Applied Machine Learning

CIML Chaps 4-5 (A Geometric Approach)

“A ship in port is safe, but that
is not what ships are for.”

— Grace Hopper (1906-1992)

Week 3: Extensions and Variations of
Perceptron; Practical Issues and HW

Professor Liang Huang

some slides from A. Zisserman (Oxford)

Trivia: Grace Hopper and the first bug

® Edison coined the term “bug” around 1878 and it had
been widely used in engineering

® Hopper was associated with the discovery of the first
computer bug in 1947 which was a moth stuck in a relay

114 |

060 Onikan ..4&4*},1 > {/-17» 7.037 sy o5

/ . > 3 - aahom S s B oro F.937 5“)16 TIP3 o
13 wg (033 MP ~pe #-1%5/3-1{-’0 Yel5T25055(-)

233 PRO. > 2. [loyq6YiS

_ CWJ*_ 2.430676yr3
(},',ﬂ > - =~ 033 M ;,r‘gJ xr)J —l&)&
lm < e A -

o Q 5 Q/L.nr : :
/& :)‘J},t_"f-.l ‘ Closiv\.’: ‘i}g{’x(’s;nc cJ\c\.k’
L AL wtech LIlu T s TRaader {€eT

@"'k“‘-\‘h)‘) ?u.r\c.[r

.7;'_. 'S ":".: ! , “. ~ ';\"'.'_ ‘ kMO’t{s)-‘ n r‘:\u. U\ .
L«.;.,;;. g > .
— ' e Y 2 .
Fieet actual case o-f bu e e &
fﬁ;""}" Qactamrnt shands]. ‘l ‘

98 Led Jgm .
ANITA BORG INSTITUTE

GRACE HOPPER Smithsonian National Museum of American History 2

Week 3: Perceptron in Practice

“A ship in port is safe, but that
is not what ships are for.”

® Problems with Perceptron
® doesn’t converge with inseparable data G . Hopper (1906-1992)
® update might often be too “bold”
® doesn’t optimize margin
® result is sensitive to the order of examples

® Ways to alleviate these problems (without SVM/kernels)
® Part ll: voted perceptron and average perceptron

® Part lll: MIRA (margin-infused relaxation algorithm)
® Part |IV: Practical Issues and HW |

® PartV:“Soft” Perceptron: Logistic Regression

Recap of Week 2

input: training data D
output: weights w
initialize w + 0
while not converged
for (x,y) € D
if y(w-x) <0
W < W + yX

“idealized” ML

Input x —

Training
Outputy —

“actual”’” ML

Input x —
Output y —»| Training
feature map ¢ —*

—» Model w

—» Model w

o
~
o
~

deep learning = representation learning

Input x —»
Outputy —»

Training

—» feature map ¢
—> Model w

Python Demo

$ python perc demo.py

(requires numpy and matplotlib)

perc o

_10 | 1 1 | 1 1 I 1 I
~10-9 -8 -7 —6 -5 -4 -3 -2 -1

Part |l:Voted and Averaged Perceptron

o =
. v
o' X random (unnorm) —— _
A last (unnorm)
s avg (unnorm) -
- -’ \\\. \"‘--___\ - vote TR
S Vanifly o - T P :
e Neor . fA A SRy - :
8 Perceper VAY A et
L |; ‘,,"':; .
m n
= E .
8 10 .averaged perceptron
> voted perceptron
U
O 5 | i
0.1 1 10

Epoch

Voted/Avg. Perceptron Revives Perceptron

1997
batc h {t_marg\\‘\ Cortes/Vapnik
+s0 SVM
(e
®(¢;0 2007--2010*
< . Singer grou
e minibatch g0
4
minibatch /
online 2003 2006
conservative updates L= 3 Crammer/Singer == Singer group
P MIRA aggressive
1959 1962 1969+
Rosenblatt =—>» Novikoff —>» Minsky/Papert
invention proof book killed it
Wrable cay'
2002 2005
Collins = McDonald/Crammer/Pereira
structured structured MIRA

*mentioned in lectures but optional
(others papers all covered in detail)

Voted/Avged Perceptron

® problem: later examples dominate earlier examples

® solution: voted perceptron (Freund and Schapire, | 999)

® record the weight vector after each example in D
not just after each update!

