
Applied Machine Learning

Professor Liang Huang

Week 4: Linear Classification: Perceptron

some slides from Alex Smola (CMU/Amazon)

CIML Chap 4 (A Geometric Approach)

“Equations are just the boring part
of mathematics. I attempt to see
things in terms of geometry.”
 ―Stephen Hawking

• Week 4: Linear Classifier and Perceptron

• Part I: Brief History of the Perceptron

• Part II: Linear Classifier and Geometry (testing time)

• Part III: Perceptron Learning Algorithm (training time)

• Part IV: Convergence Theorem and Geometric Proof

• Part V: Limitations of Linear Classifiers, Non-Linearity, and Feature Maps

• Week 5: Extensions of Perceptron and Practical Issues

• Part I: My Perceptron Demo in Python

• Part II: Voted and Averaged Perceptrons

• Part III: MIRA and Aggressive MIRA

• Part IV: Practical Issues

• Part V: Perceptron vs. Logistic Regression (hard vs. soft); Gradient Descent

Roadmap for Unit 2 (Weeks 4-5)

 2

Part I

• Brief History of the Perceptron

 3

Perceptron

Frank Rosenblatt

(1959-now)

perceptron 
1958

SVM 
1964;1995

logistic regression 
1958 

cond. random fields 
2001  structured perceptron 

2002

multilayer perceptron

deep learning 
~1986; 2006-now

 5

structured SVM 
2003 

kernels 
1964

Neurons

• Soma (CPU)  
Cell body - combines signals

• Dendrite (input bus)  
Combines the inputs from  
several other nerve cells

• Synapse (interface)  
Interface and parameter store between neurons

• Axon (output cable)  
May be up to 1m long and will transport the activation signal to neurons at
different locations

 6

Frank Rosenblatt’s Perceptron

 7

Multilayer Perceptron (Neural Net)

 8

Brief History of Perceptron

1958
Rosenblatt
invention

1962
Novikoff

proof

1969*
Minsky/Papert
book killed it

1999
Freund/Schapire

voted/avg: revived

2002
Collins

structured

2003
Crammer/Singer

MIRA

1997
Cortes/Vapnik

SVM

2006
Singer group
aggressive

2005*
McDonald/Crammer/Pereira

structured MIRA

DEAD

*mentioned in lectures but optional  
(others papers all covered in detail)

online approx.  

max margin
+max marg

in
+kernels

+soft-margin

conservative updates

inseparable case

2007--2010
Singer group

Pegasos

subgradient descent

minibatch

minibatch

batch

online

AT&T Research ex-AT&T and students 9

• Linear Classifier and Geometry (testing time)

• decision boundary and normal vector w

• not separable through the origin: add bias b

• geometric review of linear algebra

• augmented space (no explicit bias; implicit as w0=b)

Part II

 10

Prediction σ(w ·x)

Test Time

Training Time

Linear Classifier
Input x

Model w

Perceptron Learner
Input x

Output y
Model w

σ

Linear Classifier and Geometry

f(x) = �(w · x)
O w

separating hyperplane 
(decision boundary)

w · x = 0 11

linear classifiers: perceptron, logistic regression, (linear) SVMs, etc.

positive
w · x > 0

x1

x2

weight vector w is a “prototype” of positive examples
it’s also the normal vector of the decision boundary
meaning of w · x: agreement with positive direction  
test: input: x, w; output:1 if w · x >0 else -1

training: input: (x, y) pairs; output: w

w · x < 0
negative

x

✓

x1 x2 x3 xn. . .

output

wn

weights

w1 kxk cos ✓ =
w · x
kwk

What if not separable through origin?

positive

negative O

x

 12

w · x+ b = 0

w · x+ b > 0

w · x+ b < 0

|b|
kwk

w

solution: add bias b

kxk cos ✓

✓

x1 x2 x3 xn. . .

output

wn

weights

w1

f(x) = �(w · x+ b)
x1

x2

=
w · x
kwk

Geometric Review of Linear Algebra

 13

line in 2D (n-1)-dim hyperplane in n-dim

O x1

x2

w1x1 + w2x2 + b = 0

O x1

x2

w · x+ b = 0

x3

(x⇤
1, x

⇤
2)

point-to-line distance point-to-hyperplane distance

x⇤

|w · x+ b|
kwk

|b|
k(w1, w2)k

|w1x⇤
1 + w2x⇤

2 + b|p
w2

1 + w2
2

=
|(w1, w2) · (x1, x2) + b|

k(w1, w2)k

(w1, w2)

