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The lambda-calculus

If our previous language of arithmetic expressions was the simplest
nontrivial programming language, then the lambda-calculus is the
simplest interesting programming language...

Turing complete

higher order (functions as data)

main new feature: variable binding and lexical scope

The e. coli of programming language research

The foundation of many real-world programming language designs
(including ML, Haskell, Scheme, Lisp, ...)
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Intuitions

Suppose we want to describe a function that adds three to any number
we pass it. We might write

=

That is, “ is .”
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Intuitions

Suppose we want to describe a function that adds three to any number
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That is, “ is .”

Q: What is itself?
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Intuitions

Suppose we want to describe a function that adds three to any number
we pass it. We might write

=

That is, “ is .”

Q: What is itself?

A: is the function that, given , yields .

=

This function exists independent of the name .

On this view, is just a convenient shorthand for “the
function that, given , yields , applied to .”

=

CIS 500, 22 September 5-d



Essentials

We have introduced two primitive syntactic forms:

abstraction of a term on some subterm :

“The function that, when applied to a value , yields with in
place of .”

application of a function to an argument:

“the function applied to the argument ”

Recall that we wrote anonymous functions “ ” in OCaml.
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Abstractions over Functions

Consider the -abstraction

=

Note that the parameter variable is used in the function position in the
body of . Terms like are called higher-order functions.

If we apply to an argument like , the “substitution rule” yields a
nontrivial computation:
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Abstractions Returning Functions

Consider the following variant of :

=

I.e., is the function that, when applied to a function , yields a
function that, when applied to an argument , yields .
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Prelude> let g = \f -> \y -> f (f y)
Prelude> g (+ 2) 3
7



Example
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The Pure Lambda-Calculus

As the preceding examples suggest, once we have -abstraction and
application, we can throw away all the other language primitives and still
have left a rich and powerful programming language.

In this language — the “pure lambda-calculus”— everything is a function.

Variables always denote functions

Functions always take other functions as parameters

The result of a function is always a function
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Formalities
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Syntax

::= terms

variable
abstraction
application

Terminology:

terms in the pure -calculus are often called -terms

terms of the form are called -abstractions or just abstractions
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Scope

The -abstraction term binds the variable .

The scope of this binding is the body .

Occurrences of inside are said to be bound by the abstraction.

Occurrences of that are not within the scope of an abstraction binding
are said to be free.
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Values

::= values

abstraction value
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Operational Semantics

Computation rule:

(E-APPABS)

Notation: is “the term that results from substituting
free occurrences of in with .”
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Operational Semantics

Computation rule:

(E-APPABS)

Notation: is “the term that results from substituting
free occurrences of in with .”

Congruence rules:

(E-APP1)

(E-APP2)
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call by name:

big-step semantics



Terminology

A term of the form — that is, a -abstraction applied to a
value — is called a redex (short for “reducible expression”).
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Alternative evaluation strategies

Strictly speaking, the language we have defined is called the pure,
call-by-value lambda-calculus.

The evaluation strategy we have chosen — call by value — reflects
standard conventions found in most mainstream languages.

Some other common ones:

Call by name (cf. Haskell)

Normal order (leftmost/outermost)

Full (non-deterministic) beta-reduction
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Programming in the Lambda-Calculus
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Multiple arguments

Above, we wrote a function that returns a function as an
argument.

=

This idiom — a -abstraction that does nothing but immediately yield
another abstraction — is very common in the -calculus.

In general, is a function that, given a value for , yields a
function that, given a value for , yields with in place of and in
place of .

That is, is a two-argument function.

(Recall the discussion of currying in OCaml.)
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Syntactic conventions

Since -calculus provides only one-argument functions, all multi-argument
functions must be written in curried style.

The following conventions make the linear forms of terms easier to read
and write:

Application associates to the left

E.g., means , not

Bodies of - abstractions extend as far to the right as possible

E.g., means , not
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The “Church Booleans”

by definition

reducing the underlined redex

reducing the underlined redex

by definition

reducing the underlined redex

reducing the underlined redex
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Functions on Booleans

=

That is, is a function that, given a boolean value , returns if is
and if is .
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Functions on Booleans

=

That is, is a function that, given two boolean values and , returns
if is and if is

Thus yields if both and are and if either or
is .

