# Programming Languages Fall 2013





Lecture 8: More on Simply-Typed Lambda Calculus: substitution lemma, preservation, erasure and type inference

Prof. Liang Huang huang@qc.cs.cuny.edu

$$\begin{array}{c} \Gamma \vdash \text{true} : \text{Bool} & (\text{T-True}) \\ \Gamma \vdash \text{false} : \text{Bool} & (\text{T-False}) \end{array} \\ \hline \Gamma \vdash \text{talse} : \text{Bool} & \Gamma \vdash \text{t}_2 : \text{T} & \Gamma \vdash \text{t}_3 : \text{T} \\ \hline \Gamma \vdash \text{if } \text{t}_1 \text{ then } \text{t}_2 \text{ else } \text{t}_3 : \text{T} & (\text{T-IF}) \end{array} \\ \hline \begin{array}{c} \Gamma, \text{x} : \text{T}_1 \vdash \text{t}_2 : \text{T}_2 \\ \hline \Gamma \vdash \lambda \text{x} : \text{T}_1 \cdot \text{t}_2 : \text{T}_1 \rightarrow \text{T}_2 \end{array} & (\text{T-ABS}) \end{array} \\ \hline \begin{array}{c} \frac{\text{x} : \text{T} \in \Gamma}{\Gamma \vdash \text{x} : \text{T}} & (\text{T-VAR}) \end{array} \\ \hline \begin{array}{c} \Gamma \vdash \text{t}_1 : \text{T}_{11} \rightarrow \text{T}_{12} & \Gamma \vdash \text{t}_2 : \text{T}_{11} \\ \hline \Gamma \vdash \text{t}_1 \text{ t}_2 : \text{T}_{12} \end{array} & (\text{T-APP}) \end{array} \end{array}$$

**Exercise 9.2.2:** Show (by drawing derivation trees) that the following terms have the indicated types:

- 1. f:Bool $\rightarrow$ Bool $\vdash$ f (if false then true else false) : Bool
- 2. f:Bool $\rightarrow$ Bool $\vdash$

 $\lambda x: \texttt{Bool.}$  f (if x then false else x) : Bool o Bool

# The two typing relations

Question: What is the relation between these two statements? 1. t : T

2. ⊢t : T

Question: What is the relation between these two statements? 1. t : T2.  $\vdash t : T$ 

First answer: These two relations are completely different things.

- We are dealing with several different small programming languages, *each with its own typing relation* (between terms in that language and types in that language)
- For the simple language of numbers and booleans, typing is a binary relation between terms and types (t : T).
- For  $\lambda_{\rightarrow}$ , typing is a *ternary* relation between contexts, terms, and types ( $\Gamma \vdash t : T$ ).

(When the context is empty — because the term has no free variables — we often write  $\vdash t : T$  to mean  $\emptyset \vdash t : T$ .)

Second answer: The typing relation for  $\lambda_{\rightarrow}$  conservatively extends the one for the simple language of numbers and booleans.

- Write "language 1" for the language of numbers and booleans and "language 2" for the simply typed lambda-calculus with base types Nat and Bool.
- The terms of language 2 include all the terms of language 1; similarly typing rules.
- Write  $t :_1 T$  for the typing relation of language 1.
- Write  $\Gamma \vdash t :_2 T$  for the typing relation of language 2.
- Theorem: Language 2 conservatively extends language 1: If t is a term of language 1 (involving only booleans, conditions, numbers, and numeric operators) and T is a type of language 1 (either Bool or Nat), then t :1 T iff Ø ⊢ t :2 T.

Preservation (and Weaking, Permutation, Substitution)

# Review: Proving progress

Let's quickly review the steps in the proof of the progress theorem:

- inversion lemma for typing relation
- canonical forms lemma
- progress theorem

- 1. If  $\Gamma \vdash \text{true}$  : R, then R = Bool.
- 2. If  $\Gamma \vdash false : R$ , then R = Bool.
- 3. If  $\Gamma \vdash \text{if } t_1$  then  $t_2$  else  $t_3 : R$ , then  $\Gamma \vdash t_1 : Bool and \Gamma \vdash t_2, t_3 : R$ .
- 4. If  $\Gamma \vdash x : R$ , then

