AT 534 Machine Learning HW4 (15 pts)

Instructions:

1. This homework is about using word2vec embeddings as features to train (averaged) perceptron (and
optionally, other ML algorithms such as SVM) for sentiment classification, the same task we did in HW2.
But instead of sparse features in HW2, we will use dense features from word embeddings here. The point
of this homework is more about getting familiar with elementary deep learning.

2. You'll compete in this Kaggle https://www.kaggle.com/t/6b102bbe84804e53a72ea95f5eebe7ed with
team name being the last 5 digits of your OSU ID, like HW1 and HW2 (but unlike HW3). Part of your
grade will depend on your scores on both the public and private leaderboards (the public/private test sets
are identical to those in HW2). Reuse HW2 data, which includes training, dev, and semi-blind test files.

3. Download word embeddings from:

https://eecs.oregonstate.edu/~huanlian/teaching/ML/2024fall/unit4/hw4/embs_train.kv
4. You should submit to Canvas your report.pdf, test.predicted.csv, and all your code (.py or .ipynb).

5. As always, you are not allowed to use any extra data, including external contextualized embeddings which
are trained on large corpora.

1 Word Embeddings (5 pts)

In natural language processing (NLP), a word embedding is a continuous representation of a word. The
embedding is used in text analysis. Typically, the representation is a real-valued vector that encodes the
meaning of the word in such a way that words that are closer in the vector space are expected to be similar in
meaning. For example, word2vec! is one of the most widely used word embeddings model. In this section, we
will use the word embeddings pretrained on part of google news dataset (about 100 billion words) as features,
and each word is mapped to a 300-dimentional vector . We extracted the embeddings of those words appearing
in train.txt and saved them in the provided file embs_train.kv (otherwise it’s too big).

1.1 Load and Query (0 pts)

We use the Python package gensim to load and query embs_train.kv. This package is already installed on
ENGR servers (ssh access.engr.oregonstate.edu), but if you'd like to use your own Python, you might
need to install it by pip3 install gensim.

>>> from gensim.models import KeyedVectors

>>> wv = KeyedVectors.load('embs_train.kv')

>>> wv

<gensim.models.keyedvectors.KeyedVectors object at 0x7fa9abb3e320>

The word embeddings are loaded into wv, which is a gensim KeyedVectors object. Now, we can query the
embedding of each word in sentence the man bit the dog .

>>> wv['big']
array([ 0.11132812, 0.10595703, -0.07373047, 0.18847656, 0.07666016,
-0.3828125 , -0.0625 , —0.07470703, 0.05957031, 0.22167969,

*

https://code.google.com/archive/p/word2vec/



-0.17675781, -0.08984375, -0.09667969, -0.11669922, -0.09082031,
-0.02490234, -0.00509644, -0.07226562, 0.03735352, -0.15625 1,
dtype=float32)
>>> wv['dog']
array([ 5.12695312e-02, -2.23388672e-02, -1.72851562e-01, 1.61132812e-01,
-8.44726562e-02, 5.73730469e-02, 5.85937500e-02, -8.25195312e-02,

-2.75390625e-01, 2.61718750e-01, 2.46093750e-01, -4.71191406e-02,
6.25000000e-02, 4.16015625e-01, -3.55468750e-01, 2.22656250e-01],
dtype=float32)

1.2 Vector Similarity (2.5 pts)
We can query the most similar words for a given word based on “cosine similarity”.

>>> wv.most_similar('dog', topn=10)

[('dogs', 0.8680489659309387), ('puppy', 0.8106428384780884),
('cat', 0.7609457969665527), ('canines', 0.7221246361732483),
('pet', 0.7164785861968994), ('collie', 0.6714409589767456),
('puppies', 0.6637065410614014), ('pug', 0.6611860990524292),
('terrier', 0.6599656343460083), ('poodle', 0.6549598574638367)]
>>> wv.most_similar('man', topn=10)

[('woman', 0.5792575478553772), ('boy', 0.49911412596702576),
('teenager', 0.4928569197654724), ('girl', 0.45247867703437805),
('toddler', 0.39077460765838623), ('thief', 0.3815022110939026),
('men', 0.3768376111984253), ('guy', 0.35656818747520447),
('someone', 0.3522713780403137), ('soldier', 0.34559640288352966) ]

Q: Can you find the top-10 similar words to wonderful and awful? Do your results make sense? (1 pt)
Q: Also come up with 3 other queries and show your results. Do they make sense? (1.5 pts)

1.3 Word Analogy (2.5 pts)
The word vectors capture many linguistic regularities, for example vector operations
vector('bigger') - vector('big') + vector('good')
results in a vector that is very close to vector('better'), and
vector ('king') - vector('man') + vector('woman')

is close to vector('queen'), which can be demonstrated as following.