LA-geom

required: algebraic and
geometric meanings of

dot product

Augmented Space: dimensionality+1

x1 x2 x3 xn. . .

output

wn

weights

w1

x0 = 1

 14

x1 x2 x3 xn. . .

output

wn

weights

w1

w
0 =

b

explicit bias

f(x) = �(w · x+ b)

augmented space
f(x) = �((b;w) · (1;x))

O

1

can’t separate in 1D 
from the origin

can separate in 2D 
from the origin

O

Augmented Space: dimensionality+1

 15

x1 x2 x3 xn. . .

output

wn

weights

w1

explicit bias

f(x) = �(w · x+ b)

x1 x2 x3 xn. . .

output

wn

weights

w1

x0 = 1

w
0 =

b

augmented space
f(x) = �((b;w) · (1;x))

can’t separate in 2D 
from the origin

can separate in 3D 
from the origin

• The Perceptron Learning Algorithm (training time)

• the version without bias (augmented space)

• side note on mathematical notations

• mini-demo

Part III

 16

Prediction σ(w ·x)

Test Time

Training Time

Linear Classifier
Input x

Model w

Perceptron Learner
Input x

Output y
Model w

Perceptron

Spam
Ham

 17

The Perceptron Algorithm

 18

input: training data D
output: weights w
initialize w 0
while not converged
aafor (x, y) 2 D
aaaaif y(w · x)  0
aaaaaaw w + yx

• the simplest machine learning algorithm

• keep cycling through the training data

• update w if there is a mistake on example (x, y)

• until all examples are classified correctly

x

w

w0

Side Note on Mathematical Notations

• I’ll try my best to be consistent in notations

• e.g., bold-face for vectors, italic for scalars, etc.

• avoid unnecessary superscripts and subscripts by using a
“Pythonic” rather than a “C” notational style

• most textbooks have consistent but bad notations

 19

initialize w = 0 and b = 0
repeat

if yi [hw, xii+ b]  0 then
w w + yixi and b b+ yi

end if
until all classified correctly
bad notations:  
inconsistent, unnecessary i and b

input: training data D
output: weights w
initialize w 0
while not converged
aafor (x, y) 2 D
aaaaif y(w · x)  0
aaaaaaw w + yx

good notations:  
consistent, Pythonic style

Demo

(bias=0)
 20

x

w

w0

input: training data D
output: weights w
initialize w 0
while not converged
aafor (x, y) 2 D
aaaaif y(w · x)  0
aaaaaaw w + yx

Demo

 21

x

w

input: training data D
output: weights w
initialize w 0
while not converged
aafor (x, y) 2 D
aaaaif y(w · x)  0
aaaaaaw w + yx

Demo

 22

w0
x

input: training data D
output: weights w
initialize w 0
while not converged
aafor (x, y) 2 D
aaaaif y(w · x)  0
aaaaaaw w + yx

w

Demo

 23

w

input: training data D
output: weights w
initialize w 0
while not converged
aafor (x, y) 2 D
aaaaif y(w · x)  0
aaaaaaw w + yx

 24

• Linear Separation, Convergence Theorem and Proof

• formal definition of linear separation

• perceptron convergence theorem

• geometric proof

• what variables affect convergence bound?

Part IV

 25

Linear Separation; Convergence Theorem

• dataset D is said to be “linearly separable” if there exists some unit oracle
vector u: ∣∣u|| = 1 which correctly classifies every example (x, y) with a margin
at least ẟ:  

• then the perceptron must converge to a linear separator after at most R2/ẟ2
mistakes (updates) where

• convergence rate R2/ẟ2

• dimensionality independent

• dataset size independent

• order independent (but order matters in output)

• scales with ‘difficulty’ of problem

y(u · x) � � for all (x, y) 2 D

R = max
(x,y)2D

kxk

�
u · x � �

�

 u : kuk = 1

x� �

R

Geometric Proof, part 1
• part 1: progress (alignment) on oracle projection

projection on u increases!
(more agreement w/ oracle direction)

