Applied Machine Learning

CIML Chap 4 (A Geometric Approach)

"Equations are just the boring part of mathematics. I attempt to see things in terms of geometry."

-Stephen Hawking

Week 4: Linear Classification: Perceptron

Professor Liang Huang some slides from Alex Smola (CMU/Amazon)

Roadmap for Unit 2 (Weeks 4-5)

- Week 4: Linear Classifier and Perceptron
 - Part I: Brief History of the Perceptron
 - Part II: Linear Classifier and Geometry (testing time)
 - Part III: Perceptron Learning Algorithm (training time)
 - Part IV: Convergence Theorem and Geometric Proof
 - Part V: Limitations of Linear Classifiers, Non-Linearity, and Feature Maps
- Week 5: Extensions of Perceptron and Practical Issues
 - Part I: My Perceptron Demo in Python
 - Part II: Voted and Averaged Perceptrons
 - Part III: MIRA and Aggressive MIRA
 - Part IV: Practical Issues
 - Part V: Perceptron vs. Logistic Regression (hard vs. soft); Gradient Descent

Part

Brief History of the Perceptron

MAGIC Etch ASketch SCREEN

Cerce peron (1959-now)

Frank Rosenblatt

fold to be the Cheville of Text

facile screen is class the in enurgy placeto frame here with care

Neurons

- Soma (CPU)
 Cell body combines signals
- Dendrite (input bus)
 Combines the inputs from several other nerve cells
- Synapse (interface)
 Interface and parameter store between neurons
- Axon (output cable)
 May be up to Im long and will transport the activation signal to neurons at different locations

Frank Rosenblatt's Perceptron

Multilayer Perceptron (Neural Net)

Brief History of Perceptron

Part II

- Linear Classifier and Geometry (testing time)
 - decision boundary and normal vector w
 - not separable through the origin: add bias b
 - geometric review of linear algebra
 - augmented space (no explicit bias; implicit as $w_0=b$)

Linear Classifier and Geometry

linear classifiers: perceptron, logistic regression, (linear) SVMs, etc.

weight vector **w** is a "prototype" of positive examples it's also the normal vector of the decision boundary meaning of **w** • **x**: agreement with positive direction

<u>test</u>: input: \mathbf{x} , \mathbf{w} ; output: \mathbf{l} if $\mathbf{w} \cdot \mathbf{x} > 0$ else - \mathbf{l}

training: input: (x, y) pairs; output: w

What if not separable through origin?

Geometric Review of Linear Algebra

line in 2D

(n-1)-dim hyperplane in n-dim

required: algebraic and geometric meanings of dot product

$$\frac{|w_1x_1^* + w_2x_2^* + b|}{\sqrt{w_1^2 + w_2^2}} = \frac{|(w_1, w_2) \cdot (x_1, x_2) + b|}{\|(w_1, w_2)\|}$$

$$\frac{|\mathbf{w} \cdot \mathbf{x} + b|}{\|\mathbf{w}\|}$$

 x_1

 $\mathbf{w} \cdot \mathbf{x} + b = 0$

point-to-line distance

point-to-hyperplane distance

LA-geom 13

Augmented Space: dimensionality+1

Augmented Space: dimensionality+1

Part III

- The Perceptron Learning Algorithm (training time)
 - the version without bias (augmented space)
 - side note on mathematical notations
 - mini-demo

Perceptron

The Perceptron Algorithm

```
input: training data D
output: weights \mathbf{w}
initialize \mathbf{w} \leftarrow \mathbf{0}
while not converged
for (\mathbf{x}, y) \in D
if y(\mathbf{w} \cdot \mathbf{x}) \leq 0
\mathbf{w} \leftarrow \mathbf{w} + y\mathbf{x}
```


- the simplest machine learning algorithm
- keep cycling through the training data
- update w if there is a mistake on example (x, y)
- until all examples are classified correctly

Side Note on Mathematical Notations

- I'll try my best to be consistent in notations
 - e.g., bold-face for vectors, italic for scalars, etc.
- avoid unnecessary superscripts and subscripts by using a "Pythonic" rather than a "C" notational style
 - most textbooks have consistent but bad notations

```
initialize \mathbf{w} \leftarrow \mathbf{0}
while not converged
for (\mathbf{x}, y) \in D
if y(\mathbf{w} \cdot \mathbf{x}) \leq 0
\mathbf{w} \leftarrow \mathbf{w} + y\mathbf{x}
```

```
good notations: consistent, Pythonic style
```

```
initialize w=0 and b=0
repeat

if y_i [\langle w, x_i \rangle + b] \leq 0 then

w \leftarrow w + y_i x_i and b \leftarrow b + y_i
end if

until all classified correctly
bad notations:
inconsistent, unnecessary i and b
```

while not converged

while not converged

while not converged

while not converged

Part IV

- Linear Separation, Convergence Theorem and Proof
 - formal definition of linear separation
 - perceptron convergence theorem
 - geometric proof
 - what variables affect convergence bound?