- 1. If  $\Gamma \vdash \text{true}$  : R, then R = Bool.
- 2. If  $\Gamma \vdash false : R$ , then R = Bool.
- 3. If  $\Gamma \vdash \text{if } t_1$  then  $t_2$  else  $t_3 : R$ , then  $\Gamma \vdash t_1 : Bool and \Gamma \vdash t_2, t_3 : R$ .
- 4. If  $\Gamma \vdash x : R$ , then  $x : R \in \Gamma$ .
- 5. If  $\Gamma \vdash \lambda x : T_1 . t_2 : R$ , then

- 1. If  $\Gamma \vdash \text{true}$  : R, then R = Bool.
- 2. If  $\Gamma \vdash false : R$ , then R = Bool.
- 3. If  $\Gamma \vdash \text{if } t_1$  then  $t_2$  else  $t_3 : R$ , then  $\Gamma \vdash t_1 : Bool and \Gamma \vdash t_2, t_3 : R$ .
- 4. If  $\Gamma \vdash x : R$ , then  $x : R \in \Gamma$ .
- 5. If  $\Gamma \vdash \lambda x: T_1.t_2 : R$ , then  $R = T_1 \rightarrow R_2$  for some  $R_2$  with  $\Gamma, x: T_1 \vdash t_2 : R_2$ .
- 6. If  $\Gamma \vdash t_1 t_2 : R$ , then

- 1. If  $\Gamma \vdash \text{true}$  : R, then R = Bool.
- 2. If  $\Gamma \vdash false : R$ , then R = Bool.
- 3. If  $\Gamma \vdash if t_1$  then  $t_2$  else  $t_3 : R$ , then  $\Gamma \vdash t_1 :$  Bool and  $\Gamma \vdash t_2, t_3 : R$ .
- 4. If  $\Gamma \vdash x : R$ , then  $x : R \in \Gamma$ .
- 5. If  $\Gamma \vdash \lambda x: T_1.t_2 : R$ , then  $R = T_1 \rightarrow R_2$  for some  $R_2$  with  $\Gamma, x: T_1 \vdash t_2 : R_2$ .
- 6. If  $\Gamma \vdash t_1 \ t_2 : R$ , then there is some type  $T_{11}$  such that  $\Gamma \vdash t_1 : T_{11} \rightarrow R$  and  $\Gamma \vdash t_2 : T_{11}$ .

# **Canonical Forms**

# **Canonical Forms**

- 1. If v is a value of type Bool, then v is either true or false.
- 2. If v is a value of type  $T_1 \rightarrow T_2$ , then v has the form  $\lambda x:T_1.t_2$ .

#### Progress

Theorem: Suppose t is a closed, well-typed term (that is,  $\vdash t : T$  for some T). Then either t is a value or else there is some t' with  $t \longrightarrow t'$ .

Theorem: If  $\Gamma \vdash t$  : T and  $t \longrightarrow t'$ , then  $\Gamma \vdash t'$  : T.

Steps of proof:

- Weakening
- Permutation
- Substitution preserves types
- Reduction preserves types (i.e., preservation)

Weakening tells us that we can *add assumptions* to the context without losing any true typing statements.

*Lemma:* If  $\Gamma \vdash t$  : T and  $x \notin dom(\Gamma)$ , then  $\Gamma, x: S \vdash t : T$ .

Weakening tells us that we can *add assumptions* to the context without losing any true typing statements.

```
Lemma: If \Gamma \vdash t : T and x \notin dom(\Gamma), then \Gamma, x: S \vdash t : T.
```

Permutation tells us that the order of assumptions in (the list)  $\Gamma$  does not matter.

*Lemma:* If  $\Gamma \vdash t$  : T and  $\Delta$  is a permutation of  $\Gamma$ , then  $\Delta \vdash t$  : T.

Weakening tells us that we can *add assumptions* to the context without losing any true typing statements.

*Lemma:* If  $\Gamma \vdash t$  : T and  $x \notin dom(\Gamma)$ , then  $\Gamma, x: S \vdash t : T$ .

Moreover, the latter derivation has the same depth as the former.

Permutation tells us that the order of assumptions in (the list)  $\Gamma$  does not matter.

Lemma: If  $\Gamma \vdash t$ : T and  $\Delta$  is a permutation of  $\Gamma$ , then  $\Delta \vdash t$ : T.

Moreover, the latter derivation has the same depth as the former.

Theorem: If  $\Gamma \vdash t$  : T and  $t \longrightarrow t'$ , then  $\Gamma \vdash t'$  : T.

*Proof:* By induction

Theorem: If  $\Gamma \vdash t$  : T and  $t \longrightarrow t'$ , then  $\Gamma \vdash t'$  : T.

