
CS 321 Homework 3 October 9, 2015

1. For any DFA, prove that δ∗ is associative; that is for any input strings x and y, δ∗(q, xy) = δ∗(δ∗(q, x), y).

Solution:
Do induction by the length of y.

Base case y = ε and |y| = 0:
δ∗(q, xy) = δ∗(q, x) = δ∗(q, xε) = δ∗(δ∗(q, x), ε) = δ∗(q, x)

When y = a, where a ∈ Σ and |y| = 1:
δ∗(q, xy) = δ∗(q, xa) = δ(δ∗(q, x), a) = δ∗(δ∗(q, x), a) = δ∗(δ∗(q, x), y)

Inductive case, assume the theorem holds for |y| ≤ n, n ≥ 0:
When |y| = n+ 1, y = za, where a ∈ Σ and |z| = n

δ∗(q, xy) =δ∗(q, xza)

=δ∗(δ∗(q, xz), a)

=δ∗(δ∗(δ∗(q, x), z), a) (by I.H.)

=δ(δ∗(δ∗(q, x), z), a)

=δ∗(δ∗(q, x), za)

=δ∗(δ∗(q, x), y)

2. In the cross-product construction, we also extended δ∗ (see slides, the last page). There are two very
different definitions for δ∗, now prove they are equivalent.
Hint: we will take the first definition of δ∗ on the new DFA, and then prove the following theorem by
induction:

δ ∗ ((p, q), w) = (δ∗1(p, w), δ∗2(q, w))

Solution:
Proof:
Do induction proof by the length of w:
Base case:
when w = ε
δ∗((p, q), ε) = (p, q)
δ∗((p, q), ε) = (δ∗1(p, ε), δ∗2(q, ε)) = (p, q)
Inductive case: assume theorem holds for |w| ≤ n, n ≥ 0
when |w| = n+ 1, denote w = w′a where a ∈ Σ and |w′| = n

δ∗((p, q), w) =δ(δ∗((p, q), w′), a) (by definition of δ∗)

=δ(δ∗((p, q), w′), a) (by I.H.)

=δ((δ∗1(p, w′), δ∗2(q, w′)), a) (by definition of δ∗)

=(δ(δ∗1(p, w′), a), δ(δ∗2(p, w′), a)) (by definition of δ)

=(δ∗1(p, w′a), δ∗2(q, w′a)) (by definition of δ)

=(δ∗1(p, w), δ∗2(q, w))

3. L1 = bitstrings that do NOT contain 01.
L2 = bitstrings that do NOT contain 00.



CS 321 Homework 3 Page 2 of 6

Construct machines for L1 and L2, but both in 2 states plus the trap state. Now construct new
machines that recognizes:
(a) L1 ∩ L2

(b) L1 ∪ L2

(c) L1 − L2

(d) L2 − L1

Solution:
First construct L1 and L2

(a) L1 ∩ L2

The intersection of L1 and L2 is a language in which strings contain at most one 0 (but any number
of 1s), and the 0 must be the last character. This makes sense since L1 rules out 01, and L2 rules out
00, which implies that L1 ∩ L2 does not allow anything to follow a 0. This DFA need to accept the
string immediatly when it recieves 0. From the graph we can tell the combined DFA will accept the
language when it receives 0.

(b) L1 ∪ L2

Cont.



CS 321 Homework 3 Page 3 of 6

The union of L1 and L2 is a langauge in which strings either contain no 0 (but any number of 1s, q0),
or one 0 as the end (q1), or receives one 0 then split into two different branches. The first branch allows
0 only (q1, q4), and the second does not allow continuous 0s (q1, q2, q3).

This makes sense since if a string reach any branch (a string not in (a)), it must contain one 00 or 01.
If it contains one 00, there must be all 0s followed by (it cannot contain 01); if it contains one 01, the
rest 0s must not be continuous (it cannot contain 00). This DFA can accept strings at any state. Since
our discussion include all the cases of strings does not contain 00 or 01, this DFA would recognize the
language.

(c) L1 − L2

L1 − L2 is a language in which strings contain 00 but not 01, i.e., the first branch of (b). The DFA
accepts strings that already contain 00.

(d) L2 − L1

Cont.



CS 321 Homework 3 Page 4 of 6

L2 − L1 is a language in which strings contain 01 but not 00, i.e., the second branch of (b). The DFA
accepts strings that already contain 01.

4. If δ is a partial function in each of the two machines, how do you construct the combined DFA?
note that the state (trap, trap) is always rejecting so you don’t need to include it. Also, for different
operations (intersection, union, ...), you can define different partial δ to produce a smaller DFA (e.g.
for intersection you need fewer states than union).
Solution:
M1 = {Q1,Σ, δ1, q1, F1}
M2 = {Q2,Σ, δ2, q2, F2}
Please note that both δ1 and δ2 here are partial funtion. q1 and q2 are the initial state for M1 and M2

respectively. The set of states Q for new DFA is Q1×Q2. The initial state for new DFA is q0 = (q1, q2).
The only thing different here is the transaction function. T is trap state.

In the case of union, δU is the transaction function for our combined DFA.
The final state FU = {(qf , q′f )|qf ∈ F1 ∨ q′f ∈ F2}.

δU ((p, q), a))


(δ1(p, a), δ2(q, a)) if δ1(p, a) and δ2(q, a) are defined

(δ1(p, a), T ) if δ2(q, a) is not defined
(T, δ2(q, a)) if δ1(p, a) is not defined

undef otherwise

In the case of intersection, δI is the transaction function for our combined DFA. The final state
FI = {(qf , q′f )|qf ∈ F1, q

′
f ∈ F2}.

δI((p, q), a))

{
(δ1(p, a), δ2(q, a)) if δ1(p, a) and δ2(q, a) are defined

undef otherwise

5. Construct a DFA for the language {ab, aba}∗, i.e., {ε, ab, aba, abab, abaaba, ababa, abaab, ababab, ...}
Solution:

Cont.



CS 321 Homework 3 Page 5 of 6

6. Redo the above using NFA.
Solution:

7. Construct a DFA for bitstrings with 0 as the third last symbol from the end.
Solution:

8. Redo the above using NFA.
Solution:

9. Redo Problem 3 (b) using NFA.
Solution:

Cont.



CS 321 Homework 3 Page 6 of 6

NFA will not help the DFA for the cases of NOT contain some string.

10. Construct both DFA and NFA for: bitstrings that do contain 0100.
Solution:

NFA will not help the DFA for the cases of NOT contain some string.

The End.


