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1. Construct a (deterministic) finite automaton for each of the following language.
No need to draw trap states.

(a) all letter strings with at least a vowel
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(b) all letter strings with vowels in order
(i.e., each of the five vowels appear once and only once, and in order)
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(d) all alphanumeric strings that start with one or more letters followed by zero or more numbers.
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(e) all strings over {a,b,c} where the number of a's is divisible by 3
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(f) all strings over {a,b,c} where the number of a's minus the number of b's is divisible by 3
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(g) all strings over {a,b,c} where the number of a's
plus twice the number of b's plus the number of ¢'s is divisible by 5.

what's your general strategy of solving (e-g)?
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(1) all strings over {a,b} where all a's come before any b's,
and the numbers of a's and b's are both even.

(m) all strings over {a,b} where the number of a's equal the number of b's.
can you do this? if not, explain why.

(n) all strings over {a,b} that do not end with ab.
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two more questions: 1) decimal numbers divisible by 4
2) all bit strings that contain 10111
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2. Prove that the language L = { awb | w \in {a,b}*, |w
(note that \in is the LaTeX symbol for "element of").
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3. Prove that for every regular language L, its complement language is also regular.

Proof: For every regular language L, by the definition of regular language,
there must be a DFA M s.t. L(M) = L. let M = (Q,%,d,q, F') where § is a
total function, we construct another DFA M = (Q, %, 9, q, F') where F' = Q\ F.

For every string w € L, it will end up in a state ¢ € F' in M, and it will end
up in the same state in M which rejects w since ¢ ¢ F; similarly, for every
string w’ in the complement language, i.e., w’ € ¥* \ F', it will end up in a state
¢ ¢ F in M, and it will end up in the same state in M which accepts w since
¢ € F. So M accepts all strings in ¥* \ L and nothing else, which means the
complement language X* \ L is recognized by DFA M, thus regular. []

Note, however, that if § is a partial function (i.e., trap state omitted), this
proof does not work (why?). You would have to add a trap state and all trap
transitions to make 0 a total function first.