�

 27

u · x � �

assume w(0) = 0, and w(i) is the weight before the ith update (on (x, y))

w(i+1) = w(i) + yx

u ·w(i+1) = u ·w(i) + y(u · x)
u ·w(i+1) � u ·w(i) + �

u ·w(i+1) � i�

���w(i+1)
��� = kuk

���w(i+1)
��� � u ·w(i+1) � i�

� �
�

x

w
(i)

u ·w(i)

u ·w(i+1)

y(u · x) � � for all (x, y) 2 D

w(i+1)

u : kuk = 1

Geometric Proof, part 2
• part 2: upperbound of the norm of the weight vector

 28

Combine with part 1:

i  R2/�2

���w(i+1)
��� = kuk

���w(i+1)
��� � u ·w(i+1) � i�

�

x

w(i+1) = w(i) + yx
���w(i+1)

���
2
=

���w(i) + yx
���
2

=
���w(i)

���
2
+ kxk2 + 2y(w(i) · x)


���w(i)

���
2
+R2

 iR2 R = max
(x,y)2D

kxk

✓ � 90
�

cos ✓  0

w(i) · x  0

mistake on x

w
(i)

w(i+1)

�

p
iR

i�

R

 Convergence Bound
• is independent of:

• dimensionality

• number of examples

• order of examples

• constant learning rate

• and is dependent of:

• separation difficulty (margin ẟ)

• feature scale (radius R)

• initial weight w(0)

• changes how fast it converges, but not whether it’ll converge

R2/�2 where R = max
i

kxik

 29

narrow margin:  
hard to separate

wide margin:  
easy to separate

• Limitations of Linear Classifiers and Feature Maps

• XOR: not linearly separable

• perceptron cycling theorem

• solving XOR: non-linear feature map

• “preview demo”: SVM with non-linear kernel

• redefining “linear” separation under feature map

Part V

 30

XOR

• XOR - not linearly separable

• Nonlinear separation is trivial

• Caveat from “Perceptrons” (Minsky & Papert, 1969)  
Finding the minimum error linear separator  
is NP hard (this killed Neural Networks in the 70s).

 31

Brief History of Perceptron

1959
Rosenblatt
invention

1962
Novikoff

proof

1969*
Minsky/Papert
book killed it

1999
Freund/Schapire

voted/avg: revived

2002
Collins

structured

2003
Crammer/Singer

MIRA

1997
Cortes/Vapnik

SVM

2006
Singer group
aggressive

2005*
McDonald/Crammer/Pereira

structured MIRA

DEAD

*mentioned in lectures but optional  
(others papers all covered in detail)

online approx.  

max margin
+max marg

in
+kernels

+soft-margin

conservative updates

inseparable case

2007--2010*
Singer group

Pegasos

subgradient descent

minibatch

minibatch

batch

online

AT&T Research ex-AT&T and students 32

What if data is not separable
• in practice, data is almost always inseparable

• wait, what exactly does that mean?

• perceptron cycling theorem (1970)

• weights will remain bounded and will not diverge

• use dev set for early stopping (prevents overfitting)

• non-linearity (inseparable in low-dim => separable in high-dim)

• higher-order features by combining atomic ones (cf. XOR)

• a more systematic way: kernels (more details in week 5)

 33

Solving XOR: Non-Linear Feature Map

• XOR not linearly separable

• Mapping into 3D makes it easily linearly separable

• this mapping is actually non-linear (quadratic feature x1x2)

• a special case of “polynomial kernels” (week 5)

• linear decision boundary in 3D => non-linear boundaries in 2D

(x1, x2) (x1, x2, x1x2)

 34

Low-dimension <=> High-dimension

 35

not linearly separable in 2D linearly separable in 3D

linear decision boundary in 3Dnon-linear boundaries in 2D

Linear Separation under Feature Map

• we have to redefine separation and convergence theorem

• dataset D is said to be linearly separable under feature map ϕ if there exists some unit

oracle vector u: ∣∣u|| = 1 which correctly classifies every example (x, y) with a margin

at least ẟ:

• then the perceptron must converge to a linear separator after at most R2/ẟ2 mistakes

(updates) where

• in practice, the choice of feature map (“feature engineering”) is often more important
than the choice of learning algorithms

• the first step of any ML project is data preprocessing: transform each (x, y) to (ϕ(x), y)

• at testing time, also transform each x to ϕ(x)

• deep learning aims to automate feature engineering 37

R = max
(x,y)2D

k�(x)k

y(u ·�(x)) � � for all (x, y) 2 D

