
Lecture 6

• full-beta reduction

• call-by-name fixed point combinator; haskell simulation

• formalizing lists

• behavioral and observational equivalence

• inductive proofs about lambda-calculus

• No Class Next Week (Columbus Day)

• Office Hour on Tuesday Oct 15 4:30-6pm

• No Office on Monday Oct 21

• Midterm: Tuesday Oct 22
1

Full-Beta Reduction

• can reduce anywhere

2

(λx.x) ((λx.x) (λz. (λx.x) z))

 t1 -> t1'
 --------------- (E-Abs)
 \x.t1 -> \x.t1'

Fixed Point Combinator Y

3

• call-by-value: Y = λf.(λx.f (λv.((x x) v))) (λx.f (λv.((x x) v)))

• call-by-name: Y = λf.(λx.f (x x)) (λx.f (x x))
Y g
= (λf . (λx . f (x x)) (λx . f (x x))) g (by definition of Y)
= (λx . g (x x)) (λx . g (x x)) (β-reduction of λf: applied to g)
= g ((λx . g (x x)) (λx . g (x x))) (β-reduction of λx: applied inside)
= g (Y g) (by second equality)

Y g = g(Y g) = g(g(Y g)) = g(g(g(Y g))) = g(g(g(g(...))))
fix :: (a -> a) -> a
fix f = f (fix f)

f fct x = if x == 0 then 1 else x * fct (x-1) -- or
f = \fct -> \n -> if n == 0 then 1 else n * fct (n-1)

fact = fix f

http://en.wikipedia.org/wiki/%CE%92-reduction
http://en.wikipedia.org/wiki/%CE%92-reduction

Lists

4

both solutions are required for midterm 1

List Sum

5

Equivalence of Lambda Terms

CIS 500, 29 September 3

Representing Numbers

We have seen how certain terms in the lambda-calculus can be used to
represent natural numbers.

Other lambda-terms represent common operations on numbers:

CIS 500, 29 September 4

Representing Numbers

We have seen how certain terms in the lambda-calculus can be used to
represent natural numbers.

Other lambda-terms represent common operations on numbers:

In what sense can we say this representation is “correct”?

In particular, on what basis can we argue that on church numerals
corresponds to ordinary successor on numbers?

CIS 500, 29 September 4-a

The naive approach

One possibility:

For each , the term evaluates to .

CIS 500, 29 September 5

The naive approach... doesn’t work

One possibility:

For each , the term evaluates to .

Unfortunately, this is false.

E.g.:

CIS 500, 29 September 5-a

A better approach

Recall the intuition behind the church numeral representation:

a number is represented as a term that “does something times
to something else”

takes a term that “does something times to something else”
and returns a term that “does something times to something
else”

I.e., what we really care about is that behaves the same as
when applied to two arguments.

CIS 500, 29 September 6

CIS 500, 29 September 7

A More General Question

We have argued that, although and do not evaluate to the
same thing, they are nevertheless “behaviorally equivalent.”

What, precisely, does behavioral equivalence mean?

CIS 500, 29 September 8

Intuition

Roughly,

terms and are behaviorally equivalent

should mean:

there is no “test” that distinguishes and — i.e., no way to use
them in the same context and obtain different results.

CIS 500, 29 September 9

Some test cases

Which of these are behaviorally equivalent?

CIS 500, 29 September 10

Observational equivalence

As a first step toward defining behavioral equivalence, we can use the
notion of normalizability to define a simple way of testing terms.

Two terms and are said to be observationally equivalent if either
both are normalizable (i.e., they reach a normal form after a finite
number of evaluation steps) or both are divergent.

I.e., our primitive notion of “observing” a term’s behavior is simply
running it on our abstract machine.

CIS 500, 29 September 11

Observational equivalence

As a first step toward defining behavioral equivalence, we can use the
notion of normalizability to define a simple way of testing terms.

Two terms and are said to be observationally equivalent if either
both are normalizable (i.e., they reach a normal form after a finite
number of evaluation steps) or both are divergent.

I.e., our primitive notion of “observing” a term’s behavior is simply
running it on our abstract machine.

Aside:

Is observational equivalence a decidable property?

CIS 500, 29 September 11-a

Observational equivalence

As a first step toward defining behavioral equivalence, we can use the
notion of normalizability to define a simple way of testing terms.

Two terms and are said to be observationally equivalent if either
both are normalizable (i.e., they reach a normal form after a finite
number of evaluation steps) or both are divergent.

I.e., our primitive notion of “observing” a term’s behavior is simply
running it on our abstract machine.

Aside:

Is observational equivalence a decidable property?

Does this mean the definition is ill-formed?

CIS 500, 29 September 11-b

Examples

and are not observationally equivalent

CIS 500, 29 September 12

Examples

and are not observationally equivalent

and are observationally equivalent

CIS 500, 29 September 12-a

Behavioral Equivalence

This primitive notion of observation now gives us a way of “testing”
terms for behavioral equivalence

Terms and are said to be behaviorally equivalent if, for every
finite sequence of values , the applications

and

are observationally equivalent.

CIS 500, 29 September 13

Examples

These terms are behaviorally equivalent:

So are these:

These are not behaviorally equivalent (to each other, or to any of the
terms above):

CIS 500, 29 September 14

Inductive Proofs about the

Lambda Calculus

Two induction principles

Like before, we have two ways to prove that properties are true of
the untyped lambda calculus.

I Structural induction on terms

I Induction on a derivation of t �! t

0.

Let’s look at an example of each.

