probability Theory with Utility Theory.

— Information Theory is “the logarithm of Probability Theory”.

Probability Theory gives rise to many interesting and important
philosophical questions (which we will not cover).



The only prerequisite: Set Theory
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For simplicity, we will work (mostly) with finite sets. The extension to

countably infinite sets is not difficult. The extension to uncountably infinite sets
requires Measure Theory.



Probability spaces

o A probability space represents our uncertainty regarding an experiment.

e It has two parts:
1. the sample space €2, which is a set of outcomes; and

2. the probability measure P, which is a real function of the subsets of ().

P

e A set of outcomes A C (Q is called an event. P(A) represents how likely it is

that the experiment’s actual outcome will be a member of A.



An example probability space

e If our experiment is to deploy a smoke detector and see if it works, then
there could be four outcomes:

Q = {(fire, smoke), (no fire, smoke), (fire, no smoke), (no fire,no smoke)}

Note that these outcomes are mutually exclusive.

e And we may choose:
— P({(fire, smoke), (no fire, smoke)}) = 0.005
— P({(fire, smoke), (fire, no smoke)}) = 0.003

e Our choice of P has to obey three simple rules. ..



The three axioms of Probability Theory

1. P(A) > 0 for all events A
2. P(Q) =1
3. P(AUB) = P(A) + P(B) for disjoint events A and B
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=P(A) + P(B) = P(AUB)=



Some simple consequences of the axioms

e P(A)=1—- P(Q\A)
e P()=0

o If AC B then P(A) < P(B)

<
e P(AUB) = P(A) + P(B) — P(AN B)
e P(AUB) < P(A) + P(B)

. o o o



Example

e One easy way to define our probability measure P is to assign a probability
to each outcome w € (2:

fire | no fire
smoke || 0.002 | 0.003
no smoke || 0.001 | 0.994

These probabilities must be non-negative and they must sum to one.

e Then the probabilities of all other events are determined by the axioms:

P({(fire, smoke), (no fire, smoke)})

= P({(fire, smoke)}) + P({(no fire, smoke)})
= 0.002 4 0.003

= 0.005



Conditional probability

e Conditional probability allows us to reason with partial information.

e When P(B) > 0, the conditional probability of A given B is defined as

P(A|B) 2 P(ﬁ(;)B)

This is the probability that A occurs, given we have observed B, i.e., that

we know the experiment’s actual outcome will be in B. It is the fraction of
probability mass in B that also belongs to A.

e P(A) is called the a priori (or prior) probability of A and P(A|B) is called
the a posteriori probability of A given B.

- > R
P(AnB)/ P(B) = P(A|B)
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Example of conditional probability

If P is defined by

fire | no fire
smoke || 0.002 | 0.003
no smoke || 0.001 | 0.994

then

P({(fire, smoke)} | {(fire, smoke), (no fire, smoke)})

_ P{(fire, smoke)} N {(fire, smoke), (no fire, smoke)})
P({(fire, smoke), (no fire, smoke)})

_ P({(fire, smoke)})
P{(fire, smoke), (no fire, smoke)})

=0 04
0.005
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The product rule

Start with the definition of conditional probability and multiply by P(A):

P(AN B) = P(A)P(B| A)

The probability that A and B both happen is the probability that A happens
times the probability that B happens, given A has occurred.
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The chain rule

Apply the product rule repeatedly:

P (N A;) = P(A)P(Ay | A P(As| Ay N Ay) - P (A | NEZL 4;)

The chain rule will become important later when we discuss conditional

independence in Bayesian networks.
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Bayes’ rule

Use the product rule both ways with P(A N B) and divide by P(B):

P(B|A)P(A)
P(B)

P(A|B) =

Bayes’ rule translates causal knowledge into diagnostic knowledge.

For example, if A is the event that a patient has a disease, and B is the event
that she displays a symptom, then P(B | A) describes a causal relationship, and
P(A| B) describes a diagnostic one (that is usually hard to assess). If P(B|A),
P(A) and P(B) can be assessed easily, then we get P(A| B) for free.
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Random variables

It is often useful to “pick out” aspects of the experiment’s outcomes.

A random variable X is a function from the sample space (2.

X

Random variables can define events, e.g., {w € 0 : X(w) = true}.

One will often see expressions like P{X =1,Y =2} or P(X =1,Y =2).
These both mean P{w € Q: X(w) =1,Y (w) = 2}).
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Examples of random variables

Let’s say our experiment is to draw a card from a deck:

O ={AD,20,... KO, A0, 20, ..., KO, Ad, 2, ... K&, A, 24, . ..

random variable

example event

7

0 otherwise

true ifwisa Q
H(w) H = true
false otherwise
\
4
n if w is the number n
N (w) 2<N<6
0 otherwise
\
4
1 if wis a face card
F(w) F=1
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Densities

e Let X : () — = be a finite random variable. The function px : = — R is the
density of X if for all x € =:

px(r) = P{w: X(w) = z})

e When = is infinite, px : & — R is the density of X if for all £ C =:

PHw: X(w) € &}) = /pX(:E) dz

3

e Note that |- px(z) dz =1 for a valid density.
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Joint densities

e [f X:)—>=Zand Y : Q) — Y are two finite random variables, then
pxy : 2 X T — R is their joint density if for all x € Z and y € Y:

pxy(r,y) = PQw: X(w) = z,Y(w) = yJ)

e When = or T are infinite, pxy : 2 X T — R is the joint density of X and Y
if forall ¢ C=Z and v C Y-

/E/pXY(SL',y) dy dz = P{w: X(w) € {,Y(w) € v})
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Random variables and densities
are a layer of abstraction

We usually work with a set of random variables and a joint density; the
probability space is implicit.
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Marginal densities

Lo |

e Given the joint density pxy (z,y) for X : Q2 - Zand Y : Q — T, we can
compute the marginal density of X by

px(z) = Z pxy (z,y)

yeY

when T is finite, or by

px(z) = /TPXY(%Q) dy

when Y is infinite.

e This process of summing over the unwanted variables is called

marginalization.
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Conditional densities

* px|y(z,y) : 2 x T — R is the conditional density of X given Y =y if

px|y (z,y) = Pw: X(w) = 2} [{w: Y(w) = y})

for all x € = it = is finite, or if

/E pxpy (2,y) dz = P({w: X() € €} | {w: Y(w) = y})

for all ¢ C = if = is infinite.
e Given the joint density pxy (z,y), we can compute px|y as follows:

pXY(fB;Z/) pXY(%Z/)

or p L,Y) =
wezPxy (7, y) X1y (&,9) Jzpxv (2, y) da’

pX|Y(£E7y) — z
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Rules in density form

e Product rule:
pxv(z,y) = px(z) X pY|X(yal’)

e (Chain rule:

PXi---Xs (561, .. .,mk)

= PX; (931) X PXs| X, (51327301) XKoo X pXk|X1---Xk_1(33k7$1> oy Tp—1)

e Bayes’ rule:

_ pxiy(@,y) X py (y)
pY|X(y7$) — px(CE)
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Inference

e The central problem of computational Probability Theory is the inference

problem:
Given a set of random variables X1, ..., X, and their joint density,
compute one or more conditional densities given observations.
e Many problems can be formulated in these terms. Examples:

— In our example, the probability that there is a fire given smoke has been

detected is pp|s(true, true).

— We can compute the expected position of a target we are tracking given
some measurements we have made of it, or the variance of the position,

which are the parameters of a Gaussian posterior.

e Inference requires manipulating densities; how will we represent them?
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Table densities

The density of a set of finite-valued random variables can be represented as

a table of real numbers.

In our fire alarm example, the density of S is given by

0.995 s = false
0.005 s = true

ps(s) =

If F'is the Boolean random variable indicating a fire, then the joint density

psrF 1s represented by

psr(s, f) || f=true | f= false
s = true 0.002 0.003
s = false 0.001 0.994

Note that the size of the table is exponential in the number of variables.
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The Gaussian density

e One of the simplest densities for a real random variable.

e It can be represented by two real numbers: the mean y and variance o~.

0.5

0.4

0.3

0.2

0.1

L]

W

2

P{2<X< 3}

0
-5

25



The multivariate Gaussian density

e A generalization of the Gaussian density to d real random variables.

e It can be represented by a d X 1 mean vector u and a symmetric d X d

covariance matrix 2.

0.16
0.14

0.12

0.08
0.06

0.04
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Importance of the (Gaussian

The Gaussian density is the only density for real random variables that is

“closed” under marginalization and multiplication.

Also: a linear (or affine) function of a Gaussian random variable is

Gaussian; and, a sum of Gaussian variables is Gaussian.

For these reasons, the algorithms we will discuss will be tractable only for

finite random variables or Gaussian random variables.

When we encounter non-Gaussian variables or non-linear functions in
practice, we will approximate them using our discrete and Gaussian tools.

(This often works quite well.)
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Looking ahead...

e Inference by enumeration: compute the conditional densities using the
definitions. In the tabular case, this requires summaing over exponentially
many table cells. In the Gaussian case, this requires inverting large

matrices.

e For large systems of finite random variables, representing the joint density

is impossible, let alone inference by enumeration.

e Next time:
— sparse representations of joint densities

— Variable Elimination, our first efficient inference algorithm.
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Summary

A probability space describes our uncertainty regarding an experiment; it
consists of a sample space of possible outcomes, and a probability measure

that quantifies how likely each outcome is.
An event is a set of outcomes of the experiment.

A probability measure must obey three axioms: non-negativity,
normalization, and additivity of disjoint events.

Conditional probability allows us to reason with partial information.

Three important rules follow easily from the definitions: the product rule,

the chain rule, and Bayes’ rule.
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Summary (II)

A random wvariable picks out some aspect of the experiment’s outcome.
A density describes how likely a random variable is to take on a value.

We usually work with a set of random variables and their joint density; the

probability space is implicit.

The two types of densities suitable for computation are table densities (for
finite-valued variables) and the (multivariate) Gaussian (for real-valued

variables).

Using a joint density, we can compute marginal and conditional densities

over subsets of variables.

Inference is the problem of computing one or more conditional densities

given observations.
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