*Proof:* By induction on typing derivations.

Which case is the hard one??

Theorem: If  $\Gamma \vdash t$  : T and t  $\longrightarrow$  t', then  $\Gamma \vdash t'$  : T. Proof: By induction on typing derivations. Case T-APP: Given  $t = t_1 t_2$   $\Gamma \vdash t_1 : T_{11} \rightarrow T_{12}$   $\Gamma \vdash t_2 : T_{11}$   $T = T_{12}$ Show  $\Gamma \vdash t' : T_{12}$ 

Theorem: If  $\Gamma \vdash t$  : T and t  $\longrightarrow$  t', then  $\Gamma \vdash t'$  : T. Proof: By induction on typing derivations. Case T-APP: Given  $t = t_1 t_2$   $\Gamma \vdash t_1 : T_{11} \rightarrow T_{12}$   $\Gamma \vdash t_2 : T_{11}$   $T = T_{12}$ Show  $\Gamma \vdash t' : T_{12}$ By the inversion lemma for evaluation, there are three subcases...

*Theorem:* If  $\Gamma \vdash t$  : T and t  $\longrightarrow$  t', then  $\Gamma \vdash t'$  : T. *Proof:* By induction on typing derivations. Case T-APP: Given  $t = t_1 t_2$  $\Gamma \vdash t_1 : T_{11} \rightarrow T_{12}$  $\Gamma \vdash t_2 : T_{11}$  $T = T_{12}$ Show  $\Gamma \vdash t' : T_{12}$ By the inversion lemma for evaluation, there are three subcases... Subcase:  $t_1 = \lambda x: T_{11}$ .  $t_{12}$  $t_2$  a value  $v_2$  $\mathsf{t}' = [\mathsf{x} \mapsto \mathsf{v}_2] \mathsf{t}_{12}$ 

*Theorem:* If  $\Gamma \vdash t$  : T and t  $\longrightarrow$  t', then  $\Gamma \vdash t'$  : T. *Proof:* By induction on typing derivations. Case T-APP: Given  $t = t_1 t_2$  $\Gamma \vdash t_1 : T_{11} \rightarrow T_{12}$  $\Gamma \vdash t_2 : T_{11}$  $T = T_{12}$ Show  $\Gamma \vdash t' : T_{12}$ By the inversion lemma for evaluation, there are three subcases... Subcase:  $t_1 = \lambda x: T_{11}$ .  $t_{12}$  $t_2$  a value  $v_2$  $\texttt{t}' = [\texttt{x} \mapsto \texttt{v}_2]\texttt{t}_{12}$ Uh oh.

Theorem: If  $\Gamma \vdash t$  : T and t  $\longrightarrow$  t', then  $\Gamma \vdash t'$  : T. *Proof:* By induction on typing derivations. Case T-APP: Given  $t = t_1 t_2$  $\Gamma \vdash t_1 : T_{11} \rightarrow T_{12}$  $\Gamma \vdash t_2 : T_{11}$  $T = T_{12}$ Show  $\Gamma \vdash t' : T_{12}$ By the inversion lemma for evaluation, there are three subcases... Subcase:  $t_1 = \lambda x: T_{11}$ .  $t_{12}$  $t_2$  a value  $v_2$  $\mathsf{t}' = [\mathsf{x} \mapsto \mathsf{v}_2] \mathsf{t}_{12}$ 

Uh oh. What do we need to know to make this case go through??

I.e., "Types are preserved under substitition."

*Proof:* By induction on the *depth* of a derivation of  $\Gamma, x: S \vdash t : T$ . Proceed by cases on the final typing rule used in the derivation.

*Proof:* By induction on the *depth* of a derivation of  $\Gamma, x: S \vdash t : T$ . Proceed by cases on the final typing rule used in the derivation.

*Proof:* By induction on the *depth* of a derivation of  $\Gamma, x: S \vdash t : T$ . Proceed by cases on the final typing rule used in the derivation.

Case T-APP:
$$t = t_1 \ t_2$$
 $\Gamma, x: S \vdash t_1 : T_2 \rightarrow T_1$  $\Gamma, x: S \vdash t_2 : T_2$  $T = T_1$ 

By the induction hypothesis,  $\Gamma \vdash [x \mapsto s]t_1 : T_2 \rightarrow T_1$  and  $\Gamma \vdash [x \mapsto s]t_2 : T_2$ . By T-APP,  $\Gamma \vdash [x \mapsto s]t_1 \ [x \mapsto s]t_2 : T$ , i.e.,  $\Gamma \vdash [x \mapsto s](t_1 \ t_2) : T$ .

