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Machine Learning is Everywhere

® “A breakthrough in machine learning would be worth ten Microsofts” (Bill Gates)

GO\ SIL machine leaming

Wob Nages Mag Shooorg Norar Mo ~ Search lools

en.wikipecia. org/wiki/Machine_leaming
Machine learning, a branch of artficial intelligence, is about the construction and study
of systems that can leam from data. For ecample, a machine leaming ...

List of machine leaming - Category-Machine learning - Machine Leaming (Journal)

Machine Leaming | Coursara

hitps Jiwww. coursera. ong/course/mi

Machine learning is the science of getting computers 1o act without being explciths
programmed. In the past decade, machine leaming has gven us self- diving ...

Andrew Rosenberg and Renoe Blitzer +1d ths

hin min riment - Camegie Mellon University

www . mil.cmu.eduy
Largs group with projects in robot leaming, cata mining for manufacturing and in
multimedia databases, causal inference, and disclosure limitation
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Al subfields and breakthroughs

Artificial
Intelligence

information retrieval
data

mining machine
learning

natural
language
processing
Al search (NLP)

Ymputer vision

robotics
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Al subfields and breakthroughs

IBM Deep Blue, 1997 @ACM
Garry Kasparov
Al search (no learning)
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Al subfields and breakthroughs
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Al subfields and breakthroughs
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Google DeepMind AlphaGo, 2017
deep reinforcement learning + Al search
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The Future of Software Engineering

® “See when Al comes, I'll be long gone (being replaced
by autonomous cars) but the programmers in those

companies will be too, by automatic program
generators.” --- an Uber driver to an ML prof
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Uber uses tons of Al/ML: route planning,
speech/dialog, recommendation, etc.
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achine Learning Failures
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Machine Learning Failures
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Machine Learning Failures




Machine Learning Failures

clear evidence that AI/ML is uséd in real life.
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® Part ll: Basic Components of Machine Learning
Algorithms; Different Types of Learning

Machine Learning



What is Machine Learning

® Machine Learning = Automating Automation

® Getting computers to program themselves

® | et the data do the work instead!

Traditional Programming

| love Oregon Input .

rule-based prog ram
translation

Computer

FAEA L TV KFE

(1950-2000)

Machine Learning

» Output

| love Oregon Input |
FEA L TDKRFE Output

Computer

— Program a(

Google Translate
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No, more like gardening

= Algorithms
 Nutrients = Data
« Gardener =You

* Plants = Programs

“There is no better data than more data”

Machine Learning
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ML in a Nutshell

® Tens of thousands of machine learning algorithms
® Hundreds new every year

® Every machine learning algorithm has three

components:

—Representation ZO,OOOML A-rxw Pap:e rsper rear
—Evaluation

—Optimization

10,000

ML Arxiv Papers

5,000

Relative Number of ML Arxiv Papers to 2009
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Representation

® Separating Hyperplanes

® Support vectors

® Decision trees

® Sets of rules / Logic programs

® |[nstances (Nearest Neighbor)

® Graphical models (Bayes/Markov nets)
® Neural networks

® Model ensembles

® Etc.

Machine Learning
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Evaluation

® Accuracy

® Precision and recall
® Squared error

® |ikelihood

® Posterior probability
® Cost / Utility

® Margin

® Entropy

® K-L divergence

® Etc.

Machine Learning
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Optimization

® Combinatorial optimization

® E.g.: Greedy search, Dynamic programming
® Convex optimization

® E.g.: Gradient descent, Coordinate descent
® Constrained optimization

® E.g.:Linear programming, Quadratic programming

Machine Learning
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Gradient Descent

e if learning rate is too small, it’ll converge very slowly

e if learning rate is too big, it'll diverge
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Machine Le: Fig. 6. Gradient descent for different learning rates. 15



Types of Learning

g

. r

® Supervised (inductive) learning

® Training data includes desired outputs cat dog

Ly

® Unsupervised learning -

® Training data does not include desired outputs
® Semi-supervised learning

® Training data includes a few desired outputs

® Reinforcement learning

rules

® Rewards from sequence of actions

Machine Learning

> wh.lte

win
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Supervised Learning

® Given examples (X, f(X)) for an unknown function f
® Find a good approximation of function f
® Discrete f(X): Classification (binary, multiclass, structured)

® Continuous f(X): Regression

Machine Learning




When is Supervised Learning Useful

® when there is no human expert
® input x: bond graph for a new molecule
® output f(x): predicted binding strength to AIDS protease
® when humans can perform the task but can’t describe it
® computer vision: face recognition, OCR
® where the desired function changes frequently
® stock price prediction, spam filtering
® where each user needs a customized function

® speech recognition, spam filtering

Machine Learning |18



Supervised Learning: Classification

® input X:feature representation (“‘observation”)

$

Preprocessing

; A

Feature extraction

l A

Classification
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Supervised Learning: Classification

® input X: feature representation (“observation”)
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Supervised Learning: Classification

® input X: feature representation (“observation”)
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Supervised Learning: Classification

