
Programming Languages Name (Print):
Fall 2013
Midterm Exam
10/22/13
Time Limit: 100 Minutes Graduate Center I.D.

• This is a closed-book, closed-notes exam.

• Various definitions are provided in the exam.

• Do not get stuck on a single problem.

Do not write in the table to the right.

Problem Points Score

1 5

2 5

3 9

4 6

5 5

6 3

7 7

8 7

9 6

10 6

11 13

12 5

13 6

14 9

15 8

Total: 100



Programming Languages Midterm Exam - Page 2 of 8 10/22/13

Operational Semantics

The first few questions concern the following simple programming language:

t ::= terms
true constant true
false constant false
if t then t else t conditional
pair t t pairing
fst t first component
snd t second component

v ::= values
true true value
false false value
pair v v pair value

and its big-step operational semantics.

true ⇓ true (B-True)

false ⇓ false (B-False)

t1 ⇓ true t2 ⇓ v
if t1 then t2 else t3 ⇓ v

(B-IfTrue)

t1 ⇓ false t3 ⇓ v
if t1 then t2 else t3 ⇓ v

(B-IfFalse)

t1 ⇓ v1 t2 ⇓ v2
pair t1 t2 ⇓ pair v1 v2

(B-Pair)

t ⇓ pair v1 v2

fst t ⇓ v1
(B-Fst)

t ⇓ pair v1 v2

snd t ⇓ v2
(B-Snd)

1. (5 points) Draw the derivation tree of the big-step evaluation of the following term. Remember
to include the rule name for each rule applied.

fst (if true then pair true false else pair false true)



Programming Languages Midterm Exam - Page 3 of 8 10/22/13

2. (5 points) We might also want to define a small-step semantics for this language, such that

t ⇓ v if and only if t −→∗ v

Recall that a small-step semantics is composed of both computation and congruence rules.
Here is a list of rules. Please fill in the rule type (congruence or computation) for each rule
(except for the first one which I did for you).

t1 −→ t′1

if t1 then t2 else t3 −→ if t′1 then t2 else t3
(E-If) congruence

if true then t2 else t3 −→ t2 (E-IfTrue)

if false then t2 else t3 −→ t3 (E-IfFalse)

t1 −→ t′1

pair t1 t2 −→ pair t′1 t2
(E-Pair)

t1 −→ t′1

fst t1 −→ fst t′1
(E-Fst)

t1 −→ t′1

snd t1 −→ snd t′1
(E-Snd)

3. (9 points) However, this list is not complete. List the remaining rules and their types (Hint:
there are three of them). You can name them as you like, but the names will be used in your
answers to later questions.

rule name type

1

2

3



Programming Languages Midterm Exam - Page 4 of 8 10/22/13

4. (6 points) Show the small-step evaluation steps of the following term until reaching a value:

fst (if fst (pair true false) then pair true false else false)

→

→

→

5. (5 points) Draw the derivation tree for the first evaluation step above. Again, remember the
rule names.

6. (3 points) Are there any “stuck” terms in this language? (i.e. a term that fails to produce a
value). If so, give an example. If not, explain why not.



Programming Languages Midterm Exam - Page 5 of 8 10/22/13

Functional programming

The following questions are about the untyped lambda calculus. For reference, the semantics
of this language appears at the end of the exam.

Recall the Church encoding of lists and booleans in the untyped lambda calculus.

tru = λx. λy. x

fls = λx. λy. y

not = λb. b fls tru

and = λb1. λb2. b1 b2 fls

or = λb1. λb2. b1 tru b2

nil = λc. λn. n

cons = λh. λt. λc. λn. c h (t c n)

head = λl. l (λh. λt. h) fls

tail = λl. fst (l (λx. λp. pair (snd p) (cons x (snd p))) (pair nil nil))

isnil = λl. l (λh. λt. fls) tru

7. (7 points) Which of the following terms defines the function all that takes a list of boolean
terms and determines of all of the terms are true? For example,
all (cons tru (cons fls nil)) should be equivalent to fls

and all nil should be equivalent to tru. Circle the correct answer.

(a) all = λl. (λa. λb. a and b) l fls

(b) all = λl. l (λa. λb. a tru b) fls

(c) all = λl. all (head l) (tail l)

(d) all = λl. l and tru

Explain your intuition.

Show that all (cons tru (cons fls nil)) is equivalent to fls. For convenience, you may
use full beta-reduction.



Programming Languages Midterm Exam - Page 6 of 8 10/22/13

8. (7 points) Which of the following terms defines the function map that takes a term l, repre-
senting a list, and a function f, applies f to each element of l, and yields a list of the results
(just like the map in Haskell). For example:
map not (cons tru (cons fls nil))

should be equivalent to
(cons fls (cons tru nil)). Circle the correct answer.

(a) map = λf. λl. l (λh. λt. cons t (f h)) nil

(b) map = λf. λl. λc. λn. l (λh. λt. c (f h) t) n

(c) map = λf. λl. l (f cons) nil

Show that map not (cons tru (cons fls nil)) is equivalent to cons fls (cons tru nil).
Again, you may use full-beta reduction.

9. (6 points) Implement all and map in Haskell, using recursion.

all f [] =

all f (x:xs) =

map f [] =

map f (x:xs) =



Programming Languages Midterm Exam - Page 7 of 8 10/22/13

Proof by Induction

10. (6 points) Recall that FV (t) is the set of free variables in t. Compute:

• FV (x)

• FV (λx. y)

• FV ((λx. λy. z) y)

11. (13 points) Complete the following proof of a property of the untyped lambda calculus, by
induction on the structure of lambda terms.

Theorem: If t is closed (i.e., there is no free variable in t), and t −→ t′, then t′ is closed.

You may use, without proving, the following lemma about substitution.
Lemma: (FV (t1)\{x}) ∪ FV (t2) ⊇ FV ([x 7→ t2]t1).

We prove the theorem by induction on the structure of the lambda term t.

• Suppose t is a variable x. This is trivial because:

• Suppose t is a lambda term λx. t1. This case is also trivial because:

• Suppose t is an application t1 t2.

–

–

–

12. (5 points) Re: the lemma, show an example that (FV (t1)\{x}) ∪ FV (t2) 6= FV ([x 7→ t2]t1).



Programming Languages Midterm Exam - Page 8 of 8 10/22/13

Untyped lambda calculus

Call-by-Value Evaluation

t1 −→ t′1

t1 t2 −→ t′1 t2
(E-App1)

t2 −→ t′2

v1 t2 −→ v1 t′2
(E-App2)

(λx. t12) v2 −→ [x 7→ v2]t12 (E-AppAbs)

13. (6 points) What do the following lambda calculus terms step to (in one step), using the call-
by-value single-step evaluation relation t −→ t′. Write NONE if the term does not step. For
reference, the semantics of call-by-value evaluation is given above.

(a) (λx. x) (λx. x x) (λx. x x)

(b) (λx. (λx. x) (λx. x x))

(c) (λx. (λz. λx. x z) x) (λx. x x)

14. (9 points) Now redo the above question with full-beta reduction (i.e., can reduce anywhere):
write all possible t′ that t can step to in one-step. Again, write NONE if t does not step.

15. (8 points) Write out the single-step evaluation rules for “full-beta reduction”.