*Proof:* By induction on the *depth* of a derivation of  $\Gamma, x: S \vdash t : T$ . Proceed by cases on the final typing rule used in the derivation.

Case T-VAR: 
$$t = z$$

with  $z:T \in (\Gamma, x:S)$ 

There are two sub-cases to consider, depending on whether z is x or another variable. If z = x, then  $[x \mapsto s]z = s$ . The required result is then  $\Gamma \vdash s : S$ , which is among the assumptions of the lemma. Otherwise,  $[x \mapsto s]z = z$ , and the desired result is immediate.

*Proof:* By induction on the *depth* of a derivation of  $\Gamma, x: S \vdash t : T$ . Proceed by cases on the final typing rule used in the derivation.

By our conventions on choice of bound variable names, we may assume  $x \neq y$  and  $y \notin FV(s)$ . Using *permutation* on the given subderivation, we obtain  $\Gamma$ ,  $y:T_2$ ,  $x:S \vdash t_1 : T_1$ . Using *weakening* on the other given derivation ( $\Gamma \vdash s : S$ ), we obtain  $\Gamma$ ,  $y:T_2 \vdash s : S$ . Now, by the induction hypothesis,  $\Gamma$ ,  $y:T_2 \vdash [x \mapsto s]t_1 : T_1$ . By T-ABS,  $\Gamma \vdash \lambda y:T_2$ .  $[x \mapsto s]t_1 : T_2 \rightarrow T_1$ , i.e. (by the definition of substitution),  $\Gamma \vdash [x \mapsto s]\lambda y:T_2$ .  $t_1 : T_2 \rightarrow T_1$ .

# Erasure and Typability

#### Erasure

We can transform terms in  $\lambda_{\rightarrow}$  to terms of the untyped lambda-calculus simply by erasing type annotations on lambda-abstractions.

# Typability

Conversely, an untyped  $\lambda$ -term m is said to be *typable* if there is some term t in the simply typed lambda-calculus, some type T, and some context  $\Gamma$  such that erase(t) = m and  $\Gamma \vdash t : T$ .

This process is called *type reconstruction* or *type inference*.

# Typability

Conversely, an untyped  $\lambda$ -term m is said to be *typable* if there is some term t in the simply typed lambda-calculus, some type T, and some context  $\Gamma$  such that erase(t) = m and  $\Gamma \vdash t : T$ .

This process is called *type reconstruction* or *type inference*.

Example: Is the term

 $\lambda$ x. x x

typable?

# More About Bound Variables

# Substitution

Our definition of evaluation is based on the "substitution" of values for free variables within terms.

 $(\lambda x.t_{12}) v_2 \longrightarrow [x \mapsto v_2]t_{12}$  (E-APPABS)

But what is substitution, exactly? How do we define it?

For example, what does

```
(\lambda x. x (\lambda y. x y)) (\lambda x. x y x)
```

reduce to?

Note that this example is not a "complete program" — the whole term is not closed. We are mostly interested in the reduction behavior of closed terms, but reduction of open terms is also important in some contexts:

- program optimization
- alternative reduction strategies such as "full beta-reduction"

# Formalizing Substitution

Consider the following definition of substitution:

$$\begin{split} & [\mathbf{x} \mapsto \mathbf{s}]\mathbf{x} = \mathbf{s} \\ & [\mathbf{x} \mapsto \mathbf{s}]\mathbf{y} = \mathbf{y} & \text{if } \mathbf{x} \neq \mathbf{y} \\ & [\mathbf{x} \mapsto \mathbf{s}](\lambda \mathbf{y}.\mathbf{t}_1) = \lambda \mathbf{y}. \quad ([\mathbf{x} \mapsto \mathbf{s}]\mathbf{t}_1) \\ & [\mathbf{x} \mapsto \mathbf{s}](\mathbf{t}_1 \ \mathbf{t}_2) = ([\mathbf{x} \mapsto \mathbf{s}]\mathbf{t}_1)([\mathbf{x} \mapsto \mathbf{s}]\mathbf{t}_2) \end{split}$$

What is wrong with this definition?