® and vote on a new example using |D| models

® shown to have better generalization power

® averaged perceptron (from the same paper)
® an approximation of voted perceptron
® just use the average of all weight vectors

® can be implemented efficiently

Voted Perceptron

Input: a labeled training set ((X1,41), ..., (Xm, Ym)) our notation: (X(I), y('))
number of epochs T’ V is weisht
Output: a list of weighted perceptrons ((vi,c1), ..., (Vg cx)) 51

c is its # of votes
e Initialize: £k :=0,vy :=0, ¢, := 0.

Large Margin Classification

R Using the Perceptron Algorithm
e Repeat 7" times:

YOAV FREUND yoav & rescarch.att.com
{T&T Labs, Shannon Laboratory, 180 Park Avenue, Room A205, Florham Park. NJ 07932-0971

- Fori=1,...,m:
+ Compute prediction: y := sign(vy - X;) if correct, increase the
¥« Ify=ythency :=ci + 1. current model’s # of votes;
else Vi 41 1= Vi + ¥iXi; otherwise create a hew

Ck41 = 1;

ko= k4] model with | vote

Voted Perceptron

Input: a labeled training set ((X1,41), ..., (Xm, Ym)) our notation: (X(I), y('))
number of epochs T’ V is weisht
Output: a list of weighted perceptrons ((vi,c1), ..., (Vk,ck)) 51

c is its # of votes
e Initialize: £k :=0,vy :=0, ¢, := 0.

Large Margin Classification

R Using the Perceptron Algorithm
e Repeat 7" times:

- Fori=1,... ,m:
+ Compute prediction: y := sign(vy - X;) if correct, increase the
* Ify=ythency := ¢, + 1. current model’s # of votes;

else vi 41 := vi + ¥iXi; otherwise create a new

Ck p— 'l; .
+ model with | vote

k:=k+ 1.

Prediction

Given: the list of weighted perceptrons: ((vi,¢1),. .., (Vk,ck))
an unlabeled instance: x

compute a predicted label ¥ as follows:

k
s = Zci sign(v; - X); y = sign(s) .

1=1

dev set error

Experiments

d=1

20

-

-
&)

10 |

LA | v T Ld T T L2 LA |

random (unnorm)

~_ last (unnorm)

e avg (unnorm)
A T Y vote

]

Epoch

Averaged Perceptron

® voted perceptron is not scalable

® and does not output a single model

® avg perceptron is an approximation of voted perceptron

® actually, summing all weight vectors is enough; no need to divide

initialize w < 0; ws < O
while not converged
for (x,y) € D
if y(w-x) <0
W < W + yX
Ws < W + W e

~

L d
-
-
-
-
-
-
-
-
-
-
-
"
-

dafter each example, not after each update!

W<1) Z.AW(1

W(2) :.AW(1

w2

W(B) :.AW<1

Aw (2

w3

W(4) :.AW<1

w2

Aw (3

w4

Efficient Implementation of Averaging

® naive implementation (running sum Ws) doesn’t scale

® OK for low dim. (HW1); too slow for high-dim. (HVV3)

® very clever trick from Hal Daume (2006, PhD thesis)

__ AwW
()
initialize w < 0; w, < 0; ¢+ 0
while not converged
1 1
for (x,y) € D wl) SAw!
if y(w-x) <0
W — W + yX C w) =Aw AW
W, < W, + cyxX
c—c+1 w3 SAwW AW EA WS
output: cw —w, -
&) wd AwUAwWEAW AW
dafter each update, not after each example!

Part lll: MIRA

® perceptron often makes bold updates (over-correction)

® and sometimes too small updates (under-correction)

® but hard to tune learning rate

® “just enough” update to correct the mistake!?

Yy — W - X

2
Ix]|

/
W < W -

easy to show:
Yy —W- X

2
Ix]|

w -x=(w X)X =1

margin-infused relaxation
algorithm (MIRA)

X

under-correction

D

/
o LS perceptron W

.§ XX
& /& /
/ 4MIRAW

A
A
. S
over-correction w J é

Example: Perceptron under-correction

perceptron W/

MIRA: just enough

min |[w’ — w]’ e | | .
W/

s.t. w -x > 1

minimal change to ensure
functional margin of |

(dot-product W’ - x=1)

MIRA = |-step SVM

functional margin: y(w - x)

y(W - X)

geometric margin:
Il

MIRA: functional vs geom. margin

. / 2
min |[w — w||
W/

s.t. w -x > 1

minimal change to ensure
functional margin of |

(dot-product w’ - x=1)

