
Applied Machine Learning

Professor Liang Huang

Week 3: Extensions and Variations of 
Perceptron; Practical Issues and HW1

CIML Chaps 4-5 (A Geometric Approach)

“A ship in port is safe, but that 
is not what ships are for.”

  – Grace Hopper (1906-1992)

some slides from A. Zisserman (Oxford)



Trivia: Grace Hopper and the first bug

• Edison coined the term “bug” around 1878 and it had 
been widely used in engineering

• Hopper was associated with the discovery of the first 
computer bug in 1947 which was a moth stuck in a relay

2Smithsonian National Museum of American History



Week 3: Perceptron in Practice
• Problems with Perceptron

• doesn’t converge with inseparable data

• update might often be too “bold”

• doesn’t optimize margin

• result is sensitive to the order of examples

• Ways to alleviate these problems (without SVM/kernels)

• Part II: voted perceptron and average perceptron

• Part III: MIRA (margin-infused relaxation algorithm)

• Part IV: Practical Issues and HW1

• Part V: “Soft” Perceptron: Logistic Regression
3

“A ship in port is safe, but that 
is not what ships are for.”

  – Grace Hopper (1906-1992)



Recap of Week 2
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Python Demo
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$ python perc_demo.py (requires numpy and matplotlib)



Part II: Voted and Averaged Perceptron
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Voted/Avg. Perceptron Revives Perceptron
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Voted/Avged Perceptron
• problem: later examples dominate earlier examples

• solution: voted perceptron (Freund and Schapire, 1999)

• record the weight vector after each example in D

• not just after each update!

• and vote on a new example using |D| models

• shown to have better generalization power

• averaged perceptron (from the same paper)

• an approximation of voted perceptron

• just use the average of all weight vectors

• can be implemented efficiently
8



Voted Perceptron
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our notation: (x(1), y(1))
v is weight, 

c is its # of votes

if correct, increase the 
current model’s # of votes; 
otherwise create a new 
model with 1 vote



Voted Perceptron
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our notation: (x(1), y(1))
v is weight, 

c is its # of votes

if correct, increase the 
current model’s # of votes; 
otherwise create a new 
model with 1 vote



Experiments
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Averaged Perceptron
• voted perceptron is not scalable

• and does not output a single model

• avg perceptron is an approximation of voted perceptron

• actually, summing all weight vectors is enough; no need to divide
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after each example, not after each update!
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Efficient Implementation of Averaging

• naive implementation (running sum ws) doesn’t scale

• OK for low dim. (HW1); too slow for high-dim. (HW3)

• very clever trick from Hal Daumé (2006, PhD thesis)
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Part III: MIRA
• perceptron often makes bold updates (over-correction)

• and sometimes too small updates (under-correction)

• but hard to tune learning rate

• “just enough” update to correct the mistake?

easy to show:
�

perceptron
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algorithm (MIRA) over-correction
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Example: Perceptron under-correction
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MIRA: just enough

MIRA

perceptron

min
w0

kw0 �wk2

s.t. w0 · x � 1

minimal change to ensure 
functional margin of 1
(dot-product w’·x=1)

MIRA ≈ 1-step SVM
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MIRA: functional vs geom. margin

MIRA

min
w0
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s.t. w0 · x � 1

minimal change to ensure 
functional margin of 1
(dot-product w’·x=1)

MIRA ≈ 1-step SVM
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Optional: Aggressive MIRA

• aggressive version of MIRA

• also update if correct but not confident enough

• i.e., functional margin (y w·x) not big enough

• p-aggressive MIRA: update if   y (w·x) < p   (0<=p<1)

• MIRA is a special case with p=0: only update if misclassified!

• update equation is same as MIRA

• i.e., after update, functional margin becomes 1

• larger p leads to a larger geometric margin but slower convergence17
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Demo
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Demo
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Part IV: Practical Issues and HW1
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“A ship in port is safe, but that 
is not what ships are for.”

  – Grace Hopper (1906-1992)

• you will build your own linear classifiers for HW1 data 



HW1: Adult Income >50K?

• 2 numerical features: age and hours-per-week

• option 1: keep them as numerical features

• but is older and more hours always better?

• option 2: (better) treat them as binary features

• e.g., age=22, hours=38, ...

• 7 categorical features: convert to binary features

• country, race, occupation, etc.

• e.g., country=United_States, education=Doctorate,...

