Applied Machine Learning

CIML Chap 4 (A Geometric Approach)

“Equations are just the boring part
of mathematics. | attempt to see
things in terms of geometry.”

o —Stephen Hawking

Week 2: Linear Classification: Perceptron

Professor Liang Huang

some slides from Alex Smola (CMU/Amazon)
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Roadmap for Weeks 2-3

® Week 2: Linear Classifier and Perceptron

® Part |: Brief History of the Perceptron

® Part ll: Linear Classifier and Geometry (testing time)

® Part lll: Perceptron Learning Algorithm (training time)

® Part IV: Convergence Theorem and Geometric Proof

® PartV:Limitations of Linear Classifiers, Non-Linearity,and Feature Maps
® Week 3: Extensions of Perceptron and Practical Issues

® Part |: My Perceptron Demo in Python

® Part ll:Voted and Averaged Perceptrons
® Part lll: MIRA and Aggressive MIRA
® Part |V:Practical Issues and HW/|

® PartV:Perceptron vs. Logistic Regression (hard vs. soft); Gradient Descent
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Part |

® Brief History of the Perceptron
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Neurons

® Soma (CPU)
Cell body - combines signals ™ @

Nerve cell

\
)\

® Dendrite (input bus)
Combines the inputs from
several other nerve cells

Synapse

Dendrite

® Synapse (interface)
Interface and parameter store between neurons

® Axon (output cable)
May be up to Im long and will transport the activation
signal to neurons at different locations
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Multilayer Perceptron (Neural Net)
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Brief History of Perceptron
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Part ||

® Linear Classifier and Geometry (testing time)

® decision boundary and normal vector w

® not separable through the origin: add bias b

® geometric review of linear algebra

® augmented space (no explicit bias; implicit as wo=b)

Test Time

Input x ——»

Model w —»

Linear Classifier

Training Time

Input x —»

Outputy —

Perceptron Learner

» Prediction o(w -x)

» Model w



Linear Classifier and Geometry

linear classifiers: perceptron logistic regression, (linear) SVMs, etc.
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w-x <0

weight vector w:“prototype” of positive examples
it’s also the normal vector of the decision boundary
meaning of W * X: agreement with positive direction
test: input: X, W; output: | if wex >0 else -|

training: input: (X, y) pairs; output: W

separating hyperplane

(decision boundary)
w-x =10

positive
w-x >0



What if not separable through origin?

solution: add bias b
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Geometric Review of Linear Algebra

line in 2D (n-1)-dim hyperplane in n-dim

AL2

w1x1+w2:132+b:() WX+b:O

L1 33;) X*
(w1, w2)| (w1, ws)
51 X1
required: algebraic and
geometric meanings of
dot product
L3
w1zt + woxd + b | (wi,wa) - (21, 22) + ) W - x 4 b
Vw? 4+ w3 (w1, wa)| [w]|

point-to-line distance point-to-hyperplane distance

http://classes.engr.oregonstate.edu/eecs/fall2017/cs534/extra/LA-geometry.pdf |3



http://classes.engr.oregonstate.edu/eecs/fall2017/cs534/extra/LA-geometry.pdf
http://classes.engr.oregonstate.edu/eecs/fall2017/cs534/extra/LA-geometry.pdf

Augmented Space: dimensionality+ |

T3 T explicit bias
f(x) = o(w - x + b)

W,

can’t separate in |D

weights from the origin .
—~—0— 00—
vo=1 21 it augmented space
%\\ ‘ Wn f(X) — O-((b; W) . (1’X))

weights

| o
can separate in 2D “f
from the origin 0

-
L 4
4
'f
L4
L4
-
4

I

4

L4
-
L 4
L4
'4
L4
-

14

output




Augmented Space: dimensionality+|
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weights
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f(x) = o(w-x +b)
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Part |l

® The Perceptron Learning Algorithm (training time)

® the version without bias (augmented space)

® side note on mathematical notations

® mini-demo

Test Time

Input x ——»

Model w ——»

Linear Classifier

— Prediction o(w -x)

Training Time

Input x —»

Outputy ——

Perceptron Learner

— Model w




Perceptron




The Perceptron Algorithm

input: training data D
output: weights w
initialize w < O
while not converged
for (x,y) € D
if y(w-x) <0
W < W + yX

® the simplest machine learning algorithm

® keep cycling through the training data

® update W if there is a mistake on example (X, y)

® until all examples are classified correctly



Side Note on Mathematical Notations

® 'll try my best to be consistent in notations

® e.g., bold-face for vectors, italic for scalars, etc.

