
Modeling Java

About models (of things in general)

No such thing as a “perfect model” — The nature of a model is to
abstract away from details!

So models are never just “good” [or “bad”]: they are always “good
[or bad] for some specific set of purposes.”

Models of Java

Lots of di↵erent purposes �! lots of di↵erent kinds of models

I Source-level vs. bytecode level

I Large (inclusive) vs. small (simple) models

I Models of type system vs. models of run-time features (not
entirely separate issues)

I Models of specific features (exceptions, concurrency,
reflection, class loading, ...)

I Models designed for extension

Featherweight Java

Purpose: model “core OO features” and their types and nothing

else.

History:

I Originally proposed by a Penn PhD student (Atsushi Igarashi)
as a tool for analyzing GJ (“Java plus generics”), which later
became Java 1.5

I Since used by many others for studying a wide variety of Java
features and proposed extensions

Things left out

I Reflection, concurrency, class loading, inner classes, ...

I Exceptions, loops, ...

I Interfaces, overloading, ...

I Assignment (!!)

Things left in

I Classes and objects

I Methods and method invocation

I Fields and field access

I Inheritance (including open recursion through this)

I Casting

Example

class A extends Object { A() { super(); } }

class B extends Object { B() { super(); } }

class Pair extends Object {
Object fst;
Object snd;

Pair(Object fst, Object snd) {
super(); this.fst=fst; this.snd=snd; }

Pair setfst(Object newfst) {
return new Pair(newfst, this.snd); }

}

Conventions

For syntactic regularity...

I Always include superclass (even when it is Object)

I Always write out constructor (even when trivial)

I Always call super from constructor (even when no arguments
are passed)

I Always explicitly name receiver object in method invocation or
field access (even when it is this)

I Methods always consist of a single return expression
I Constructors always

I Take same number (and types) of parameters as fields of the
class

I Assign constructor parameters to “local fields”
I Call super constructor to assign remaining fields
I Do nothing else

Formalizing FJ

Representing objects

Our decision to omit assignment has a nice side e↵ect...

The only ways in which two objects can di↵er are (1) their classes
and (2) the parameters passed to their constructor when they were
created.

All this information is available in the new expression that creates
an object. So we can identify the created object with the new
expression.

Formally: object values have the form new C(v)

FJ Syntax

Syntax (terms and values)

t ::= terms

x variable

t.f field access

t.m(t) method invocation

new C(t) object creation

(C) t cast

v ::= values

new C(v) object creation

Syntax (methods and classes)

K ::= constructor declarations

C(C f) {super(f); this.f=f;}

M ::= method declarations

C m(C x) {return t;}

CL ::= class declarations

class C extends C {C f; K M}

Subtyping

Subtyping

As in Java, subtyping in FJ is declared.

Assume we have a (global, fixed) class table CT mapping class
names to definitions.

CT(C) = class C extends D {...}

C <: D

C <: C

C <: D D <: E

C <: E

More auxiliary definitions

From the class table, we can read o↵ a number of other useful
properties of the definitions (which we will need later for
typechecking and operational semantics)...

Field(s) lookup

fields(Object) = ;

CT(C) = class C extends D {C f; K M}
fields(D) = D g

fields(C) = D g, C f

Method type lookup

CT(C) = class C extends D {C f; K M}
B m (B x) {return t;} 2 M

mtype(m, C) = B!B

CT(C) = class C extends D {C f; K M}
m is not defined in M

mtype(m, C) = mtype(m, D)

Method body lookup

CT(C) = class C extends D {C f; K M}
B m (B x) {return t;} 2 M

mbody(m, C) = (x, t)

CT(C) = class C extends D {C f; K M}
m is not defined in M

mbody(m, C) = mbody(m, D)

Valid method overriding

mtype(m, D) = D!D0 implies C = D and C0 = D0

override(m, D, C!C0)

class Object {
int cmp(Object other) {
return ...

}
}

class Pair extends Object {
int cmp(Object other) {
return ... (Pair)other ...