CIS 500, 22 September 23

(short-circuit ?)

what about or?



Pairs

That is, is a function that, when applied to a boolean value ,
applies to and .

By the definition of booleans, this application yields if is and if
is , so the first and second projection functions and can be
implemented simply by supplying the appropriate boolean.
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Example

by definition

reducing the underlined redex

reducing the underlined redex

by definition

reducing the underlined redex

reducing the underlined redex

as before.
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Church numerals

Idea: represent the number by a function that “repeats some action
times.”

That is, each number is represented by a term that takes two
arguments, and (for “successor” and “zero”), and applies , times,
to .
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what about “fls”? maybe C is right...



Functions on Church Numerals

Successor:
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Functions on Church Numerals

Successor:
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another solution?



Functions on Church Numerals

Successor:

Addition:

CIS 500, 22 September 27-b



Functions on Church Numerals

Successor:

Addition:

CIS 500, 22 September 27-c



Functions on Church Numerals

Successor:

Addition:

Multiplication:

CIS 500, 22 September 27-d



Functions on Church Numerals

Successor:

Addition:

Multiplication:

CIS 500, 22 September 27-e
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Functions on Church Numerals

Successor:

Addition:

Multiplication:

Zero test:
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Functions on Church Numerals

Successor:

Addition:

Multiplication:

Zero test:

What about predecessor?
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Predecessor
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Predecessor

CIS 500, 22 September 28-a

Questions:
1. what’s the complexity of prd?
2. how to define equal?
3. how to define subtract?



Normal forms

Recall:

A normal form is a term that cannot take an evaluation step.

A stuck term is a normal form that is not a value.

Are there any stuck terms in the pure -calculus?

Prove it.
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Normal forms

Recall:

A normal form is a term that cannot take an evaluation step.

A stuck term is a normal form that is not a value.

Are there any stuck terms in the pure -calculus?

Prove it.

Does every term evaluate to a normal form?

Prove it.
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Divergence

Note that evaluates in one step to itself!

So evaluation of never reaches a normal form: it diverges.
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Divergence

Note that evaluates in one step to itself!

So evaluation of never reaches a normal form: it diverges.

Being able to write a divergent computation does not seem very useful in
itself. However, there are variants of that are very useful...
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Iterated Application

Suppose is some -abstraction, and consider the following term:
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Iterated Application

Suppose is some -abstraction, and consider the following term:

Now the “pattern of divergence” becomes more interesting:
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is still not very useful, since (like ), all it does is diverge.

Is there any way we could “slow it down”?
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Delaying Divergence

Note that is a value — it it will only diverge when we actually
apply it to an argument. This means that we can safely pass it as an
argument to other functions, return it as a result from functions, etc.

Cf. thunks in OCaml.
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A delayed variant of

Here is a variant of in which the delay and divergence are a bit
more tightly intertwined:

Note that is a normal form. However, if we apply it to any
argument , it diverges:
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Another delayed variant

Suppose is a function. Define

=

This term combines the “added ” from with the “delayed divergence”
of .
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If we now apply to an argument , something interesting happens:

Since and are both values, the next computation step will be the
reduction of — that is, before we “diverge,” gets to do some
computation.

Now we are getting somewhere.

CIS 500, 22 September 36



Recursion

Let

=

looks just the ordinary factorial function, except that, in place of a
recursive call in the last time, it calls the function , which is passed as
a parameter.

N.b.: for brevity, this example uses “real” numbers and booleans, infix
syntax, etc. It can easily be translated into the pure lambda-calculus
(using Church numerals, etc.).
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We can use to “tie the knot” in the definition of and obtain a real
recursive factorial function:
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A Generic

If we define

i.e.,

then we can obtain the behavior of for any we like, simply by
applying to .
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For example:

=
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Technical note:

The term here is essentially the same as the discussed the book.

is hopefully slightly easier to understand, since it has the property that
, which does not (quite) share.
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fix is the (call-by-value) Y-combinator


