Applied Machine Learning

CIML Chap 4 (A Geometric Approach)

“Equations are just the boring part
of mathematics. | attempt to see
things in terms of geometry.”

@ —Stephen Hawking

Week 4: Linear Classification: Perceptron

Professor Liang Huang

some slides from Alex Smola (CMU/Amazon)



Roadmap for Unit 2 (VWeeks 4-5)

® Week 4: Linear Classifier and Perceptron
® Part |: Brief History of the Perceptron
® Part ll: Linear Classifier and Geometry (testing time)
® Part lll: Perceptron Learning Algorithm (training time)
® Part |V: Convergence Theorem and Geometric Proof

® PartV:Limitations of Linear Classifiers, Non-Linearity, and Feature Maps

® Week 5: Extensions of Perceptron and Practical Issues
® Part |I: My Perceptron Demo in Python
® Part ll:Voted and Averaged Perceptrons
® Part lll: MIRA and Aggressive MIRA
® Part |IV: Practical Issues

® PartV:Perceptron vs. Logistic Regression (hard vs. soft); Gradient Descent



® Brief History of the Perceptron
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Neurons

® Soma (CPU)
Cell body - combines signals ™ @

Nerve cell

\
\

® Dendrite (input bus)
Combines the inputs from
several other nerve cells

Synapse

Dendrite

® Synapse (interface)
Interface and parameter store between neurons

® Axon (output cable)
May be up to Im long and will transport the activation signal to neurons at
different locations



Frank Rosenblatt’s Perceptron
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Multilayer Perceptron (Neural Net)
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Brief History of Perceptron

batch - 1997

\N °
+Soﬁ_marg Cortes/Vapnik N
SVM
r(\e\s
. SUb
A Sradjep, < 2007--2010
*(dbx% descent Singer group
W\ Pegasos
minibatch
online 2003 2006
- Crammer/Singer === Singer group
conservative lupdates MIR A aggressive
1958 1962 YFAD 1999
Rosenblatt = Novikoff MirrsicyrRar — Freund/Schapire
invention proof book killed it voted/avg: revived
inseparable case \
2002 2005
Collins —» McDonald/Crammer/Pereira
structured structured MIRA

*mentioned in lectures but optional

th | d in detail
(others papers all covered in detail) AT&T Research ox-AT&T and students 9



Part |l

® Linear Classifier and Geometry (testing time)
® decision boundary and normal vector w
® not separable through the origin: add bias b
® geometric review of linear algebra

® augmented space (no explicit bias; implicit as wo=b)

Test Time
Input x > C
Linear Classifier > Prediction o(w -x)
Model w >
Training Time
Input x >
Perceptron Learner — Model w
Output y >




Linear Classifier and Geometry

linear classifiers: perceptron, logistic regression, (linear) SVMs, etc.

L1 L9 L3 .« .. Ln

W

weights

outputf ) o'(w : X)

O ’Q negative
| nLn x;>0

= i=0 w-X <(

| otherwi

weight vector wis a* prototype " of positive examples
it’s also the normal vector of the decision boundary

meaning of W * X: agreement with positive direction

test: input: X, W; output:| if w+*Xx >0 else -1

training: input: (X, y) pairs; output: W

positive
w-x >0

separating hyperplane

(decision boundary)
w-x =10 N



What if not separable through origin?

solution: add bias b

L1 L9 L3 .« .. Ln
W - X
w1 Wi, |x|| cos @ =
lw
weights
O ;@ ®
output f(X) — O'(W - X _|_ b) ‘ ] ‘
negative /@ T O
w-X+b<0 : ‘ .
: | positive
3 w-x+b>0
W X+ b=
1l
lw
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Geometric Review of Linear Algebra

line in 2D (n-1)-dim hyperplane in n-dim

AL AL

w1£61—|—w2332—|—b:() WX—l—b:O

331 y Lo ) X

[(wr, wa)]

required: algebraic and
geometric meanings of
dot product

L3
\wlff —|—”(UQZIZ'§ —|—b| _ \(wl,wg)-(x1,$2)+b\ ‘WX—Fb‘
Vw? + w3 (w1, w2 |w]
point-to-line distance point-to-hyperplane distance

LA-geom |3



Augmented Space: dimensionality+ |

Tn explicit bias
f(x) = o(w - x+)

W,

can’t separate in 1D
from the origin

O

output

augmented space

0, f(x) =o((b;w) - (1;x))

weights

can separate in 2D
from the origin

output




Augmented Space: dimensionality+ |

Tn explicit bias
f(x) = o(w - x+)

W,

can’t separate in 2D
from the origin

output

augmented space

0, f(x) =o((b;w) - (1;x))

weights

can separate in 3D
from the origin

o

output

o ¢
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Part Il

® The Perceptron Learning Algorithm (training time)

® the version without bias (augmented space)

® side note on mathematical notations

® mini-demo

Test Time
Input x

Model w

Training Time

Input x

Linear Classifier

Output y

Perceptron Learner

» Prediction o(w -x)

— Model w

|6



Perceptron

17



The Perceptron Algorithm

input: tralning data D
output: weights w
initialize w < O
while not converged
for (x,y) € D
if y(w-x) <0
W < W + YX

® the simplest machine learning algorithm
® keep cycling through the training data
® update W if there is a mistake on example (X, y)

® until all examples are classified correctly
|18



Side Note on Mathematical Notations

® I'll try my best to be consistent in notations

® e.g, bold-face for vectors, italic for scalars, etc.

