Programming Languages Quiz 11 Last, First = Score =

1. (15 points) Give a well-typed term whose evaluation all the way to a value (beginning in the empty
store) will produce the following store when evaluation terminates.

n = (ll — b,
lgl—>ll)

(Hint: you can use “let x = ... in ... 7). (5 points)

As let is a derived form (syntactic sugar), you can also represent the above term using lambda-calculus:
(5 points)

What’s the store typing ¥ (such that §|X - u)? (5 points)

2. (22 points) Given the above store p and store typing ¥, now consider the following term t:
ref (ref 0) := !l

(a) What is the type of this term (i.e., #|X Ft : T)? (3 points)

(b) Give a typing derivation (i.e., draw the derivation tree). (7 points)



(c) Evaluate the above term step by step all the way to a value; in each step, fill in the store, store
typing, and the computation rule used (note there is exactly one computation rule in each step).
(12 points)

step | term store comp. rule

0 ref (ref 0) := !y (lh = 5,la — 1) N/A

3. (10 points) Is there a well-typed term whose evaluation (beginning in the empty store) will produce
the following store when evaluation terminates?

n= (ll — 12,
12 |—>l3,
l3 l—>l1)

If so, give it. If not, explain briefly why no such term exists.



4. (26 points) Consider the following term:

case <lg=ref 0> as T of <1;=x1> = x3
<lo=x9> = !x9o

(a) What T makes this term typecheck? Fill in the blanks: T = <1;: , Lot
(6 points)

(b) What is the type of this term (given u = ) and 3 = 0)? (3 points)

(¢) Give the typing derivation (i.e., draw the derivation tree). (7 points)

(d) Evaluate this term all the way to a value. Distinguish between labels (1;) and locations (I;). (10

points)
step | term store comp. rule
0 case <ls=ref 0> as T of <1;=x1> = x 0 N/A

<1o=x9> = !xo




5. (15 points) Define the big-step semantics evaluation rule for case terms:
case t of <1;=x;>=t; ‘"""

Do not forget the store (i.e., instead of t |} v, use t|p | v|p' to represent the evaluation sequence

t|,u — tll//fl — . = V‘,u/).

6. (12 points) Forget about references and stores for now. We know that (preservation theorem says)
t—t' and Dt : Timplies @ - t' : T. But is it also true that t — t’ and ) - t’ : Timplies() -t : T?
If so, explain; otherwise, give an example. You can only use the syntax defined in the companion sheet
(excluding reference creation, dereference, assignment, and store location).



Simply-typed lambda calculus with variants, references, Unit and Nat

Syntax
t =
unit

Ax:T.t

tt

ref t

It

t:=

l

0

succ t

<1=t> as T

case t of <1;=x;>=t; ¢'""

unit
Ax:T.t
l

nv
<l=v> as T

Unit

T—T

Ref T

Nat

<li Tl iel..n,>

pou= 0 | plev
' == 0 | T,x:T
Y ou= 0 | X LT
nv = 0 | succ nv

FEvaluation

tilp — ¢y

t1 to|p —> t] to|p

o — ta|y

vi ol — vi o
(Ax:Ti1.t12) volp — [x = va]tiz|p

¢ dom(p)
ref vilp — I|(p, I — v1)

tilp — £y

ref ti|u — ref ti|y

pl) =v
Hlp — vl

terms
constant unit
variable
abstraction
application
reference creation
dereference
asstgnment
store location
constant zero
successor
variant
case

values
constant untt
abstraction value
store location
numeric value
variant value

types
unit type
type of functions
type of reference cells
type of natural numbers
type of variants

stores
type environments
store typings

numeric values
tl — |

(E-Appr1)

(E-AppP2)
(E-APPABS)

(E-REFV)
(E-REF)

(E-DEREFLOC)



tilp — ti[p
Moy — 1en

o~

:=vo|p — unit|[l — valpu

tifp — ey

t1i=to|p — th:=ta|p

to|p — 5|y’

vii=to|p — vii=th|y

tilp — ¢y

succ ti|p — succ ti|y’
case (<l;=v;> as T) of <l;=x>=t; """ — [x; — v,]t;

to — t§

case tp of <l;=x;>=t; ‘""" — case t} of <l;=x;>=t; ‘€"""

t; — t

<l;=t;> as T — <1;=t}> as T

Typing
|3 F unit : Unit

x:Tel
NXkFx:T

F,X:T1|E|—t2 . To
F‘ZF)\X:Tl.tQ . T1—Te

F‘Z Ft1 i T11—Tio P|E Fts @ T1n
F‘El“l‘q to o Tio

() =T,
[|SF:Ref Ty

F|E|‘t1 Ty
X kref t;1 : Ref Ty

F‘Ekt1 . Ref Ti1
F|E Flty @ Tih

F‘E Ft1 : Ref Ti1 F|E Ftg @ T1n
LY F ti1:=ty : Unit

T Fty @ Nat
'YX F succ t1 : Nat

'kt; @ T
'k <lj=tj> as <1;:T; i€lny . <1;:T; i€l.ny

I'Fto : <1;:T; i€l.ny
foreachi T, x;:T;Ft; T
T'F case tg of <1;=x;>=t; ‘""" : T

(E-DEREF)

(E-ASSIGN)

(E-ASsIGNT)

(E-ASSIGN2)

(E-Succ)

(E-CASEVARIANT)

(E-CASE)

(E-VARIANT)

TSkt :T

(T-Un1T)

(T-VAR)
(T-ABs)
(T-App)
(T-Loc)
(T-REF)

(T-DEREF)

(T-ASSICN)

(T-Suca)

(T-VARIANT)

(T-CAsE)