# Formalizing Substitution

Consider the following definition of substitution:

$$\begin{split} & [\mathbf{x} \mapsto \mathbf{s}]\mathbf{x} = \mathbf{s} \\ & [\mathbf{x} \mapsto \mathbf{s}]\mathbf{y} = \mathbf{y} \\ & [\mathbf{x} \mapsto \mathbf{s}](\lambda \mathbf{y}.\mathbf{t}_1) = \lambda \mathbf{y}. \quad ([\mathbf{x} \mapsto \mathbf{s}]\mathbf{t}_1) \\ & [\mathbf{x} \mapsto \mathbf{s}](\lambda \mathbf{y}.\mathbf{t}_1) = ([\mathbf{x} \mapsto \mathbf{s}]\mathbf{t}_1)([\mathbf{x} \mapsto \mathbf{s}]\mathbf{t}_2) \end{split}$$

What is wrong with this definition?

It substitutes for free and *bound* variables!

$$[\mathbf{x} \mapsto \mathbf{y}](\lambda \mathbf{x} \cdot \mathbf{x}) = \lambda \mathbf{x} \cdot \mathbf{y}$$

This is not what we want!

# Substitution, take two

$$\begin{split} [\mathbf{x} \mapsto \mathbf{s}]\mathbf{x} &= \mathbf{s} \\ [\mathbf{x} \mapsto \mathbf{s}]\mathbf{y} &= \mathbf{y} & \text{if } \mathbf{x} \neq \mathbf{y} \\ [\mathbf{x} \mapsto \mathbf{s}](\lambda \mathbf{y}.\mathbf{t}_{1}) &= \lambda \mathbf{y}. \quad ([\mathbf{x} \mapsto \mathbf{s}]\mathbf{t}_{1}) & \text{if } \mathbf{x} \neq \mathbf{y} \\ [\mathbf{x} \mapsto \mathbf{s}](\lambda \mathbf{x}.\mathbf{t}_{1}) &= \lambda \mathbf{x}. \quad \mathbf{t}_{1} \\ [\mathbf{x} \mapsto \mathbf{s}](\mathbf{t}_{1} \ \mathbf{t}_{2}) &= ([\mathbf{x} \mapsto \mathbf{s}]\mathbf{t}_{1})([\mathbf{x} \mapsto \mathbf{s}]\mathbf{t}_{2}) \end{split}$$

What is wrong with this definition?

# Substitution, take two

$$\begin{split} [\mathbf{x} \mapsto \mathbf{s}]\mathbf{x} &= \mathbf{s} \\ [\mathbf{x} \mapsto \mathbf{s}]\mathbf{y} &= \mathbf{y} & \text{if } \mathbf{x} \neq \mathbf{y} \\ [\mathbf{x} \mapsto \mathbf{s}](\lambda \mathbf{y}.\mathbf{t}_1) &= \lambda \mathbf{y}. \quad ([\mathbf{x} \mapsto \mathbf{s}]\mathbf{t}_1) & \text{if } \mathbf{x} \neq \mathbf{y} \\ [\mathbf{x} \mapsto \mathbf{s}](\lambda \mathbf{x}.\mathbf{t}_1) &= \lambda \mathbf{x}. \quad \mathbf{t}_1 \\ [\mathbf{x} \mapsto \mathbf{s}](\mathbf{t}_1 \ \mathbf{t}_2) &= ([\mathbf{x} \mapsto \mathbf{s}]\mathbf{t}_1)([\mathbf{x} \mapsto \mathbf{s}]\mathbf{t}_2) \end{split}$$

What is wrong with this definition?

It suffers from *variable capture*!

$$[x \mapsto y](\lambda y.x) = \lambda x.x$$

This is also not what we want.

# Substitution, take three

$$\begin{split} & [\mathbf{x} \mapsto \mathbf{s}]\mathbf{x} = \mathbf{s} \\ & [\mathbf{x} \mapsto \mathbf{s}]\mathbf{y} = \mathbf{y} & \text{if } \mathbf{x} \neq \mathbf{y} \\ & [\mathbf{x} \mapsto \mathbf{s}](\lambda \mathbf{y}.\mathbf{t}_{1}) = \lambda \mathbf{y}. \quad ([\mathbf{x} \mapsto \mathbf{s}]\mathbf{t}_{1}) & \text{if } \mathbf{x} \neq \mathbf{y}, \ \mathbf{y} \notin FV(\mathbf{s}) \\ & [\mathbf{x} \mapsto \mathbf{s}](\lambda \mathbf{x}.\mathbf{t}_{1}) = \lambda \mathbf{x}. \quad \mathbf{t}_{1} \\ & [\mathbf{x} \mapsto \mathbf{s}](\mathbf{t}_{1} \ \mathbf{t}_{2}) = ([\mathbf{x} \mapsto \mathbf{s}]\mathbf{t}_{1})([\mathbf{x} \mapsto \mathbf{s}]\mathbf{t}_{2}) \end{split}$$

What is wrong with this definition?

