
Programming Languages
Fall 2013

Prof. Liang Huang

huang@qc.cs.cuny.edu

Lecture 4: Lambda-Calculus 1

mailto:liang.huang.sh@gmail.com
mailto:liang.huang.sh@gmail.com


The Lambda Calculus

CIS 500, 22 September 3

Alonzo Church Alan Turing



The lambda-calculus

If our previous language of arithmetic expressions was the simplest
nontrivial programming language, then the lambda-calculus is the
simplest interesting programming language...

Turing complete

higher order (functions as data)

main new feature: variable binding and lexical scope

The e. coli of programming language research

The foundation of many real-world programming language designs
(including ML, Haskell, Scheme, Lisp, ...)

CIS 500, 22 September 4



Intuitions

Suppose we want to describe a function that adds three to any number
we pass it. We might write

=

That is, “ is .”

CIS 500, 22 September 5



Intuitions

Suppose we want to describe a function that adds three to any number
we pass it. We might write

=

That is, “ is .”

Q: What is itself?

CIS 500, 22 September 5-a



Intuitions

Suppose we want to describe a function that adds three to any number
we pass it. We might write

=

That is, “ is .”

Q: What is itself?

A: is the function that, given , yields .

CIS 500, 22 September 5-b



Intuitions

Suppose we want to describe a function that adds three to any number
we pass it. We might write

=

That is, “ is .”

Q: What is itself?

A: is the function that, given , yields .

=

This function exists independent of the name .

CIS 500, 22 September 5-c



Intuitions

Suppose we want to describe a function that adds three to any number
we pass it. We might write

=

That is, “ is .”

Q: What is itself?

A: is the function that, given , yields .

=

This function exists independent of the name .

On this view, is just a convenient shorthand for “the
function that, given , yields , applied to .”

=

CIS 500, 22 September 5-d



Essentials

We have introduced two primitive syntactic forms:

abstraction of a term on some subterm :

“The function that, when applied to a value , yields with in
place of .”

application of a function to an argument:

“the function applied to the argument ”

Recall that we wrote anonymous functions “ ” in OCaml.

CIS 500, 22 September 6



Abstractions over Functions

Consider the -abstraction

=

Note that the parameter variable is used in the function position in the
body of . Terms like are called higher-order functions.

If we apply to an argument like , the “substitution rule” yields a
nontrivial computation:

CIS 500, 22 September 7



Abstractions Returning Functions

Consider the following variant of :

=

I.e., is the function that, when applied to a function , yields a
function that, when applied to an argument , yields .

CIS 500, 22 September 8

Prelude> let g = \f -> \y -> f (f y)
Prelude> g (+ 2) 3
7



Example

CIS 500, 22 September 9



The Pure Lambda-Calculus

As the preceding examples suggest, once we have -abstraction and
application, we can throw away all the other language primitives and still
have left a rich and powerful programming language.

In this language — the “pure lambda-calculus”— everything is a function.

Variables always denote functions

Functions always take other functions as parameters

The result of a function is always a function

CIS 500, 22 September 10



Formalities

CIS 500, 22 September 11



Syntax

::= terms

variable
abstraction
application

Terminology:

terms in the pure -calculus are often called -terms

terms of the form are called -abstractions or just abstractions

CIS 500, 22 September 12



Scope

The -abstraction term binds the variable .

The scope of this binding is the body .

Occurrences of inside are said to be bound by the abstraction.

Occurrences of that are not within the scope of an abstraction binding
are said to be free.

CIS 500, 22 September 13



Scope

The -abstraction term binds the variable .

The scope of this binding is the body .

Occurrences of inside are said to be bound by the abstraction.

Occurrences of that are not within the scope of an abstraction binding
are said to be free.

CIS 500, 22 September 13-a



Values

::= values

abstraction value

CIS 500, 22 September 14



Operational Semantics

Computation rule:

(E-APPABS)

Notation: is “the term that results from substituting
free occurrences of in with .”

CIS 500, 22 September 15



Operational Semantics

Computation rule:

(E-APPABS)

Notation: is “the term that results from substituting
free occurrences of in with .”

Congruence rules:

(E-APP1)

(E-APP2)

CIS 500, 22 September 15-a

call by name:

big-step semantics



Terminology

A term of the form — that is, a -abstraction applied to a
value — is called a redex (short for “reducible expression”).

CIS 500, 22 September 16



Alternative evaluation strategies

Strictly speaking, the language we have defined is called the pure,
call-by-value lambda-calculus.

The evaluation strategy we have chosen — call by value — reflects
standard conventions found in most mainstream languages.

Some other common ones:

Call by name (cf. Haskell)

Normal order (leftmost/outermost)

Full (non-deterministic) beta-reduction

CIS 500, 22 September 17



Programming in the Lambda-Calculus

CIS 500, 22 September 18



Multiple arguments

Above, we wrote a function that returns a function as an
argument.

=

This idiom — a -abstraction that does nothing but immediately yield
another abstraction — is very common in the -calculus.

In general, is a function that, given a value for , yields a
function that, given a value for , yields with in place of and in
place of .

That is, is a two-argument function.

(Recall the discussion of currying in OCaml.)

CIS 500, 22 September 19



Syntactic conventions

Since -calculus provides only one-argument functions, all multi-argument
functions must be written in curried style.

