1. (15 points) Give a well-typed term whose evaluation all the way to a value (beginning in the empty store) will produce the following store when evaluation terminates.

$$\mu = (l_1 \mapsto 5, l_2 \mapsto l_1)$$

(Hint: you can use "let $x = \dots$ in \dots "). (5 points)

As let is a derived form (syntactic sugar), you can also represent the above term using lambda-calculus: (5 points)

What's the store typing Σ (such that $\emptyset | \Sigma \vdash \mu$)? (5 points)

2. (22 points) Given the above store μ and store typing Σ , now consider the following term t:

ref (ref 0) :=
$$!l_2$$

- (a) What is the type of this term (i.e., $\emptyset | \Sigma \vdash t : T$)? (3 points)
- (b) Give a typing derivation (i.e., draw the derivation tree). (7 points)

(c) Evaluate the above term step by step all the way to a value; in each step, fill in the store, store typing, and the computation rule used (note there is exactly one computation rule in each step). (12 points)

step	term	store	comp. rule
0	ref (ref 0) := $!l_2$	$(l_1 \mapsto 5, l_2 \mapsto l_1)$	N/A

3. (10 points) Is there a well-typed term whose evaluation (beginning in the empty store) will produce the following store when evaluation terminates?

$$\mu = (l_1 \mapsto l_2, l_2 \mapsto l_3, l_3 \mapsto l_1)$$

If so, give it. If not, explain briefly why no such term exists.

4. (26 points) Consider the following term:

case <1_2=ref 0> as T of <1_1=x_1>
$$\Rightarrow$$
 x_1 <1_2=x_2> \Rightarrow !x_2

- (a) What T makes this term typecheck? Fill in the blanks: $T = < l_1:$, $l_2:$ >. (6 points)
- (b) What is the type of this term (given $\mu = \emptyset$ and $\Sigma = \emptyset$)? (3 points)
- (c) Give the typing derivation (i.e., draw the derivation tree). (7 points)

(d) Evaluate this term all the way to a value. Distinguish between labels (l_i) and locations (l_i) . (10 points)

step	term	store	comp. rule
0	case <1 ₂ =ref 0> as T of <1 ₁ = x_1 > \Rightarrow x_1	Ø	N/A
	$\langle 1_2 = x_2 \rangle \Rightarrow !x_2$		

5. (15 points) Define the big-step semantics evaluation rule for case terms:

case t of
$${\leq}1_i=x_i>\Rightarrow t_i$$
 $^{i\in 1..n}$

Do not forget the store (i.e., instead of $t \Downarrow v$, use $t|\mu \Downarrow v|\mu'$ to represent the evaluation sequence $t|\mu \to t_1|\mu_1 \to \dots \to v|\mu'$).

6. (12 points) Forget about references and stores for now. We know that (preservation theorem says) $t \to t'$ and $\emptyset \vdash t$: T implies $\emptyset \vdash t'$: T. But is it also true that $t \to t'$ and $\emptyset \vdash t'$: T implies $\emptyset \vdash t$: T? If so, explain; otherwise, give an example. You can only use the syntax defined in the companion sheet (excluding reference creation, dereference, assignment, and store location).

