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Typing rules

� `true : Bool (T-True)

� `false : Bool (T-False)

� `t1 : Bool � `t2 : T � `t3 : T

� `if t1 then t2 else t3 : T

(T-If)

�, x:T1 `t2 : T2

� ` �x:T1.t2 : T1!T2
(T-Abs)

x:T 2 �

� `x : T

(T-Var)

� `t1 : T11!T12 � `t2 : T11

� `t1 t2 : T12
(T-App)
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Typing derivations

Exercise 9.2.2: Show (by drawing derivation trees) that the
following terms have the indicated types:

1. f:Bool!Bool ` f (if false then true else false) :
Bool

2. f:Bool!Bool `
�x:Bool. f (if x then false else x) : Bool!Bool



The two typing relations

Question: What is the relation between these two statements?

1. t : T

2. ` t : T

First answer: These two relations are completely di↵erent things.

I We are dealing with several di↵erent small programming
languages, each with its own typing relation (between terms in
that language and types in that language)

I For the simple language of numbers and booleans, typing is a
binary relation between terms and types (t : T).

I For �!, typing is a ternary relation between contexts, terms,
and types (� ` t : T).

(When the context is empty — because the term has no free
variables — we often write ` t : T to mean ; ` t : T.)
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Conservative extension

Second answer: The typing relation for �! conservatively extends

the one for the simple language of numbers and booleans.

I Write “language 1” for the language of numbers and booleans
and “language 2” for the simply typed lambda-calculus with
base types Nat and Bool.

I The terms of language 2 include all the terms of language 1;
similarly typing rules.

I Write t :1 T for the typing relation of language 1.

I Write � ` t :2 T for the typing relation of language 2.

I
Theorem: Language 2 conservatively extends language 1: If t
is a term of language 1 (involving only booleans, conditions,
numbers, and numeric operators) and T is a type of language
1 (either Bool or Nat), then t :1 T i↵ ; ` t :2 T.



Preservation (and Weaking,
Permutation, Substitution)



Review: Proving progress

Let’s quickly review the steps in the proof of the progress theorem:

I inversion lemma for typing relation

I canonical forms lemma

I progress theorem



Inversion

Lemma:

1. If � ` true : R, then R = Bool.

2. If � ` false : R, then R = Bool.

3. If � ` if t1 then t2 else t3 : R, then � ` t1 : Bool and
� ` t2, t3 : R.

4. If � ` x : R, then

x:R 2 �.

5. If � ` �x:T1.t2 : R, then R = T1!R2 for some R2 with
�, x:T1 ` t2 : R2.

6. If � ` t1 t2 : R, then there is some type T11 such that
� ` t1 : T11!R and � ` t2 : T11.
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Canonical Forms

Lemma:

1. If v is a value of type Bool, then v is either true or false.

2. If v is a value of type T1!T2, then v has the form �x:T1.t2.



Canonical Forms

Lemma:

1. If v is a value of type Bool, then v is either true or false.

2. If v is a value of type T1!T2, then v has the form �x:T1.t2.



Progress

Theorem: Suppose t is a closed, well-typed term (that is, ` t : T

for some T). Then either t is a value or else there is some t

0 with
t �! t

0.



Preservation

Theorem: If � ` t : T and t �! t

0, then � ` t

0 : T.

Steps of proof:

I Weakening

I Permutation

I Substitution preserves types

I Reduction preserves types (i.e., preservation)



Weakening and Permutation

Weakening tells us that we can add assumptions to the context
without losing any true typing statements.

Lemma: If � ` t : T and x /2 dom(�), then �, x:S ` t : T.

Moreover, the latter derivation has the same depth as the former.

Permutation tells us that the order of assumptions in (the list) �
does not matter.

Lemma: If � ` t : T and � is a permutation of �, then � ` t : T.

Moreover, the latter derivation has the same depth as the former.
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Preservation

Theorem: If � ` t : T and t �! t

0, then � ` t

0 : T.

Proof: By induction

on typing derivations.
Case T-App: Given t = t1 t2

� `t1 : T11!T12

� `t2 : T11

T = T12

Show � ` t

0 : T12

By the inversion lemma for evaluation, there are three subcases...
Subcase: t1 = �x:T11. t12

t2 a value v2

t

0 = [x 7! v2]t12

Uh oh. What do we need to know to make this case go through??
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The “Substitution Lemma”

Lemma: If �, x:S ` t : T and � ` s : S, then � ` [x 7! s]t : T.

I.e., “Types are preserved under substitition.”

Proof: By induction on the depth of a derivation of
�, x:S ` t : T. Proceed by cases on the final typing rule used in
the derivation.
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The “Substitution Lemma”

Lemma: If �, x:S ` t : T and � ` s : S, then � ` [x 7! s]t : T.

Proof: By induction on the depth of a derivation of
�, x:S ` t : T. Proceed by cases on the final typing rule used in
the derivation.
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The “Substitution Lemma”

Lemma: If �, x:S ` t : T and � ` s : S, then � ` [x 7! s]t : T.

Proof: By induction on the depth of a derivation of
�, x:S ` t : T. Proceed by cases on the final typing rule used in
the derivation.

Case T-Var: t = z

with z:T 2 (�, x:S)

There are two sub-cases to consider, depending on whether z is x
or another variable. If z = x, then [x 7! s]z = s. The required
result is then � ` s : S, which is among the assumptions of the
lemma. Otherwise, [x 7! s]z = z, and the desired result is
immediate.



