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Machine Learning

Machine Learning is Everywhere
• “A breakthrough in machine learning would be worth ten Microsofts” (Bill Gates)
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AI subfields and breakthroughs
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Machine Learning

The Future of Software Engineering
• “See when AI comes, I’ll be long gone (being replaced 

by autonomous cars) but the programmers in those 
companies will be too, by automatic program 
generators.”             --- an Uber driver to an ML prof
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Uber uses tons of AI/ML: route planning, 
speech/dialog, recommendation, etc.
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Machine Learning Failures
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liang’s rule: if you see 
“X carefully” in 

China, just don’t do it.
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Machine Learning

Machine Learning Failures
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clear evidence that AI/ML is used in real life.



Machine Learning

• Part II: Basic Components of Machine Learning 
Algorithms; Different Types of Learning
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Machine Learning

What is Machine Learning

• Machine Learning = Automating Automation

• Getting computers to program themselves

• Let the data do the work instead!
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I love Oregon 私はオレゴンが大好き
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translation
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Machine Learning

Magic? 

No, more like gardening

• Seeds = Algorithms

• Nutrients = Data

• Gardener = You

• Plants = Programs
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“There is no better data than more data”



Machine Learning

ML in a Nutshell
• Tens of thousands of machine learning algorithms

• Hundreds new every year

• Every machine learning algorithm has three 
components:

–Representation
–Evaluation
–Optimization
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Machine Learning

Representation

• Separating Hyperplanes

• Support vectors

• Decision trees

• Sets of rules / Logic programs

• Instances (Nearest Neighbor)

• Graphical models (Bayes/Markov nets)

• Neural networks

• Model ensembles

• Etc.
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Machine Learning

Evaluation

• Accuracy

• Precision and recall

• Squared error

• Likelihood

• Posterior probability

• Cost / Utility

• Margin

• Entropy

• K-L divergence

• Etc.
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Machine Learning

Optimization

• Combinatorial optimization

• E.g.: Greedy search, Dynamic programming

• Convex optimization

• E.g.: Gradient descent, Coordinate descent

• Constrained optimization

• E.g.: Linear programming, Quadratic programming
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Machine Learning

Gradient Descent
• if learning rate is too small, it’ll converge very slowly

• if learning rate is too big, it’ll diverge
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Machine Learning

Types of Learning

• Supervised (inductive) learning

• Training data includes desired outputs

• Unsupervised learning

• Training data does not include desired outputs

• Semi-supervised learning

• Training data includes a few desired outputs

• Reinforcement learning

• Rewards from sequence of actions
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Machine Learning

Supervised Learning

• Given examples (X, f(X)) for an unknown function f

• Find a good approximation of function f

• Discrete f(X): Classification (binary, multiclass, structured)

• Continuous f(X): Regression
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Machine Learning

When is Supervised Learning Useful

• when there is no human expert

• input x: bond graph for a new molecule

• output f(x): predicted binding strength to AIDS protease

• when humans can perform the task but can’t describe it

• computer vision: face recognition, OCR

• where the desired function changes frequently

• stock price prediction, spam filtering

• where each user needs a customized function

• speech recognition, spam filtering
18



Machine Learning

Supervised Learning: Classification
• input X: feature representation (“observation”) 
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Machine Learning

Supervised Learning: Classification
• input X: feature representation (“observation”) 
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Machine Learning

Supervised Learning: Regression

• linear and non-linear regression

• overfitting and underfitting (same as in classification)
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Machine Learning

What We’ll Cover
• Supervised learning

• Nearest Neighbors (week 1)

• Linear Classification (Perceptron and Extensions)  (weeks 2-3)

• Support Vector Machines (weeks 4-5)

• Kernel Methods (week 5)

• Structured Prediction (weeks 7-8)

• Neural Networks and Deep Learning (week 10)

• Unsupervised learning (week 9)

• Clustering (k-means, EM)

• Dimensionality reduction (PCA etc.)
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Machine Learning

• Part III: Training, Test, and Generalization Errors; 
Underfitting and Overfitting; Methods to Prevent 
Overfitting; Cross-Validation and Leave-One-Out
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Machine Learning

Training, Test, & Generalization Errors

• in general, as training progresses, training error decreases

• test error initially decreases, but eventually increases!

• at that point, the model has overfit to the training data (memorizes noise or outliers)

• but in reality, you don’t know the test data a priori (“blind-test”)

• generalization error: error on previously unseen data

• expectation of test error assuming a test data distribution

• often use a held-out set to simulate test error and do early stopping
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Machine Learning

Under/Over-fitting due to Model
• underfitting / overfitting occurs due to under/over-training (last slide)

• underfitting / overfitting also occurs because of model complexity

• underfitting due to oversimplified model (“as simple as possible, but not simpler!”)

• overfitting due to overcomplicated model (memorizes noise or outliers in data!)

• extreme case: the model memorizes the training data, but no generalization!
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overfitting

underfitting underfitting underfitting
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(model complexity)



Machine Learning

Ways to Prevent Overfitting
• use held-out training data to simulate test data (early stopping)

• reserve a small subset of training data as “development set” 
(aka “validation set”, “dev set”, etc)

• regularization (explicit control of model complexity)

• more training data (overfitting is more likely on small data)

• assuming same model complexity

26polynomials of degree 9



Machine Learning

Leave-One-Out Cross-Validation

• what’s the best held-out set?

• random? what if not representative?

• what if we use every subset in turn?

• leave-one-out cross-validation

• train on all but the last sample, test 
on the last; etc.

• average the validation errors

• or divide data into N folds, train on 
folds 1..(N-1), test on fold N; etc.

• this is the best approximation of 
generalization error
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Machine Learning

• Part IV: k-Nearest Neighbor Classifier
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Machine Learning

Nearest Neighbor Classifier
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• assign label of test example according to the 
majority of the closest neighbors in training set

• extremely simple: no training procedure!

• 1-NN: extreme overfitting; k-NN is better

• as k increases, the boundaries become smoother

• k=+∞? majority vote (extreme underfitting)

k=1: red
k=3: red
k=5: blue



Machine Learning

Quiz Question

• what are the leave-one-out cross-validation errors for 
the following data set, using 1-NN and 3-NN?
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Ans: 1-NN: 5/10; 3-NN: 1/10