The following conventions make the linear forms of terms easier to read
and write:

Application associates to the left

E.g., means , not

Bodies of - abstractions extend as far to the right as possible

E.g., means , not

CIS 500, 22 September 20



The “Church Booleans”

by definition

reducing the underlined redex

reducing the underlined redex

by definition

reducing the underlined redex

reducing the underlined redex

CIS 500, 22 September 21



Functions on Booleans

=

That is, is a function that, given a boolean value , returns if is
and if is .

CIS 500, 22 September 22



Functions on Booleans

=

That is, is a function that, given two boolean values and , returns
if is and if is

Thus yields if both and are and if either or
is .

CIS 500, 22 September 23

(short-circuit ?)

what about or?



Pairs

That is, is a function that, when applied to a boolean value ,
applies to and .

By the definition of booleans, this application yields if is and if
is , so the first and second projection functions and can be
implemented simply by supplying the appropriate boolean.

CIS 500, 22 September 24



Example

by definition

reducing the underlined redex

reducing the underlined redex

by definition

reducing the underlined redex

reducing the underlined redex

as before.

CIS 500, 22 September 25



Church numerals

Idea: represent the number by a function that “repeats some action
times.”

That is, each number is represented by a term that takes two
arguments, and (for “successor” and “zero”), and applies , times,
to .

CIS 500, 22 September 26

what about “fls”? maybe C is right...



Functions on Church Numerals

Successor:

CIS 500, 22 September 27



Functions on Church Numerals

Successor:

CIS 500, 22 September 27-a

another solution?



Functions on Church Numerals

Successor:

Addition:

CIS 500, 22 September 27-b



Functions on Church Numerals

Successor:

Addition:

CIS 500, 22 September 27-c



Functions on Church Numerals

Successor:

Addition:

Multiplication:

CIS 500, 22 September 27-d



Functions on Church Numerals

Successor:

Addition:

Multiplication:

CIS 500, 22 September 27-e



Functions on Church Numerals

Successor:

Addition:

Multiplication:

Zero test:

CIS 500, 22 September 27-f



Functions on Church Numerals

Successor:

Addition:

Multiplication:

Zero test:

CIS 500, 22 September 27-g



Functions on Church Numerals

Successor:

Addition:

Multiplication:

Zero test:

What about predecessor?

CIS 500, 22 September 27-h



Predecessor

CIS 500, 22 September 28



Predecessor

CIS 500, 22 September 28-a

Questions:
1. what’s the complexity of prd?
2. how to define equal?
3. how to define subtract?



Normal forms

Recall:

A normal form is a term that cannot take an evaluation step.

A stuck term is a normal form that is not a value.

Are there any stuck terms in the pure -calculus?

Prove it.

CIS 500, 22 September 29



Normal forms

Recall:

A normal form is a term that cannot take an evaluation step.

A stuck term is a normal form that is not a value.

Are there any stuck terms in the pure -calculus?

Prove it.

Does every term evaluate to a normal form?

Prove it.

CIS 500, 22 September 29-a



Divergence

Note that evaluates in one step to itself!

So evaluation of never reaches a normal form: it diverges.

CIS 500, 22 September 30



Divergence

Note that evaluates in one step to itself!

So evaluation of never reaches a normal form: it diverges.

Being able to write a divergent computation does not seem very useful in
itself. However, there are variants of that are very useful...

CIS 500, 22 September 30-a



Iterated Application

Suppose is some -abstraction, and consider the following term:

CIS 500, 22 September 31



Iterated Application

Suppose is some -abstraction, and consider the following term:

Now the “pattern of divergence” becomes more interesting:

CIS 500, 22 September 31-a



is still not very useful, since (like ), all it does is diverge.

Is there any way we could “slow it down”?

CIS 500, 22 September 32



Delaying Divergence

Note that is a value — it it will only diverge when we actually
apply it to an argument. This means that we can safely pass it as an
argument to other functions, return it as a result from functions, etc.

Cf. thunks in OCaml.

CIS 500, 22 September 33



A delayed variant of

Here is a variant of in which the delay and divergence are a bit
more tightly intertwined:

Note that is a normal form. However, if we apply it to any
argument , it diverges:

CIS 500, 22 September 34



Another delayed variant

Suppose is a function. Define

=

This term combines the “added ” from with the “delayed divergence”
of .

CIS 500, 22 September 35



If we now apply to an argument , something interesting happens:

Since and are both values, the next computation step will be the
reduction of — that is, before we “diverge,” gets to do some
computation.

Now we are getting somewhere.

CIS 500, 22 September 36



Recursion

Let

=

looks just the ordinary factorial function, except that, in place of a
recursive call in the last time, it calls the function , which is passed as
a parameter.

N.b.: for brevity, this example uses “real” numbers and booleans, infix
syntax, etc. It can easily be translated into the pure lambda-calculus
(using Church numerals, etc.).

CIS 500, 22 September 37



We can use to “tie the knot” in the definition of and obtain a real
recursive factorial function:

CIS 500, 22 September 38



A Generic

If we define

i.e.,

then we can obtain the behavior of for any we like, simply by
applying to .

CIS 500, 22 September 39



For example:

=

CIS 500, 22 September 40



Technical note:

The term here is essentially the same as the discussed the book.

is hopefully slightly easier to understand, since it has the property that
, which does not (quite) share.

CIS 500, 22 September 41

fix is the (call-by-value) Y-combinator