Linear Separation; Convergence Theorem

• dataset D is said to be "linearly separable" if there exists some unit oracle vector \mathbf{u} : $||\mathbf{u}|| = 1$ which correctly classifies every example (\mathbf{x}, y) with a margin at least δ :

$$y(\mathbf{u} \cdot \mathbf{x}) \ge \delta \text{ for all } (\mathbf{x}, y) \in D$$

• then the perceptron must converge to a linear separator after at most R^2/δ^2 mistakes (updates) where $R = \max_{(\mathbf{x},y) \in D} \lVert \mathbf{x} \rVert$

• convergence rate R^2/δ^2

- dimensionality independent
- dataset size independent
- order independent (but order matters in output)
- scales with 'difficulty' of problem

Geometric Proof, part I

• part I: progress (alignment) on oracle projection

assume
$$\mathbf{w}^{(0)} = \mathbf{0}$$
, and $\mathbf{w}^{(i)}$ is the weight **before** the *i*th update (on (\mathbf{x}, y))
$$\mathbf{w}^{(i+1)} = \mathbf{w}^{(i)} + y\mathbf{x}$$

$$\mathbf{u} \cdot \mathbf{w}^{(i+1)} = \mathbf{u} \cdot \mathbf{w}^{(i)} + y(\mathbf{u} \cdot \mathbf{x})$$

$$\mathbf{u} \cdot \mathbf{w}^{(i+1)} \ge \mathbf{u} \cdot \mathbf{w}^{(i)} + \delta \qquad y(\mathbf{u} \cdot \mathbf{x}) \ge \delta \text{ for all } (\mathbf{x}, y) \in D$$

projection on **u** increases! (more agreement w/ oracle direction)

 $\mathbf{u} \cdot \mathbf{w}^{(i+1)} > i\delta$

$$\left\|\mathbf{w}^{(i+1)}\right\| = \left\|\mathbf{u}\right\| \left\|\mathbf{w}^{(i+1)}\right\| \ge \mathbf{u} \cdot \mathbf{w}^{(i+1)} \ge i\delta$$

Geometric Proof, part 2

part 2: upperbound of the norm of the weight vector

$$\begin{aligned} \mathbf{w}^{(i+1)} &= \mathbf{w}^{(i)} + y\mathbf{x} \\ \left\| \mathbf{w}^{(i+1)} \right\|^2 &= \left\| \mathbf{w}^{(i)} + y\mathbf{x} \right\|^2 \\ &= \left\| \mathbf{w}^{(i)} \right\|^2 + \left\| \mathbf{x} \right\|^2 + 2y(\mathbf{w}^{(i)} \cdot \mathbf{x}) \\ &\leq \left\| \mathbf{w}^{(i)} \right\|^2 + R^2 \\ &\leq iR^2 \quad R = \max_{(\mathbf{x}, y) \in D} \|\mathbf{x}\| \end{aligned}$$

Combine with part 1:

$$\left\|\mathbf{w}^{(i+1)}\right\| = \left\|\mathbf{u}\right\| \left\|\mathbf{w}^{(i+1)}\right\| \ge \mathbf{u} \cdot \mathbf{w}^{(i+1)} \ge i\delta$$

$$i \le R^2/\delta^2$$

Convergence Bound

- is independent of:
 - dimensionality
 - number of examples
 - order of examples
 - constant learning rate
- and is dependent of:
 - separation difficulty (margin δ)
 - feature scale (radius R)
 - initial weight **w**⁽⁰⁾
 - changes how fast it converges, but not whether it'll converge

wide margin: easy to separate

PartV

- Limitations of Linear Classifiers and Feature Maps
 - XOR: not linearly separable
 - perceptron cycling theorem
 - solving XOR: non-linear feature map
 - "preview demo": SVM with non-linear kernel
 - redefining "linear" separation under feature map

XOR

- XOR not linearly separable
- Nonlinear separation is trivial
- Caveat from "Perceptrons" (Minsky & Papert, 1969)
 Finding the minimum error linear separator
 is NP hard (this killed Neural Networks in the 70s).

Brief History of Perceptron

What if data is not separable

- in practice, data is almost always inseparable
 - wait, what exactly does that mean?
- perceptron cycling theorem (1970)
 - weights will remain bounded and will not diverge
- use dev set for early stopping (prevents overfitting)
- non-linearity (inseparable in low-dim => separable in high-dim)
 - higher-order features by combining atomic ones (cf. XOR)
 - a more systematic way: kernels (more details in week 5)

ON THE BOUNDEDNESS OF AN ITERATIVE PROCE-DURE FOR SOLVING A SYSTEM OF LINEAR INEQUALITIES¹

Solving XOR: Non-Linear Feature Map

- XOR not linearly separable
- Mapping into 3D makes it easily linearly separable
 - this mapping is actually non-linear (quadratic feature x_1x_2)
 - a special case of "polynomial kernels" (week 5)
 - linear decision boundary in 3D => non-linear boundaries in 2D

Low-dimension <=> High-dimension

SVM with a polynomial Kernel visualization

Created by: Udi Aharoni

Linear Separation under Feature Map

- we have to redefine separation and convergence theorem
- dataset D is said to be linearly separable under feature map ϕ if there exists some unit oracle vector \mathbf{u} : $||\mathbf{u}|| = 1$ which correctly classifies every example (\mathbf{x}, y) with a margin at least δ : $y(\mathbf{u} \cdot \Phi(\mathbf{x})) \geq \delta$ for all $(\mathbf{x}, y) \in D$
- then the perceptron must converge to a linear separator after at most R^2/δ^2 mistakes (updates) where $R = \max_{(\mathbf{x},y) \in D} \lVert \mathbf{\Phi}(\mathbf{x}) \rVert$
- in practice, the choice of feature map ("feature engineering") is often more important than the choice of learning algorithms
 - the first step of any ML project is data preprocessing: transform each (\mathbf{x}, y) to $(\phi(\mathbf{x}), y)$
 - at testing time, also transform each x to $\phi(x)$
 - deep learning aims to automate feature engineering