Structural induction on terms

To show that a property P holds for all lambda-terms t, it su�ces
to show that

I P holds when t is a variable;

I P holds when t is a lambda-abstraction �x. t1, assuming
that P holds for the immediate subterm t1; and

I P holds when t is an application t1 t2, assuming that P
holds for the immediate subterms t1 and t2.

N.b.: The variant of this principle where “immediate subterm” is
replaced by “arbitrary subterm” is also valid. (Cf. ordinary

induction vs. complete induction on the natural numbers.)

Structural induction on terms

To show that a property P holds for all lambda-terms t, it su�ces
to show that

I P holds when t is a variable;

I P holds when t is a lambda-abstraction �x. t1, assuming
that P holds for the immediate subterm t1; and

I P holds when t is an application t1 t2, assuming that P
holds for the immediate subterms t1 and t2.

N.b.: The variant of this principle where “immediate subterm” is
replaced by “arbitrary subterm” is also valid. (Cf. ordinary

induction vs. complete induction on the natural numbers.)

An example of structural induction on terms

Define the set of free variables in a lambda-term as follows:

FV (x) = {x}
FV (�x.t1) = FV (t1) \ {x}
FV (t1 t2) = FV (t1) [FV (t2)

Define the size of a lambda-term as follows:

size(x) = 1
size(�x.t1) = size(t1) + 1
size(t1 t2) = size(t1) + size(t2) + 1

Theorem: |FV (t)|  size(t).

An example of structural induction on terms

Theorem: |FV (t)|  size(t).

Proof: By induction on the structure of t.

I If t is a variable, then |FV (t)| = 1 = size(t).

I If t is an abstraction �x. t1, then
|FV (t)|

= |FV (t1) \ {x}| by defn
 |FV (t1)| by arithmetic
 size(t1) by induction hypothesis
 size(t1) + 1 by arithmetic
= size(t) by defn.

An example of structural induction on terms

Theorem: |FV (t)|  size(t).

Proof: By induction on the structure of t.

I If t is an application t1 t2, then
|FV (t)|

= |FV (t1) [FV (t2)| by defn
 max(|FV (t1)|, |FV (t2)|) by arithmetic
 max(|size(t1)|, |size(t2)|) by IH and arithmetic
 |size(t1)| + |size(t2)| by arithmetic
 |size(t1)| + |size(t2)| + 1 by arithmetic
= size(t) by defn.

An example of structural induction on terms

Theorem: |FV (t)|  size(t).

Proof: By induction on the structure of t.

I If t is an application t1 t2, then
|FV (t)|

= |FV (t1) [FV (t2)| by defn
 max(|FV (t1)|, |FV (t2)|) by arithmetic
 max(|size(t1)|, |size(t2)|) by IH and arithmetic
 |size(t1)| + |size(t2)| by arithmetic
 |size(t1)| + |size(t2)| + 1 by arithmetic
= size(t) by defn.

by IH

should be ++

Induction on derivations

Recall that the reduction relation is defined as the smallest binary
relation on terms satisfying the following rules:

(�x.t12) v2 �! [x 7! v2]t12 (E-AppAbs)

t1 �! t

0
1

t1 t2 �! t

0
1 t2

(E-App1)

t2 �! t

0
2

v1 t2 �! v1 t

0
2

(E-App2)

Induction on derivations

Induction principle for the small-step evaluation relation.

To show that a property P holds for all derivations of t �! t

0, it
su�ces to show that

I P holds for all derivations that use the rule E-AppAbs;

I P holds for all derivations that end with a use of E-App1
assuming that P holds for all subderivations; and

I P holds for all derivations that end with a use of E-App2
assuming that P holds for all subderivations.

Example

Theorem: if t �! t

0 then FV (t) ◆ FV (t0).

Induction on derivations

We must prove, for all derivations of t �! t

0, that
FV (t) ◆ FV (t0).

There are three cases.

I If the derivation of t �! t

0 is just a use of E-AppAbs, then t

is (�x.t1)v and t

0 is [x|!v]t1. Reason as follows:

FV (t) = FV ((�x.t1)v)
= FV (t1)/{x} [FV (v)
◆ FV ([x|!v]t1)
= FV (t0)

Induction on derivations

We must prove, for all derivations of t �! t

0, that
FV (t) ◆ FV (t0).

There are three cases.

I If the derivation of t �! t

0 is just a use of E-AppAbs, then t

is (�x.t1)v and t

0 is [x|!v]t1. Reason as follows:

FV (t) = FV ((�x.t1)v)
= FV (t1)/{x} [FV (v)
◆ FV ([x|!v]t1)
= FV (t0)

I If the derivation ends with a use of E-App1, then t has the
form t1 t2 and t

0 has the form t

0
1 t2, and we have a

subderivation of t1 �! t

0
1

By the induction hypothesis, FV (t1) ◆ FV (t0
1). Now

calculate:
FV (t) = FV (t1 t2)

= FV (t1) [FV (t2)
◆ FV (t0

1) [FV (t2)
= FV (t0

1 t2)
= FV (t 0)

I If the derivation ends with a use of E-App2, the argument is
similar to the previous case.

I If the derivation ends with a use of E-App1, then t has the
form t1 t2 and t

0 has the form t

0
1 t2, and we have a

subderivation of t1 �! t

0
1

By the induction hypothesis, FV (t1) ◆ FV (t0
1). Now

calculate:
FV (t) = FV (t1 t2)

= FV (t1) [FV (t2)
◆ FV (t0

1) [FV (t2)
= FV (t0

1 t2)
= FV (t 0)

I If the derivation ends with a use of E-App2, the argument is
similar to the previous case.