MIRA = |-step SVM

functional margin: y(w - x)

geometric margin:

wlxﬁl

Optional: Aggressive MIRA

| , =1

® aggressive version of MIRA

® also update if correct but not confident enough
i.e., functional margin (y w-X) not big enough
® p-aggressive MIRA: update if y (W-X) <p (0<=p<lI)
MIRA is a special case with p=0: only update if misclassified!
update equation is same as MIRA
i.e., after update, functional margin becomes |

® larger p leads to a larger geometric margin but slower convergence,

Demo

perc

MIRA

-i\

- O

1

1

1

1

1

1

1

1

1

10

9_

8 -

7 1 —-- 0.9-aggress. MIRA

6 -
5 -
4
3
2
1
0
-1
-2
-3
-4
-5
-6
~7
-8
-9

-10-9 -8 -7-6 -5-4-3-2-1

-10

|18

Demo

10

o
—
[m] [m] - N
m] - [m} a \;
. 18
. .\
o
-\ l7
o 7
R - ©
R
- N - 1N
o 7
CR R T
o 7 q ..
8 e o e
- 7
o .
| R ® - —
q— .\
/ - O
R —
7 C
.\ 0 | N
/ o |
a ™
. <
= "
. Q
w Te
n |
v
=) -7
< w ~
mmof > o ® B
Q=20 e | @
| 1 _
. . .|9
| _
o o
| I 1 1 1 I 1 | | 1 1 | | 1 1 | 1 1 1 4‘
A R N

-10

19

Part |V: Practical Issues and HWI

“A ship in port is safe, but that
is not what ships are for.”

— Grace Hopper (1906-1992)

® you will build your own linear classifiers for HW| data

20

HW | :Adult Income >50K?

training/dev sets:

Age, Sector, Education, Marital Status, Occupation, Race, Sex, Hours, Country, Target
40, Private, Doctorate, Married-civ-spouse, Prof-specialty, White, Female, 60, United-States, >50K
44, Local-gov, Some-college, Married-civ-spouse, Exec-managerial, Black, Male, 38, United-States, >50K
55, Private, HS-grad, Divorced, Sales, White, Male, 40, England, <=50K

test data (semi-blind):
30, Private, Assoc-voc, Married-civ-spouse, Tech-support, White, Female, 40, Canada, 2272

®) numerical features: age and hours-per-week

® option |: keep them as numerical features

but is older and more hours always better?

® option 2: (better) treat them as binary features

e.g.,age=22, hours=38, ...

® / categorical features: convert to binary features

® country, race, occupation, etc.

® e.g., country=United_States, education=Doctorate,...

® perceptron: ~19% dev error, avg. perceptron: ~|5% dev error
21

Interesting Facts in HW| Data

only ~25% positive (>50K); data was from 1994 (~$2/K per capita)
education is probably the single most important factor

® education=Doctorate is extremely positive (80%)

® education=Prof-school is also very positive (75%)

® education=Masters is also positive (55%)

® education=9th (high school dropout) is extremely negative (6%)
“married” is good (45%), “‘never married” is extremely bad (5%)
“self-emp-inc” is the best sector (59%), but “self-emp-not-inc” 30%
hours-per-week=1 is 100% positive; country=lran is 70% positive
exec-managerial and prof-specialty are best occupations (48% / 46%)

interesting combinations (e.g.“edu=Doc and sector=self-emp-inc”: 100%)
22

Looking at HWV | data on terminal

® you are highly recommended to use Linux or Mac terminals

® basic familiarity with the terminal is a must for a data scientist!

$ cat income.train.txt.5k | cut -f 2 -d ','| sort | uniq -c
150 Federal-gov
340 Local-gov sector=Self-emp-inc: 59.02%
3694 Private education=Masters: 55.38%
183 Self-emp-inc education=Prof-school: 74.70%
424 Self-emp-not-inc education=Doctorate: 80.00%
208 State-gov hours-per-week=99: 60.00%
1 Without-pay hours-per-week=68: 100.00%
hours-per-week=1: 100.00%
country-of-origin=Taiwan: 58.33%
country-of-origin=Iran: 70.00%
country-of-origin=Cambodia: 66.67%
S cat income.train.txt.5k grep "Prof-spec” wc -1
646
S cat income.train.txt.5k grep "Prof-spec” grep -c ">"
294
S cat income.train.txt.5k sort -nkl head -1
17
S cat income.train.txt.5k sort -nkl tail -1