® avoid unnecessary superscripts and subscripts by using a
“Pythonic” rather than a“C” notational style

® most textbooks have consistent but bad notations

initialize w < 0 initialize w =0 and b =0
while not converged repeat
for (x,y) € D if y; [(w, x;) + b] < 0 then
if y(w-x) <0 w 4= w + y;x; and b« b+ y;
end if

W <— W + yX . .
until all classified correctly

bad notations:
inconsistent, unnecessary iand b

good notations:
consistent, Pythonic style



Demo

while not converged
for (x,y) € D
if y(w-x) <0
W <— W + yX
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Demo
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Demo

while not converged
for (x,y) € D
if y(w-x) <0
W <— W + yX
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Part IV

® Linear Separation, Convergence Theorem and Proof
® formal definition of linear separation
® perceptron convergence theorem
® geometric proof

® what variables affect convergence bound!?

25



Linear Separation; Convergence Theorem

® dataset D is said to be “linearly separable” if there exists
some unit oracle vector u: ||u|| = | which correctly
classifies every example (x, y) with a margin at least o:

y(u-x) >0 for all (x,y) € D

® then the perceptron must converge to a linear separator

after at most R?/6° mistakes (updates) where £ = (XII;??DHXH

® convergence rate R°//”

® dimensionality independent

® dataset size independent
® order independent (but order matters in output)

® scales with ‘difficulty’ of problem



Geometric Proof, part |

® part |: progress (alignment) on oracle projection

assume w(?) = 0, and w(®) is the weight before the ith update (on (x,y))

wlith = w4 ox
u-wi) = u.-wl 4y(u-x)
u-witd > . wl) 4§ y(u-x) > ¢ for all (x,y) € D

projection on u increases! -
(more agreement w/ oracle direction)

= i o w2
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Geometric Proof, part 2

® part 2: upperbound of the norm of the weight vector
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Geometric Proof, part 2

® part 2: upperbound of the norm of the weight vector
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Convergence Bound  Rr?/s’

® is independent of:

® dimensionality

® number of examples

® order of examples

® constant Iearning rate narrow margin: wide margin:

hard to separate easy to separate

® and is dependent of:

® separation difficulty (margin 0)

® feature scale (radius R)

® initial weight w(®

changes how fast it converges, but not whether it'll converge
29




PartV

® Limitations of Linear Classifiers and Feature Maps
® XOR: not linearly separable
® perceptron cycling theorem
® solving XOR: non-linear feature map
® “preview demo’”: SYM with non-linear kernel

® redefining “linear” separation under feature map

30



XOR

|
|
‘ ‘ NP-Hard

Y NP-Complete
N 8

® XOR - not linearly separable

P = NP

® Nonlinear separation is trivial

® Caveat from “Perceptrons” (Minsky & Papert, 1969)
Finding the minimum error linear separator

is NP hard (this killed Neural Networks in the 70s).
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Brief History of Perceptron
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What if data is not separable

® in practice, data is almost always inseparable

® wait, what exactly does that mean?

® perceptron cycling theorem (1970)
® weights will remain bounded and will not diverge

® use dev set for early stopping (prevents overfitting)

® non-linearity (inseparable in low-dim => separable in high-dim)
® higher-order features by combining atomic ones (cf. XOR)

® a more systematic way: kernels (more details in week 5)

ON THE BOUNDEDNESS OF AN ITERATIVE PROCE-
DURE FOR SOLVING A SYSTEM OF
LINEAR INEQUALITIES!

H. D. BLOCK AND S. A. LEVIN 33



Solving XOR: Non-Linear Feature Map

r

>(5617 L2, Qflﬁlﬁg)
® XOR not linearly separable

® Mapping into 3D makes it easily linearly separable
® this mapping is actually non-linear (quadratic feature x|x2)
® 3 special case of “polynomial kernels” (week 5)

® |inear decision boundary in 3D => non-linear boundaries in 2D
34



Low-dimension <=> High-dimension
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Low-dimension <=> High-dimension
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Low-dimension <=> High-dimension
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Low-dimension <=> High-dimension
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Low-dimension <=> High-dimension

not linearly separable in 2D

non-linear boundaries in 2D

X
X ‘ 2
X X X
X
X
X
/ ) x
[ O ) ) I
I |
\ )
X )
X ~_ 9 X
. X
X
X
X X X X

linearly separable in 3D

linear decision boundary in 3D




SVM with a polynomial
Kernel visualization

Created by:
Udi Aharoni



Linear Separation under Feature Map

we have to redefine separation and convergence theorem

dataset D is said to be linearly separable under feature map @ if

there exists some unit oracle vector u: ||ul|| = | which correctly
classifies every example (x, y) with a margin at least o:

y(u- P(x)) > 6 for all (x,y) € D

then the perceptron must converge to a linear separator after at

most R?/6° mistakes (updates) where R = max [|®(x)]]
(x,y)eD
in practice, the choice of feature map (“feature engineering”) is

often more important than the choice of learning algorithms

® the first step of any machine learning project is data preprocessing:
transform each (x, ) to (P (x), »)

® at testing time, also transform each x to ¢ (x)

® deep learning aims to automate feature engineering
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