The “Substitution Lemma”

Lemma: If �, x:S ` t : T and � ` s : S, then � ` [x 7! s]t : T.

Proof: By induction on the depth of a derivation of
�, x:S ` t : T. Proceed by cases on the final typing rule used in
the derivation.

Case T-Abs: t = �y:T2.t1 T = T2!T1

�, x:S, y:T2 ` t1 : T1

By our conventions on choice of bound variable names, we may
assume x 6= y and y /2 FV(s). Using permutation on the given
subderivation, we obtain �, y:T2, x:S ` t1 : T1. Using weakening

on the other given derivation (� ` s : S), we obtain
�, y:T2 ` s : S. Now, by the induction hypothesis,
�, y:T2 ` [x 7! s]t1 : T1. By T-Abs,
� ` �y:T2. [x 7! s]t1 : T2!T1, i.e. (by the definition of
substitution), � ` [x 7! s]�y:T2. t1 : T2!T1.



Erasure and Typability



Erasure

We can transform terms in �! to terms of the untyped
lambda-calculus simply by erasing type annotations on
lambda-abstractions.

erase(x) = x
erase(�x:T1. t2) = �x. erase(t2)
erase(t1 t2) = erase(t1) erase(t2)



Typability

Conversely, an untyped �-term m is said to be typable if there is
some term t in the simply typed lambda-calculus, some type T,
and some context � such that erase(t) = m and � ` t : T.

This process is called type reconstruction or type inference.

Example: Is the term

�x. x x

typable?



Typability

Conversely, an untyped �-term m is said to be typable if there is
some term t in the simply typed lambda-calculus, some type T,
and some context � such that erase(t) = m and � ` t : T.

This process is called type reconstruction or type inference.

Example: Is the term

�x. x x

typable?



More About Bound Variables



Substitution

Our definition of evaluation is based on the “substitution” of
values for free variables within terms.

(�x.t12) v2 �! [x 7! v2]t12 (E-AppAbs)

But what is substitution, exactly? How do we define it?



Substitution

For example, what does

(�x. x (�y. x y)) (�x. x y x)

reduce to?

Note that this example is not a “complete program” — the whole
term is not closed. We are mostly interested in the reduction
behavior of closed terms, but reduction of open terms is also
important in some contexts:

I program optimization

I alternative reduction strategies such as “full beta-reduction”



Formalizing Substitution

Consider the following definition of substitution:

[x 7! s]x = s

[x 7! s]y = y if x 6= y

[x 7! s](�y.t1) = �y. ([x 7! s]t1)

[x 7! s](t1 t2) = ([x 7! s]t1)([x 7! s]t2)

What is wrong with this definition?

It substitutes for free and bound variables!

[x 7! y](�x. x) = �x.y

This is not what we want!
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Substitution, take two

[x 7! s]x = s

[x 7! s]y = y if x 6= y

[x 7! s](�y.t1) = �y. ([x 7! s]t1) if x 6= y

[x 7! s](�x.t1) = �x. t1

[x 7! s](t1 t2) = ([x 7! s]t1)([x 7! s]t2)

What is wrong with this definition?

It su↵ers from variable capture!

[x 7! y](�y.x) = �x. x

This is also not what we want.
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Substitution, take three

[x 7! s]x = s

[x 7! s]y = y if x 6= y

[x 7! s](�y.t1) = �y. ([x 7! s]t1) if x 6= y, y 62 FV (s)
[x 7! s](�x.t1) = �x. t1

[x 7! s](t1 t2) = ([x 7! s]t1)([x 7! s]t2)

What is wrong with this definition?

Now substition is a partial function!

E.g., [x 7! y](�y.x) is undefined.

But we want an result for every substitution.
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Bound variable names shouldn’t matter

It’s annoying that that the “spelling” of bound variable names is
causing trouble with our definition of substitution.

Intuition tells us that there shouldn’t be a di↵erence between the
functions �x.x and �y.y. Both of these functions do exactly the
same thing.

Because they di↵er only in the names of their bound variables,
we’d like to think that these are the same function.

We call such terms alpha-equivalent.



Alpha-equivalence classes

In fact, we can create equivalence classes of terms that di↵er only
in the names of bound variables.

When working with the lambda calculus, it is convenient to think
about these equivalence classes, instead of raw terms.

For example, when we write �x.x we mean not just this term, but
the class of terms that includes �y.y and �z.z.

We can now freely choose a di↵erent representative from a term’s
alpha-equivalence class, whenever we need to, to avoid getting
stuck.



Substitution, for alpha-equivalence classes

Now consider substitution as an operation over alpha-equivalence

classes of terms.

[x 7! s]x = s

[x 7! s]y = y if x 6= y

[x 7! s](�y.t1) = �y. ([x 7! s]t1) if x 6= y, y 62 FV (s)
[x 7! s](�x.t1) = �x. t1

[x 7! s](t1 t2) = ([x 7! s]t1)([x 7! s]t2)

Examples:

I [x 7! y](�y.x) must give the same result as [x 7! y](�z.x).
We know the latter is �z.y, so that is what we will use for
the former.

I [x 7! y](�x.z) must give the same result as [x 7! y](�w.z).
We know the latter is �w.z so that is what we use for the
former.



Review

So what does

(�x. x (�y. x y)) (�x. x y x)

reduce to?