• perceptron: ~19% dev error, avg. perceptron: ~15% dev error

training/dev sets:
Age, Sector,    Education,    Marital_Status,     Occupation,      Race,  Sex,    Hours, Country,      Target
40,  Private,   Doctorate,    Married-civ-spouse, Prof-specialty,  White, Female, 60,    United-States, >50K
44,  Local-gov, Some-college, Married-civ-spouse, Exec-managerial, Black, Male,   38,    United-States, >50K
55,  Private,   HS-grad,      Divorced,           Sales,           White, Male,   40,    England,       <=50K

test data (semi-blind):
30,  Private,   Assoc-voc,    Married-civ-spouse, Tech-support,    White, Female, 40,    Canada,        ???
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Interesting Facts in HW1 Data
• only ~25% positive (>50K); data was from 1994 (~$27K per capita)

• education is probably the single most important factor

• education=Doctorate is extremely positive (80%)

• education=Prof-school is also very positive (75%)

• education=Masters is also positive (55%)

• education=9th (high school dropout) is extremely negative (6%)

• “married” is good (45%), “never married” is extremely bad (5%)

• “self-emp-inc” is the best sector (59%), but “self-emp-not-inc” 30%

• hours-per-week=1 is 100% positive; country=Iran is 70% positive

• exec-managerial and prof-specialty are best occupations (48% / 46%)

• interesting combinations (e.g. “edu=Doc and sector=self-emp-inc”: 100%)
22



Looking at HW1 data on terminal
• you are highly recommended to use Linux or Mac terminals

• basic familiarity with the terminal is a must for a data scientist!
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$ cat income.train.txt.5k | cut -f 2 -d ','| sort | uniq -c
 150  Federal-gov
 340  Local-gov
3694  Private
 183  Self-emp-inc
 424  Self-emp-not-inc
 208  State-gov
   1  Without-pay

$ cat income.train.txt.5k | grep "Prof-spec" | wc -l
646
$ cat income.train.txt.5k | grep "Prof-spec" | grep -c ">"
294

$ cat income.train.txt.5k | sort -nk1 | head -1
17
$ cat income.train.txt.5k | sort -nk1 | tail -1
90

    sector=Self-emp-inc: 59.02%
    education=Masters: 55.38%
    education=Prof-school: 74.70%
    education=Doctorate: 80.00%
    hours-per-week=99: 60.00%
    hours-per-week=68: 100.00%
    hours-per-week=1: 100.00%
    country-of-origin=Taiwan: 58.33%
    country-of-origin=Iran: 70.00%
    country-of-origin=Cambodia: 66.67%



Useful Engineering Tips:
averaging, shuffling, variable learning rate, fixing feature scale

• averaging helps significantly; MIRA helps a tiny little bit

• perceptron < MIRA < avg. perceptron ≈ avg. MIRA ≈ SVM

• shuffling the data helps hugely if classes were ordered (HW1)

• shuffling before each epoch helps a little bit

• variable (decaying) learning rate often helps a little

• 1/(total#updates) or 1/(total#examples) helps

• any requirement in order to converge?

• how to prove convergence now?

• centering of each dimension helps (Ex1/HW1)

• why? => smaller radius, bigger margin!

• unit variance also helps (why?) (Ex1/HW1)

• 0-mean, 1-var => each feature ≈ a unit Gaussian

O

1

O

1
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small margin
big margin



Feature Maps in Other Domains

• how to convert an image or text to a vector?
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28x28 grayscale image

“one-hot” representation of words
(all binary features)

23x23 RGB image

x ∈ ℝ23x23x3



Part V: Perceptron vs. Logistic Regression

• logistic regression is another popular linear classifier

• can be viewed as “soft” or “probabilistic” perceptron

• same decision rule (sign of dot-product), but prob. output
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f(x) = sign(w · x)

f(x) = �(w · x) = 1

1 + e�w·x

perceptron

logistic regression



Logistic vs. Linear Regression
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• linear regression is regression applied to real-valued output using linear function 

• logistic regression is regression applied to 0-1 output using the sigmoid function

https://florianhartl.com/logistic-regression-geometric-intuition.html

linear

logistic

1 feature
2 features

1 feature

2 features

https://florianhartl.com/logistic-regression-geometric-intuition.html
https://florianhartl.com/logistic-regression-geometric-intuition.html


Why Logistic instead of Linear
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• linear regression easily dominated by distant points

• causing misclassification

http://www.robots.ox.ac.uk/~az/lectures/ml/2011/lect4.pdf

http://www.robots.ox.ac.uk/~az/lectures/ml/2011/lect4.pdf
http://www.robots.ox.ac.uk/~az/lectures/ml/2011/lect4.pdf


Why Logistic instead of Linear
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• linear regression easily dominated by distant points

• causing misclassification



Why 0/1 instead of +/-1

• perc: y=+1 or -1; logistic regression: y=1 or 0

• reason: want the output to be a probability

• decision boundary is still linear: p(y=1 | x) = 0.5
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Logistic Regression: Large Margin
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• perceptron can be viewed roughly as “step” regression

• logistic regression favors large margin; SVM: max margin

• in practice: perc. << avg. perc. ≈ logistic regression ≈ SVM



perceptron
1959

SVM
1964;1995

logistic regression
1958

cond. random fields
2001

structured perceptron
2002

multilayer perceptron

deep learning
~1986; 2006-now
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structured SVM
2003

kernels
1964

voted/avg. perceptron
1999