}
}

override: can’t change method signature
(argument types and return type),

which is why you need downcasting

Evaluation

The example again

class A extends Object { A() { super(); } }

class B extends Object { B() { super(); } }

class Pair extends Object {
Object fst;
Object snd;

Pair(Object fst, Object snd) {
super(); this.fst=fst; this.snd=snd; }

Pair setfst(Object newfst) {
return new Pair(newfst, this.snd); }

}

Evaluation

Projection:

new Pair(new A(), new B()).snd �! new B()

Evaluation

Casting:

(Pair)new Pair(new A(), new B())
�! new Pair(new A(), new B())

Evaluation

Method invocation:

new Pair(new A(), new B()).setfst(new B())

�!

newfst 7! new B(),
this 7! new Pair(new A(),new B())

�

new Pair(newfst, this.snd)

i.e., new Pair(new B(), new Pair(new A(), new B()).snd)

((Pair) (new Pair(new Pair(new A(),new B()), new A())
.fst).snd

�! ((Pair)new Pair(new A(),new B())).snd
�! new Pair(new A(), new B()).snd
�! new B()

Evaluation rules

fields(C) = C f

(new C(v)).fi �! vi
(E-ProjNew)

mbody(m, C) = (x, t0)

(new C(v)).m(u)
�! [x 7! u, this 7! new C(v)]t0

(E-InvkNew)

C <: D

(D)(new C(v)) �! new C(v)
(E-CastNew)

plus some congruence rules...

t0 �! t0
0

t0.f �! t0
0.f

(E-Field)

t0 �! t0
0

t0.m(t) �! t0
0.m(t)

(E-Invk-Recv)

ti �! t0
i

v0.m(v, ti, t) �! v0.m(v, t0
i, t)

(E-Invk-Arg)

ti �! t0
i

new C(v, ti, t) �! new C(v, t0
i, t)

(E-New-Arg)

t0 �! t0
0

(C)t0 �! (C)t0
0

(E-Cast)

Typing

Typing rules

x:C 2 �

� ` x : C
(T-Var)

Typing rules

� ` t0 : C0 fields(C0) = C f

� ` t0.fi : Ci
(T-Field)

Typing rules

� ` t0 : D D <: C

� ` (C)t0 : C
(T-UCast)

� ` t0 : D C <: D C 6= D

� ` (C)t0 : C
(T-DCast)

Why two cast rules?

Because that’s how Java does it!

Typing rules

� ` t0 : D D <: C

� ` (C)t0 : C
(T-UCast)

� ` t0 : D C <: D C 6= D

� ` (C)t0 : C
(T-DCast)

Why two cast rules? Because that’s how Java does it!

Typing rules

� ` t0 : C0

mtype(m, C0) = D!C
� ` t : C C <: D

� ` t0.m(t) : C
(T-Invk)

Note that this rule “has subsumption built in” — i.e., the typing
relation in FJ is written in the algorithmic style of TAPL chapter
16, not the declarative style of chapter 15.

Why? Because Java does it this way!

But why does Java do it this way??

Typing rules

� ` t0 : C0

mtype(m, C0) = D!C
� ` t : C C <: D

� ` t0.m(t) : C
(T-Invk)

Note that this rule “has subsumption built in” — i.e., the typing
relation in FJ is written in the algorithmic style of TAPL chapter
16, not the declarative style of chapter 15.

Why? Because Java does it this way!

But why does Java do it this way??

Typing rules

� ` t0 : C0

mtype(m, C0) = D!C
� ` t : C C <: D

� ` t0.m(t) : C
(T-Invk)

Note that this rule “has subsumption built in” — i.e., the typing
relation in FJ is written in the algorithmic style of TAPL chapter
16, not the declarative style of chapter 15.

Why? Because Java does it this way!

But why does Java do it this way??