90

23

Useful Engineering Tips:

averaging, shuffling, variable learning rate, fixing feature scale

averaging helps significantly; MIRA helps a tiny little bit

® perceptron < MIRA < avg. perceptron = avg. MIRA = SVM
shuffling the data helps hugely if classes were ordered (HWV1)
® shuffling before each epoch helps a little bit

variable (decaying) learning rate often helps a little

® |/(total#updates) or |/(total#examples) helps big margin
small margin L

® any requirement in order to converge! A
I

how to prove convergence now!
O] «jf{i::x
centering of each dimension helps (ExI/HWI) =%

® why? => smaller radius, bigger margin! A A

unit variance also helps (why?) (ExI/HW1)

® (O-mean, |-var => each feature = a unit Gaussian

ooleo
ooleoo
\ 4
odoo
ogooe

24

Feature Maps in Other Domains

® how to convert an image or text to a vector!

e O =

28x28 grayscale image

“abbreviations” “zoology”
0 0
1 0
0 0
0 0
0 1
0 0

EEN- EEE

" " 23x23 RGB image
= : seitees , X c R23x23x3

“one-hot” representation of words

(all binary features)

25

PartV: Perceptron vs. Logistic Regression

® |ogistic regression is another popular linear classifier
® can be viewed as “soft” or “probabilistic” perceptron

® same decision rule (sign of dot-product), but prob. output

inputs weights

@\ perceptron
wo weighted sum step function f(X) — Sign(w . X)
u)l Z /_t—\
wo o/ A
Sigmoid Activation Function ‘t
ZUN 10 1 :
08 - 0(X) = 1=
, 06" logistic regression
0s 1
: F(x) = 0w x) =
0.2 - 1 _|_ 6_W.X
0.0 -

100 -75 -50 -25 00 25 50 75 10.0

X Axis 26

Logistic vs. Linear Regression

® linear regression is regression applied to real-valued output using linear function

® |ogistic regression is regression applied to 0-1 output using the sigmoid function

30
o.° o
| feature 4 o linear »
o o 20 3
R
15
10 & ° 10
., . : e * ' B, e e 5
o s 9 A Z ‘n”' » ~ -4
.. . .o. o. : .. . a ”III o < “
;,"/b .o. . S —— __."‘130 “
| o ©s0 100 :' ~—— ‘ 20 °
50 200 . < 10 ¥
1 TV 250 300 o
20 -10 10 20 30 40 50 60 350
1 feature o somplesye)
® samples (y=0)
® 0 O _0 e o——9 ——l0gIStIC: g(2)
near: z
0.5
‘ logistic y
0 *—ee O o
6
5
2 4
05 | _, ! | 2 features 3 |)3
0 - . Feature1 4 1
c Eaatiira ?

https://florianhartl.com/logistic-regression-geometric-intuition.html 27

https://florianhartl.com/logistic-regression-geometric-intuition.html
https://florianhartl.com/logistic-regression-geometric-intuition.html

Why Logistic instead of Linear

® |inear regression easily dominated by distant points

® causing misclassification

1-.
o(wz + b) fit to y-

wx + b fit to y >

0
 fit of wx + b dominated by more 1.
distant points

e causes misclassification 0.5

* instead LR regresses the sigmoid ||
to the class data N

http://www.robots.ox.ac.uk/~az/lectures/ml/201 | /lect4.pdf

28

http://www.robots.ox.ac.uk/~az/lectures/ml/2011/lect4.pdf
http://www.robots.ox.ac.uk/~az/lectures/ml/2011/lect4.pdf

Why Logistic instead of Linear

® |inear regression easily dominated by distant points

® causing misclassification

LR \ linear LR \ linear
7 - 7}
2 2 . |

x'\/p'

%

XX

xxﬁ g
x

-4 -2 0 2 4 6 3 -4 -2 0 2 R 6 8

a(wla:l + woxo + b) fit, vs wizq1 + woxo + b

Why 0/] instead of +/-1

® perc: y=+1 or -I; logistic regression: y=1 or 0
® reason: want the output to be a probability

® decision boundary is still linear: p(y=1 | x) = 0.5

Contours of p(y = 1|z, D)

30

Logistic Regression: Large Margin

® perceptron can be viewed roughly as “step” regression

® |ogistic regression favors large margin; SVM: max margin

® in practice: perc. << avg. perc. = logistic regression = SVM

Ak A A

logistic regression
1958

v

cond. random fields
200

deep learning

~1986; 2006-now
A

multilayer perceptron

A
perceptron
1959

N

\4

>

e

kernels
1964

voted/avg. perceptron

1999

v

structured perceptron

2002

SVM

1964;1995

\4

structured SVM

2003
32