® input X: feature representation (“observation”)
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Supervised Learning: Classification

® input X:feature representation (“‘observation”)
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Supervised Learning: Regression

® |inear and non-linear regression

® overfitting and underfitting (same as in classification)

1} 00 M=0 | 1}

Machine Learning
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What We'll Cover

® Supervised learning
® Nearest Neighbors (week |)
® Linear Classification (Perceptron and Extensions) (weeks 2-3)
® SupportVector Machines (weeks 4-5)
® Kernel Methods (week 5)
® Structured Prediction (weeks 7-8)
® Neural Networks and Deep Learning (week 10)
® Unsupervised learning (week 9)
® Clustering (k-means, EM)

® Dimensionality reduction (PCA etc.)

Machine Learning
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® Part lll: Training, Test, and Generalization Errors;
Underfitting and Overfitting; Methods to Prevent
Overfitting; Cross-Validation and Leave-One-Out

Machine Learning
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Training, Test, & Generalization Errors

in general, as training progresses, training error decreases

® test error initially decreases, but eventually increases!

at that point, the model has overfit to the training data (memorizes noise or outliers)

® but in reality, you don’t know the test ¢

ata a priori (‘blind-test”)

® generalization error: error on previous

y unseen data

® expectation of test error assuming a test data distribution

® often use a held-out set to simulate test error and do early stopping

Error

Best
eneralization 'est Error

Error

Training Error

>

No. of iterations

Training cycles

24



Under/Over-fitting due to Model

® underfitting / overfitting occurs due to under/over-training (last slide)
® underfitting / overfitting also occurs because of model complexity

® underfitting due to oversimplified model (“as simple as possible, but not simpler!”)

® overfitting due to overcomplicated model (memorizes noise or outliers in data!)

extreme case: the model memorizes the training data, but no generalization!

salmon sea bass

. underfitting underfitting underfitting
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Ways to Prevent Overfitting

® use held-out training data to simulate test data (early stopping)

® reserve a small subset of training data as “development set”
(aka “validation set”,“dev set”, etc)

® regularization (explicit control of model complexity)
® more training data (overfitting is more likely on small data)

® assuming same model complexity

0 e 0 1

polynomials of degree 9 Y

Machine Learning



Leave-One-Out Cross-Validation

training evaluation

® what’s the best held-out set! ]

112(3[4|5|6(7|8|9|[10

® random? what if not representative!

11213|4|5(6([7]8]92]10

® what if we use every subset in turn?

112|13[4|5|6(7]8]9(10

® |eave-one-out cross-validation 121312516 89 o

® train on all but the last sample, test  [1[2[3]4]5[6]7]8]9]10
on the last; etc. RN RHAOm

® average the validation errors 112|3s[6]7]8]910

112(3|4|5|/6(7]8]|9(10

® or divide data into N folds, train on
folds |..(N-1), test on fold N; etc. 112]3]4]5]6]7]8]9]10

112|13(4|5(6|7(8]9(10

® this is the best approximation of
ge n e ral izati O n e rro r This work by Sebastian Raschka is licensed under a

Creative Commons Attribution 4.0 International License
Machine Learning



® Part IV: k-Nearest Neighbor Classifier

Machine Learning
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Nearest Neighbor Classifier

. . e
® assign label of test example according to the P N
majority of the closest neighbors in training set . (@)
m u A :
® extremely simple: no training procedure! N
® |-NN: extreme overfitting; k-NN is better k=1:red
k=3:red
® as k increases, the boundaries become smoother k=5: blue
k=+00?! majority vote (extreme underfitting)
the data NN classifier O-NN classifier
* . & pEe -
$ .. (GRS 4 o ':..
. Sute® . o e & ’° o : S os® )
o ".*{’;. ° :‘.f.o’s: * 2 ° ::i:.‘: " %
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Quiz Question

® what are the leave-one-out cross-validation errors for
the following data set, using |-NN and 3-NN!

(@)

Machine Learning

Consider the following data set with two real-valued inputs x (i.e. the
coordinates of the points) and one binary output y (taking values + or -).
We want to use k-nearest neighbours (K-NN) with Euclidean distance to
predict y from x.

+ + — -

+  + — =

Calculate the leave-one-out cross-validation error of 1-NN on this data set.

That is, for each point in turn, try to predict its label y using the rest of the
points, and count up the number of misclassification errors.

30



Quiz Question

® what are the leave-one-out cross-validation errors for
the following data set, using |-NN and 3-NN!

(@)

Machine Learning

Consider the following data set with two real-valued inputs x (i.e. the
coordinates of the points) and one binary output y (taking values + or -).
We want to use k-nearest neighbours (K-NN) with Euclidean distance to
predict y from x.

+ + — -

+  + — =

Calculate the leave-one-out cross-validation error of 1-NN on this data set.

That is, for each point in turn, try to predict its label y using the rest of the
points, and count up the number of misclassification errors.

Ans: |-NIN: 5/10; 3-NIN: I/10
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