® avoid unnecessary superscripts and subscripts by using a
“Pythonic” rather than a “C” notational style

® most textbooks have consistent but bad notations

initialize w < 0O initialize w =0 and b = 0
while not converged repeat
for (x,y) € D if y; [(w, x;) + b] <0 then
if y(w-x) <0 w < w ~+ y;x; and b < b+ y;
end if

W — W+ yx
until all classified correctly

bad notations:
inconsistent, unnecessary iand b |,

good notations:
consistent, Pythonic style



Demo

while not converged
for (x,y) € D
if y(w-x) <0
W <— W + yX

20



Demo

while not converged
for (x,y) € D
if y(w-x) <0
W <— W + yX
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Demo

while not converged
for (x,y) € D
if y(w-x) <0
W <— W + yX
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Demo

while not converged
for (x,y) € D
if y(w-x) <0
W <— W + yX
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Part |V

® Linear Separation, Convergence Theorem and Proof
® formal definition of linear separation
® perceptron convergence theorem
® geometric proof

® what variables affect convergence bound?

25



Linear Separation; Convergence Theorem

® dataset D is said to be “linearly separable” if there exists some unit oracle

vector u: ||u|| = | which correctly classifies every example (x, y) with a margin
at least o:

y(u-x) > 6 for all (x,y) € D

® then the perceptron must converge to a linear separator after at most R?/)?

mistakes (updates) where R = max ||x|]
(x,y)€D

® convergence rate R?/o?

® dimensionality independent

® dataset size independent
® order independent (but order matters in output)

® scales with ‘difficulty’ of problem



Geometric Proof, part |

® part |: progress (alighment) on oracle projection

assume w(®) = 0, and w(®) is the weight before the ith update (on (x, 7))

w i+ D)

— wit) + YX

u - with > 10

projection on U increases! o
(more agreement w/ oracle direction)

i)

= lul

o (i D)

y(u-x) > 9 for all (x,y)

> U - wlith) > 10




Geometric Proof, part 2

® part 2: upperbound of the norm of the weight vector

W(H—l) __ W(z) + X y
0
. 2 , 2 !

2 :
+ [Ix|I” + 2y(w' - x)

2 mistake on X

< W +R?

AN
~
~—

: R =
< iR’ eI

Combine with part |:

wl DN = |lu ||[w V|| > u- wlTD > 44




Convergence Bound R* /67

® is independent of:
® dimensionality
® number of examples

® order of examples
® constant learning rate narrow margin: wide margin:
hard to separate easy to separate
® and is dependent of:
® separation difficulty (margin 0)
® feature scale (radius R)
® initial weight w(®

changes how fast it converges, but not whether it'll converge

29



PartV

® Limitations of Linear Classifiers and Feature Maps
® XOR:not linearly separable
® perceptron cycling theorem
® solving XOR: non-linear feature map
® “preview demo’’: SVM with non-linear kernel

® redefining “linear” separation under feature map

30



NP-Hard

Y NP-Com plete

® XOR - not linearly separable

® Nonlinear separation is trivial

P = NP

® Caveat from “Perceptrons” (Minsky & Papert, 1969)
Finding the minimum error linear separator

is NP hard (this killed Neural Networks in the 70s).

31



Brief History of Perceptron
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*mentioned in lectures but optional
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What if data is not separable

® in practice, data is almost always inseparable

® wait, what exactly does that mean?

® perceptron cycling theorem (1970)

® weights will remain bounded and will not diverge

® use dev set for early stopping (prevents overfitting)

® non-linearity (inseparable in low-dim => separable in high-dim)
® higher-order features by combining atomic ones (cf. XOR)

® a more systematic way: kernels (more details in week 5)

ON THE BOUNDEDNESS OF AN ITERATIVE PROCE-
DURE FOR SOLVING A SYSTEM OF
LINEAR INEQUALITIES!

H. D. BLOCK AND S. A. LEVIN

33



Solving XOR: Non-Linear Feature Map

(Zl?l, L2, 213151’/‘2)

(71, T2)

® XOR not linearly separable

® Mapping into 3D makes it easily linearly separable
® this mapping is actually non-linear (quadratic feature x|x2)
® a special case of “polynomial kernels” (week 5)

® linear decision boundary in 3D => non-linear boundaries in 2D
34



Low-dimension <=> High-dimension
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SVM with a polynomial
Kernel visualization

Created Dby:
Udi Aharoni




Linear Separation under Feature Map

® we have to redefine separation and convergence theorem

® dataset D is said to be linearly separable under feature map @ if there exists some unit

oracle vector u: ||u|| = | which correctly classifies every example (x, y) with a margin
at least o: y(u-P(x)) >0 for all (x,y) € D

® then the perceptron must converge to a linear separator after at most R?/0? mistakes
(updates) where 1T = (XH;%{DH(I)(X) |

® in practice, the choice of feature map (“feature engineering”) is often more important
than the choice of learning algorithms

® the first step of any ML project is data preprocessing: transform each (x, y) to (P (x), y)

® at testing time, also transform each x to ¢ (x)

® deep learning aims to automate feature engineering 17