FJ Typing rules

fields(C) = D f
� ` t : C C <: D

� ` new C(t) : C
(T-New)

Typing rules (methods, classes)

x : C, this : C ` t0 : E0 E0 <: C0

CT(C) = class C extends D {...}
override(m, D, C!C0)

C0 m (C x) {return t0;} OK in C

K = C(D g, C f) {super(g); this.f = f;}
fields(D) = D g M OK in C

class C extends D {C f; K M} OK

Properties

Progress

Problem: well-typed programs can get stuck.

How?

Cast failure:
(A)new Object()

Progress

Problem: well-typed programs can get stuck.

How?

Cast failure:
(A)new Object()

Progress

Problem: well-typed programs can get stuck.

How?

Cast failure:
(A)new Object()

Formalizing Progress

Solution: Weaken the statement of the progress theorem to

A well-typed FJ term is either a value or can reduce one

step or is stuck at a failing cast.

Formalizing this takes a little more work...

Evaluation Contexts

E ::= evaluation contexts

[] hole

E.f field access

E.m(t) method invocation (receiver)

v.m(v,E,t) method invocation (arg)

new C(v,E,t) object creation (arg)

(C)E cast

Evaluation contexts capture the notion of the “next subterm to be
reduced,” in the sense that, if t �! t0, then we can express t and
t0 as t = E [r] and t0 = E [r0] for a unique E , r, and r0, with
r �! r0 by one of the computation rules E-ProjNew,
E-InvkNew, or E-CastNew.

(cf. congruence rules)

Progress

Theorem [Progress]: Suppose t is a closed, well-typed normal
form. Then either (1) t is a value, or (2) t �! t0 for some t0, or
(3) for some evaluation context E , we can express t as
t = E [(C)(new D(v))], with D 6<: C.

Preservation

Theorem [Preservation]: If � ` t : C and t �! t0, then � ` t0
: C0

for some C0
<: C.

Proof: Straightforward induction.

???

Preservation

Theorem [Preservation]: If � ` t : C and t �! t0, then � ` t0
: C0

for some C0
<: C.

Proof: Straightforward induction. ???

Preservation?

Surprise: well-typed programs can step to ill-typed ones!

(How?)

(A)(Object)new B() �! (A)new B()

Preservation?

Surprise: well-typed programs can step to ill-typed ones!

(How?)

(A)(Object)new B() �! (A)new B()

Preservation?

Surprise: well-typed programs can step to ill-typed ones!

(How?)

(A)(Object)new B() �! (A)new B()

Solution: “Stupid Cast” typing rule

Add another typing rule, marked “stupid” to indicate that an
implementation should generate a warning if this rule is used.

� ` t0 : D C 6<: D D 6<: C
stupid warning

� ` (C)t0 : C
(T-SCast)

This is an example of a modeling technicality; not very interesting
or deep, but we have to get it right if we’re going to claim that the
model is an accurate representation of (this fragment of) Java.

Solution: “Stupid Cast” typing rule

Add another typing rule, marked “stupid” to indicate that an
implementation should generate a warning if this rule is used.

� ` t0 : D C 6<: D D 6<: C
stupid warning

� ` (C)t0 : C
(T-SCast)

This is an example of a modeling technicality; not very interesting
or deep, but we have to get it right if we’re going to claim that the
model is an accurate representation of (this fragment of) Java.

Correspondence with Java

Let’s try to state precisely what we mean by “FJ corresponds to
Java”:

Claim:

1. Every syntactically well-formed FJ program is also a
syntactically well-formed Java program.

2. A syntactically well-formed FJ program is typable in FJ
(without using the T-SCast rule.) i↵ it is typable in Java.

3. A well-typed FJ program behaves the same in FJ as in Java.
(E.g., evaluating it in FJ diverges i↵ compiling and running it
in Java diverges.)

Of course, without a formalization of full Java, we cannot prove

this claim. But it’s still very useful to say precisely what we are
trying to accomplish—e.g., it provides a rigorous way of judging
counterexamples. (Cf. “conservative extension” between logics.)

Alternative approaches to casting

I Loosen preservation theorem

I Use big-step semantics