Simply-typed lambda calculus with variants, references, Unit and Nat

Syntax		
t ::=	unit $x \\ \lambda x:T.t \\ t t \\ ref t \\ !t \\ t:=t \\ l \\ 0 \\ succ t \\ <1=t> as T \\ case t of <1_i=x_i>\Rightarrow t_i \ ^{i\in ln}$	terms constant unit variable abstraction application reference creation dereference assignment store location constant zero successor variant case
v ::=	unit $ \lambda \mathbf{x} \colon \mathbf{T} \cdot \mathbf{t} $ $ l $ $ \mathbf{n} \mathbf{v} $ $ <1 = \mathbf{v} > \text{ as } \mathbf{T} $	values constant unit abstraction value store location numeric value variant value
T ::=	$\begin{array}{l} \text{Unit} \\ \text{T} {\to} \text{T} \\ \text{Ref T} \\ \text{Nat} \\ {<} \text{l}_i {:} \text{T}_i \overset{i \in 1 \dots n}{>} \end{array}$	types unit type type of functions type of reference cells type of natural numbers type of variants
μ ::=	$\emptyset \mu, l \mapsto \mathtt{v}$	stores
Γ ::=	$\emptyset \Gamma, \mathbf{x} \colon T$	type environments
Σ ::=	$\emptyset \Sigma, l$: T	store typings
nv ::=	0 succ nv	numeric values
Evaluati	on	$\boxed{\mathtt{t} \mu\longrightarrow\mathtt{t}' \mu'}$
	$\frac{\mathtt{t}_1 \mu\longrightarrow\mathtt{t}_1' \mu'}{\mathtt{t}_1\ \mathtt{t}_2 \mu\longrightarrow\mathtt{t}_1'\ \mathtt{t}_2 \mu'}$	(E-App1)
	$\frac{\mathtt{t}_2 \mu\longrightarrow\mathtt{t}_2' \mu'}{\mathtt{v}_1\ \mathtt{t}_2 \mu\longrightarrow\mathtt{v}_1\ \mathtt{t}_2' \mu'}$	(E-App2)
	$(\lambda \mathtt{x}\!:\!\mathtt{T}_{11}\!:\!\mathtt{t}_{12})$ $\mathtt{v}_2 \mu\longrightarrow [\mathtt{x}\mapsto \mathtt{v}_2]\mathtt{t}_{12} \mu$	(E-AppAbs)
	$\frac{l \notin dom(\mu)}{\texttt{ref } v_1 \mu \longrightarrow l (\mu, l \mapsto v_1)}$	(E-RefV)
	$rac{\mathtt{t}_1 \mu \longrightarrow \mathtt{t}_1' \mu'}{\mathtt{ref} \ \mathtt{t}_1 \mu \longrightarrow \mathtt{ref} \ \mathtt{t}_1' \mu'}$	(E-Ref)
	u(l) = v	

(E-Derefloc)

$$\frac{\mathbf{t}_1|\mu \longrightarrow \mathbf{t}_1'|\mu'}{!\mathbf{t}_1|\mu \longrightarrow !\mathbf{t}_1'|\mu'}$$
 (E-Deref)

$$l\!:=\!\mathtt{v}_2|\mu\longrightarrow\mathtt{unit}|[l\mapsto\mathtt{v}_2]\mu\tag{E-Assign}$$

$$\frac{\mathtt{t}_1|\mu\longrightarrow\mathtt{t}_1'|\mu'}{\mathtt{t}_1\!:=\!\mathtt{t}_2|\mu\longrightarrow\mathtt{t}_1':=\!\mathtt{t}_2|\mu'} \tag{E-Assign1}$$

$$\frac{\mathtt{t}_2|\mu\longrightarrow\mathtt{t}_2'|\mu'}{\mathtt{v}_1:=\mathtt{t}_2|\mu\longrightarrow\mathtt{v}_1:=\mathtt{t}_2'|\mu'} \tag{E-Assign2}$$

$$\frac{\mathtt{t}_1|\mu \longrightarrow \mathtt{t}_1'|\mu'}{\mathtt{succ}\ \mathtt{t}_1|\mu \longrightarrow \mathtt{succ}\ \mathtt{t}_1'|\mu'} \tag{E-Succ}$$

case (
$$\{1_j = v_j\}$$
 as T) of $\{1_i = x_i\} \Rightarrow t_i \xrightarrow{i \in 1...n} \longrightarrow [x_j \mapsto v_j]t_j$ (E-CaseVariant)

$$\frac{\mathtt{t}_0 \longrightarrow \mathtt{t}_0'}{\mathsf{case}\ \mathtt{t}_0\ \mathsf{of}\ \mathsf{<} \mathtt{l}_i = \mathtt{x}_i \mathsf{>} \Rightarrow \mathtt{t}_i^{\ i \in I \dots n} \longrightarrow \mathsf{case}\ \mathtt{t}_0'\ \mathsf{of}\ \mathsf{<} \mathtt{l}_i = \mathtt{x}_i \mathsf{>} \Rightarrow \mathtt{t}_i^{\ i \in I \dots n}}$$
 (E-CASE)

$$\frac{\mathsf{t}_i \longrightarrow \mathsf{t}_i'}{\langle \mathsf{l}_i = \mathsf{t}_i \rangle \text{ as } \mathsf{T} \longrightarrow \langle \mathsf{l}_i = \mathsf{t}_i' \rangle \text{ as } \mathsf{T}} \tag{E-VARIANT}$$

