
Applied Machine Learning

Professor Liang Huang

Week 3: Extensions and Variations of
Perceptron; Practical Issues and HW1

CIML Chaps 4-5 (A Geometric Approach)

“A ship in port is safe, but that
is not what ships are for.”

 – Grace Hopper (1906-1992)

some slides from A. Zisserman (Oxford)

Trivia: Grace Hopper and the first bug

• Edison coined the term “bug” around 1878 and it had
been widely used in engineering

• Hopper was associated with the discovery of the first
computer bug in 1947 which was a moth stuck in a relay

2Smithsonian National Museum of American History

Week 3: Perceptron in Practice
• Problems with Perceptron

• doesn’t converge with inseparable data

• update might often be too “bold”

• doesn’t optimize margin

• result is sensitive to the order of examples

• Ways to alleviate these problems (without SVM/kernels)

• Part II: voted perceptron and average perceptron

• Part III: MIRA (margin-infused relaxation algorithm)

• Part IV: Practical Issues and HW1

• Part V: “Soft” Perceptron: Logistic Regression
3

“A ship in port is safe, but that
is not what ships are for.”

 – Grace Hopper (1906-1992)

Recap of Week 2

4

�
u · x � �

�

 u : kuk = 1

x

� �

R

input: training data D
output: weights w

initialize w 0

while not converged

aafor (x, y) 2 D
aaaaif y(w · x)  0

aaaaaaw w + yx

x

w

w0

Training
Input x

Output y
Model w

“idealized” ML

Training
Input x

Output y Model w

“actual” ML

feature map ϕ Training
Input x

Output y Model w

deep learning ≈ representation learning

feature map ϕ

Python Demo

5

$ python perc_demo.py (requires numpy and matplotlib)

Part II: Voted and Averaged Perceptron

6

de
v

se
t

er
ro

r vanilla perceptron

voted perceptron

averaged perceptron

Voted/Avg. Perceptron Revives Perceptron

7

1959
Rosenblatt
invention

1962
Novikoff

proof

1969*
Minsky/Papert
book killed it

1999
Freund/Schapire

voted/avg: revived

2002
Collins

structured

2003
Crammer/Singer

MIRA

1997
Cortes/Vapnik

SVM

2006
Singer group
aggressive

2005*
McDonald/Crammer/Pereira

structured MIRA

DEAD

*mentioned in lectures but optional
(others papers all covered in detail)

online approx.

max margin
+max marg

in
+kernels

+soft-margin

conservative updates

inseparable case

2007--2010*
Singer group

Pegasos

subgradient descent

minibatch

minibatch

batch

online

Voted/Avged Perceptron
• problem: later examples dominate earlier examples

• solution: voted perceptron (Freund and Schapire, 1999)

• record the weight vector after each example in D

• not just after each update!

• and vote on a new example using |D| models

• shown to have better generalization power

• averaged perceptron (from the same paper)

• an approximation of voted perceptron

• just use the average of all weight vectors

• can be implemented efficiently
8

Voted Perceptron

9

our notation: (x(1), y(1))
v is weight,

c is its # of votes

if correct, increase the
current model’s # of votes;
otherwise create a new
model with 1 vote

Voted Perceptron

9

our notation: (x(1), y(1))
v is weight,

c is its # of votes

if correct, increase the
current model’s # of votes;
otherwise create a new
model with 1 vote

Experiments

10

de
v

se
t

er
ro

r vanilla perceptron

voted perceptron

averaged perceptron

Averaged Perceptron
• voted perceptron is not scalable

• and does not output a single model

• avg perceptron is an approximation of voted perceptron

• actually, summing all weight vectors is enough; no need to divide

11

after each example, not after each update!

w(1) =

w(2) =

w(3) =

w(4) =

�w(1)

�w(1)�w(2)

�w(1)�w(2)�w(3)

�w(1)�w(2)�w(3)�w(4)

w(1) =

w(2) =

w(3) =

w(4) =

initialize w 0; ws 0

while not converged

aafor (x, y) 2 D
aaaaif y(w · x)  0

aaaaaaw w + yx
aaaaws ws +w

output: summed weights ws

Efficient Implementation of Averaging

• naive implementation (running sum ws) doesn’t scale

• OK for low dim. (HW1); too slow for high-dim. (HW3)