>>> wv.most_similar(positive=['bigger', 'good'], negative=['big'], topn=5)

[('better', 0.7805920839309692), ('stronger', 0.607010543346405), ('worse', 0.56091910600662),
('decent', 0.5300450921058655), ('excellent', 0.5028262734413147)]

>>> wv.most_similar(positive=['king', 'woman'], negative=['man'], topn=5)

[('queen', 0.7118193507194519), ('monarch', 0.6189674139022827), ('princess', 0.590243101119),
('kings', 0.5236844420433044), ('queens', 0.5181134343147278)]

Q: Find top 10 words closest to the following two queries. Do your results make sense? (1 pt)
sister - woman + man and harder - hard + fast.

Q: Also come up with 3 other queries and show your results. Do they make sense? (1.5 pts)



2 Better Perceptron using Embeddings (6.5 pts)

2.1 Sentence Embedding and i-NN (3 pts)

We continue to treat each sentence as a collection of individual words, referred to as a “bag of words.” To
represent the sentence, we calculate the average of the embeddings of its constituent words. For example, the
sentence embedding of the man hit the dog is computed as below.

>>> (wv['the']l + wv['man'] + wv['bit'] + wv['the'] + wv['dog'])/5
array([ 1.51464850e-01, 9.12353545e-02, -4.32617180e-02, 8.23242217e-02,
-2.34497078e-02, -2.36328132e-02, 3.10546868e-02, -8.69018584e-02,

-1.01428226e-01, 4.88281250e-02, 1.11816404e-02, -4.30419929e-02,
3.66699211e-02, 4.65820320e-02, -7.85644501e-02, 1.79199222e-02],
dtype=float32)

Note that wv might not have embeddings for some words in dev.txt and test.txt; just ignore them. No need
to prune one-count words (although that would be better). Also note 1-NN could be wrong (as in HW1).

1. For the first sentence in the training set (+), find a different sentence in the training set that is closest to
it in terms of sentence embedding. Does it make sense in terms of meaning and label? (0.5 pts)

2. For the second sentence in the training set (=), find a different sentence in the training set that is closest
to it in terms of sentence embedding. Does it make sense in terms of meaning and label? (0.5 pts)

3. Report the error rates of k-NN classifier on dev for £ = 1,3,...99 using sentence embedding. You can
reuse your code from HW1/HW2 and/or use sklearn. (0.75 pts) (should be ~28%).

4. Report the error rates of k-NN classifier on dev for k = 1, 3,...99 using one-hot vectors from HW2. You
can reuse your code from HWs 1-2 and/or use sklearn. (0.75 pts). (should be ~40%).

5. Submit your best k-NN classifier to Kaggle and report the public error rate and ranking (take a screenshot).
(0.5 pts) (should be ~26%).
2.2 Reimplement Perceptron (3 pts)

Now that each sentence has an embedding, you can reimplement perceptron and average perceptron.

1. For basic perceptron, show the training logs for 10 epochs. Compare your best dev error rate (should be
~33%) with the one from HW2. (0.5 pts)

2. For averaged perceptron, show the training logs for 10 epochs. Compare your best dev error rate (should
be ~23-24%) with the one from HW2. (0.5 pts)

3. Do you need to use smart averaging here? (0.25 pts)

4. For averaged perceptron after pruning one-count words, show the training logs for 10 epochs. Compare
your dev error rate (should be ~23.5%) with the one from HW2. (0.5 pts)

5. For the above setting, give at least two examples on dev where using features of word2vec is correct but
using one-hot representation is wrong, and explain why. (0.75 pts)

6. Submit your averaged perceptron models (both with and without pruning) to Kaggle, and record best
your public error rate and ranking (take a screenshot). (0.5 pts) (should be ~22.4%)
2.3 Summarize the error rates in this table (0.5 pts)

one-hot, best dev | embedding, best dev || best kaggle public

k-NN
perceptron




3 Try some other learning algorithms with sklearn (1.5 pts)

Now please try one other machine learning algorithm of your choice (either covered or not covered in our
course) using sklearn (so that you don’t need to implement them), such as k-NN, SVM, logistic regression,
neural networks, decision trees, XGBoost, etc. To use sklearn, you will need to convert an svector object
to a numpy vector. Note that this training might take a very long time, so you should prune one-count (and
possibly two-count) words first. After pruning, the training might still take a long time. If you find it too slow,
you can further prune more low-count words, and/or use a subset (e.g., 5,000) covered in the training set.

1. Which algorithm did you try? What adaptations did you make to your code to make it work with that
algorithm? (0.5 pts)

2. What’s the dev error rate(s) and running time? (0.5 pts)
3. What did you learn in terms of the comparison between averaged perceptron and these other (presumably
more popular and well-known) learning algorithms? (0.5 pts)
4 Deployment (2 pts)
1. What’s your best error rate on dev, and which algorithm and setting achieved it? (0.25 pts)

2. What’s your best public error rate on Kaggle, and which algorithm and setting achieved it? (0.25 pts)

Part of your grade depends on your public and private error rates (1.5 pts). For example, our TA got 21%.

5 Debriefing (required):
1. Approximately how many hours did you spend on this assignment?
2. Would you rate it as easy, moderate, or difficult?
3. Did you work on it mostly alone, or mostly with other people?
4. How deeply do you feel you understand the material it covers (0%—100%)?

5. Any other comments?