Typing $\Gamma | \Sigma \vdash t : T$

$$\Gamma | \Sigma \vdash \mathtt{unit} : \mathtt{Unit}$$
 (T-UNIT)

$$\frac{\mathbf{x}: \mathbf{T} \in \Gamma}{\Gamma | \Sigma \vdash \mathbf{x} : \mathbf{T}} \tag{T-Var}$$

$$\frac{\Gamma, \mathbf{x} : T_1 | \Sigma \vdash \mathbf{t}_2 : T_2}{\Gamma | \Sigma \vdash \lambda \mathbf{x} : T_1 . \mathbf{t}_2 : T_1 \to T_2}$$
 (T-Abs)

$$\frac{\Gamma|\Sigma \vdash \mathtt{t}_1 : \mathtt{T}_{11} \!\to\! \mathtt{T}_{12} \qquad \Gamma|\Sigma \vdash \mathtt{t}_2 : \mathtt{T}_{11}}{\Gamma|\Sigma \vdash \mathtt{t}_1 \ \mathtt{t}_2 : \mathtt{T}_{12}} \tag{T-App)}$$

$$\frac{\Sigma(l) = \mathtt{T}_1}{\Gamma | \Sigma \vdash l \text{ : Ref } \mathtt{T}_1} \tag{T-Loc}$$

$$\frac{\Gamma | \Sigma \vdash \mathtt{t}_1 : \mathtt{T}_1}{\Gamma | \Sigma \vdash \mathtt{ref} \ \mathtt{t}_1 : \mathtt{Ref} \ \mathtt{T}_1} \tag{T-Ref}$$

$$\frac{\Gamma|\Sigma \vdash \mathsf{t}_1 : \mathsf{Ref} \ \mathsf{T}_{11}}{\Gamma|\Sigma \vdash !\mathsf{t}_1 : \mathsf{T}_{11}} \tag{T-Deref}$$

$$\frac{\Gamma|\Sigma \vdash \mathtt{t}_1 : \mathtt{Ref} \ \mathtt{T}_{11} \qquad \Gamma|\Sigma \vdash \mathtt{t}_2 : \mathtt{T}_{11}}{\Gamma|\Sigma \vdash \mathtt{t}_1 : = \mathtt{t}_2 : \mathtt{Unit}} \tag{T-Assign}$$

$$\frac{\Gamma|\Sigma \vdash \mathtt{t}_1 : \mathtt{Nat}}{\Gamma|\Sigma \vdash \mathtt{succ} \ \mathtt{t}_1 : \mathtt{Nat}} \tag{T-Succ}$$

$$\frac{\Gamma \vdash \mathsf{t}_j : \mathsf{T}_j}{\Gamma \vdash \langle \mathsf{l}_j = \mathsf{t}_j \rangle \text{ as } \langle \mathsf{l}_i : \mathsf{T}_i \stackrel{i \in I \dots n}{\longrightarrow} \rangle} \tag{T-VARIANT}$$

$$\frac{\Gamma \vdash \mathsf{t}_0 : \langle \mathsf{l}_i : \mathsf{T}_i \stackrel{i \in I \dots n}{>}}{\text{for each } i \quad \Gamma, \mathsf{x}_i : \mathsf{T}_i \vdash \mathsf{t}_i : \mathsf{T}}$$

$$\frac{\Gamma \vdash \mathsf{case} \ \mathsf{t}_0 \ \mathsf{of} \ \langle \mathsf{l}_i = \mathsf{x}_i \rangle \Rightarrow \mathsf{t}_i \stackrel{i \in I \dots n}{:} \mathsf{T}}{\Gamma \vdash \mathsf{case} \ \mathsf{t}_0 \ \mathsf{of} \ \langle \mathsf{l}_i = \mathsf{x}_i \rangle \Rightarrow \mathsf{t}_i \stackrel{i \in I \dots n}{:} \mathsf{T}}$$
(T-CASE)