• very clever trick from Hal Daumé (2006, PhD thesis)

12

w(t)
�w(t)

w(1) =

w(2) =

w(3) =

w(4) =

�w(1)

�w(1)�w(2)

�w(1)�w(2)�w(3)

�w(1)�w(2)�w(3)�w(4)

w(1) =

w(2) =

w(3) =

w(4) =

initialize w 0; wa 0; c 0

while not converged

aafor (x, y) 2 D
aaaaif y(w · x)  0

aaaaaaw w + yx
aaaaaawa wa + cyx
aaaac c+ 1

output: cw �wa

after each update, not after each example!

c

Part III: MIRA
• perceptron often makes bold updates (over-correction)

• and sometimes too small updates (under-correction)

• but hard to tune learning rate

• “just enough” update to correct the mistake?

easy to show:
�

perceptron

MIRA

margin-infused relaxation
algorithm (MIRA) over-correction

13

w

0 w +
y �w · x
kxk2

x

w

0 · x = (w +
y �w · x
kxk2

x) · x = y

x

w

w0

w0

1
kx
k

�
w

· x
kx

k

1
�
w

· x
kx
k

w

w0

x

under-correction

Example: Perceptron under-correction

14

w

perceptron w0

x

MIRA: just enough

MIRA

perceptron

min
w0

kw0 �wk2

s.t. w0 · x � 1

minimal change to ensure
functional margin of 1
(dot-product w’·x=1)

MIRA ≈ 1-step SVM

15

x

w

w0

w0

functional margin: y(w · x)

geometric margin:

y(w · x)
kwk

1
kx

k

MIRA: functional vs geom. margin

MIRA

min
w0

kw0 �wk2

s.t. w0 · x � 1

minimal change to ensure
functional margin of 1
(dot-product w’·x=1)

MIRA ≈ 1-step SVM

16

x

w

w0

functional margin: y(w · x)

geometric margin:

y(w · x)
kwk

1 kw
0 k

w

0 · x = 1

w

0 · x = 0

Optional: Aggressive MIRA

• aggressive version of MIRA

• also update if correct but not confident enough

• i.e., functional margin (y w·x) not big enough

• p-aggressive MIRA: update if y (w·x) < p (0<=p<1)

• MIRA is a special case with p=0: only update if misclassified!

• update equation is same as MIRA

• i.e., after update, functional margin becomes 1

• larger p leads to a larger geometric margin but slower convergence17

1 kw
0 k

w

0 · x = 1

w

0 · x = 0
x

w0

w

0 · x = 0.7

Demo

18

Demo

19

Part IV: Practical Issues and HW1

20

“A ship in port is safe, but that
is not what ships are for.”

 – Grace Hopper (1906-1992)

• you will build your own linear classifiers for HW1 data

HW1: Adult Income >50K?

• 2 numerical features: age and hours-per-week

• option 1: keep them as numerical features

• but is older and more hours always better?

• option 2: (better) treat them as binary features

• e.g., age=22, hours=38, ...

• 7 categorical features: convert to binary features

• country, race, occupation, etc.

• e.g., country=United_States, education=Doctorate,...

• perceptron: ~19% dev error, avg. perceptron: ~15% dev error

training/dev sets:
Age, Sector, Education, Marital_Status, Occupation, Race, Sex, Hours, Country, Target
40, Private, Doctorate, Married-civ-spouse, Prof-specialty, White, Female, 60, United-States, >50K
44, Local-gov, Some-college, Married-civ-spouse, Exec-managerial, Black, Male, 38, United-States, >50K
55, Private, HS-grad, Divorced, Sales, White, Male, 40, England, <=50K

test data (semi-blind):
30, Private, Assoc-voc, Married-civ-spouse, Tech-support, White, Female, 40, Canada, ???

21

Interesting Facts in HW1 Data
• only ~25% positive (>50K); data was from 1994 (~$27K per capita)

• education is probably the single most important factor

• education=Doctorate is extremely positive (80%)

• education=Prof-school is also very positive (75%)

• education=Masters is also positive (55%)

• education=9th (high school dropout) is extremely negative (6%)

• “married” is good (45%), “never married” is extremely bad (5%)

• “self-emp-inc” is the best sector (59%), but “self-emp-not-inc” 30%

• hours-per-week=1 is 100% positive; country=Iran is 70% positive

• exec-managerial and prof-specialty are best occupations (48% / 46%)

• interesting combinations (e.g. “edu=Doc and sector=self-emp-inc”: 100%)
22

Looking at HW1 data on terminal
• you are highly recommended to use Linux or Mac terminals

• basic familiarity with the terminal is a must for a data scientist!