# Substitution, take three

$$\begin{split} & [\mathbf{x} \mapsto \mathbf{s}]\mathbf{x} = \mathbf{s} \\ & [\mathbf{x} \mapsto \mathbf{s}]\mathbf{y} = \mathbf{y} & \text{if } \mathbf{x} \neq \mathbf{y} \\ & [\mathbf{x} \mapsto \mathbf{s}](\lambda \mathbf{y}.\mathbf{t}_1) = \lambda \mathbf{y}. \quad ([\mathbf{x} \mapsto \mathbf{s}]\mathbf{t}_1) & \text{if } \mathbf{x} \neq \mathbf{y}, \ \mathbf{y} \notin FV(\mathbf{s}) \\ & [\mathbf{x} \mapsto \mathbf{s}](\lambda \mathbf{x}.\mathbf{t}_1) = \lambda \mathbf{x}. \quad \mathbf{t}_1 \\ & [\mathbf{x} \mapsto \mathbf{s}](\mathbf{t}_1 \ \mathbf{t}_2) = ([\mathbf{x} \mapsto \mathbf{s}]\mathbf{t}_1)([\mathbf{x} \mapsto \mathbf{s}]\mathbf{t}_2) \end{split}$$

What is wrong with this definition?

Now substition is a *partial function*!

E.g.,  $[x \mapsto y](\lambda y.x)$  is undefined.

But we want an result for every substitution.

# Bound variable names shouldn't matter

It's annoying that that the "spelling" of bound variable names is causing trouble with our definition of substitution.

Intuition tells us that there shouldn't be a difference between the functions  $\lambda x \cdot x$  and  $\lambda y \cdot y$ . Both of these functions do exactly the same thing.

Because they differ only in the names of their bound variables, we'd like to think that these *are* the same function.

We call such terms *alpha-equivalent*.

In fact, we can create equivalence classes of terms that differ only in the names of bound variables.

When working with the lambda calculus, it is convenient to think about these *equivalence classes*, instead of raw terms.

For example, when we write  $\lambda x \cdot x$  we mean not just this term, but the class of terms that includes  $\lambda y \cdot y$  and  $\lambda z \cdot z$ .

We can now freely choose a different *representative* from a term's alpha-equivalence class, whenever we need to, to avoid getting stuck.

# Substitution, for alpha-equivalence classes

Now consider substitution as an operation over *alpha-equivalence classes* of terms.

$$\begin{split} & [\mathbf{x} \mapsto \mathbf{s}]\mathbf{x} = \mathbf{s} \\ & [\mathbf{x} \mapsto \mathbf{s}]\mathbf{y} = \mathbf{y} & \text{if } \mathbf{x} \neq \mathbf{y} \\ & [\mathbf{x} \mapsto \mathbf{s}](\lambda \mathbf{y}.\mathbf{t}_1) = \lambda \mathbf{y}. \quad ([\mathbf{x} \mapsto \mathbf{s}]\mathbf{t}_1) & \text{if } \mathbf{x} \neq \mathbf{y}, \ \mathbf{y} \notin FV(\mathbf{s}) \\ & [\mathbf{x} \mapsto \mathbf{s}](\lambda \mathbf{x}.\mathbf{t}_1) = \lambda \mathbf{x}. \quad \mathbf{t}_1 \\ & [\mathbf{x} \mapsto \mathbf{s}](\mathbf{t}_1 \ \mathbf{t}_2) = ([\mathbf{x} \mapsto \mathbf{s}]\mathbf{t}_1)([\mathbf{x} \mapsto \mathbf{s}]\mathbf{t}_2) \end{split}$$

Examples:

- [x → y](λy.x) must give the same result as [x → y](λz.x). We know the latter is λz.y, so that is what we will use for the former.
- ► [x → y](λx.z) must give the same result as [x → y](λw.z). We know the latter is λw.z so that is what we use for the former.

Review

So what does

$$(\lambda x. x (\lambda y. x y)) (\lambda x. x y x)$$

reduce to?