23

$ cat income.train.txt.5k | cut -f 2 -d ','| sort | uniq -c
 150 Federal-gov
 340 Local-gov
3694 Private
 183 Self-emp-inc
 424 Self-emp-not-inc
 208 State-gov
 1 Without-pay

$ cat income.train.txt.5k | grep "Prof-spec" | wc -l
646
$ cat income.train.txt.5k | grep "Prof-spec" | grep -c ">"
294

$ cat income.train.txt.5k | sort -nk1 | head -1
17
$ cat income.train.txt.5k | sort -nk1 | tail -1
90

 sector=Self-emp-inc: 59.02%
 education=Masters: 55.38%
 education=Prof-school: 74.70%
 education=Doctorate: 80.00%
 hours-per-week=99: 60.00%
 hours-per-week=68: 100.00%
 hours-per-week=1: 100.00%
 country-of-origin=Taiwan: 58.33%
 country-of-origin=Iran: 70.00%
 country-of-origin=Cambodia: 66.67%

Useful Engineering Tips:
averaging, shuffling, variable learning rate, fixing feature scale

• averaging helps significantly; MIRA helps a tiny little bit

• perceptron < MIRA < avg. perceptron ≈ avg. MIRA ≈ SVM

• shuffling the data helps hugely if classes were ordered (HW1)

• shuffling before each epoch helps a little bit

• variable (decaying) learning rate often helps a little

• 1/(total#updates) or 1/(total#examples) helps

• any requirement in order to converge?

• how to prove convergence now?

• centering of each dimension helps (Ex1/HW1)

• why? => smaller radius, bigger margin!

• unit variance also helps (why?) (Ex1/HW1)

• 0-mean, 1-var => each feature ≈ a unit Gaussian

O

1

O

1

24

small margin
big margin

Feature Maps in Other Domains

• how to convert an image or text to a vector?

25

28x28 grayscale image

“one-hot” representation of words
(all binary features)

23x23 RGB image

x ∈ ℝ23x23x3

Part V: Perceptron vs. Logistic Regression

• logistic regression is another popular linear classifier

• can be viewed as “soft” or “probabilistic” perceptron

• same decision rule (sign of dot-product), but prob. output

26

f(x) = sign(w · x)

f(x) = �(w · x) = 1

1 + e�w·x

perceptron

logistic regression

Logistic vs. Linear Regression

27

• linear regression is regression applied to real-valued output using linear function

• logistic regression is regression applied to 0-1 output using the sigmoid function

https://florianhartl.com/logistic-regression-geometric-intuition.html

linear

logistic

1 feature
2 features

1 feature

2 features

https://florianhartl.com/logistic-regression-geometric-intuition.html
https://florianhartl.com/logistic-regression-geometric-intuition.html

Why Logistic instead of Linear

28

• linear regression easily dominated by distant points

• causing misclassification

http://www.robots.ox.ac.uk/~az/lectures/ml/2011/lect4.pdf

http://www.robots.ox.ac.uk/~az/lectures/ml/2011/lect4.pdf
http://www.robots.ox.ac.uk/~az/lectures/ml/2011/lect4.pdf

Why Logistic instead of Linear

29

• linear regression easily dominated by distant points

• causing misclassification

Why 0/1 instead of +/-1

• perc: y=+1 or -1; logistic regression: y=1 or 0

• reason: want the output to be a probability

• decision boundary is still linear: p(y=1 | x) = 0.5

30

Logistic Regression: Large Margin

31

• perceptron can be viewed roughly as “step” regression

• logistic regression favors large margin; SVM: max margin

• in practice: perc. << avg. perc. ≈ logistic regression ≈ SVM

perceptron
1959

SVM
1964;1995

logistic regression
1958

cond. random fields
2001

structured perceptron
2002

multilayer perceptron

deep learning
~1986; 2006-now

32

structured SVM
2003

kernels
1964

voted/avg. perceptron
1999

