- 1. Convert the following NFAs from HW3 to DFA:
 - (a) $\{ab, aba\}^*$
 - (b) bitstrings with 0 as the third last symbol
 - (c) bitstrings that contain 0100

How do these converted DFAs compare to your own DFAs in HW3?

Solution:

(a) NFA:

conversion:

	a	b
$A = \{q_0\}$	В	
$B = \{q_1, q_2\}$		C
$C = \{q_0, q_3\}$	D	
$D = \{q_0, q_1, q_2\}$	B	C
5.54		

(b) NFA:

conversion:

	0	1
$A = \{q_0\}$	В	Α
$B = \{q_0, q_1\}$	C	D
$C = \{q_0, q_1, q_2\}$	E	\mathbf{F}
$D = \{q_0, q_2\}$	G	Η
$E = \{q_0, q_1, q_2, q_3\}$	E	F
$F = \{q_0, q_2, q_3\}$	G	Η
$G = \{q_0, q_1, q_3\}$	C	D
$H = \{q_0, q_3\}$	В	Α

DFA:

⁽c) NFA:

conversion:

	0	1
$A = \{q_0\}$	В	Α
$B = \{q_0, q_1\}$	В	С
$C = \{q_0, q_2\}$	D	Α
$D = \{q_0, q_1, q_3\}$	Е	С
$E = \{q_0, q_1, q_4\}$	Ε	F
$F = \{q_0, q_2, q_4\}$	G	Η
$G = \{q_0, q_1, q_3, q_4\}$	Е	F
$H = \{q_0, q_4\}$	Е	Η
DFA:		

Hint: this DFA is not likely to be same as your own DFA in HW3; 4 acceptance states could be merged to one.

- 2. For any given epsilon-free NFA $M = (Q, \Sigma, \delta, q_0, F)$,
 - (a) construct a DFA M' such that L(M) = L(M').
 - (b) prove that L(M) = L(M').
 i.e., for all w ∈ L(M), you want to show w ∈ L(M'), and for all w ∈ L(M'), you want to show w ∈ L(M).
 Hint: first prove a lemma by induction: ∀q ∈ Q, ∀w ∈ Σ*, δ*(q, w) = δ'*({q}, w).

Solution:

(also see slides "week3 (NFA) ", page 12)

(a)

 $M' = (Q', \Sigma, \delta', q'_0, F'),$

where

$$Q' = P(Q),$$

$$q'_0 = \{q_0\},$$

$$F' = \{A \in P(Q) | A \cap F \neq \emptyset\},$$

$$\delta'(R, a) = \bigcup_{r \in R} \delta(r, a).$$

(b) Proof:

Lemma: $\delta^*(q, w) = \delta'^*(\{q\}, w).$

Proof of Lemma: Do induction on |w|.

Base case: when $w = \epsilon$, $\delta^*(q, w) = \{q\} = \delta'^*(\{q\}, w)$. Inductive case: assume lemma holds for $|w| \le n, n \ge 0$. When |w| = n + 1, denote $w = xb, b \in \Sigma$. Then

 $\delta'^*(\{q\}, xb)$ = $\delta'(\delta'^*(\{q\}, x), b)$ = $\delta'(\delta^*(q, x), b)$ = $\bigcup_{r \in \delta^*(q, x)} \delta(r, b)$ = $\delta^*(q, xb)$

i.e., lemma holds for |w| = n + 1.

By lemma, we have L(M) = L(M') because

$$\forall w \in \Sigma^*, \\ w \in L(M) \\ \iff \delta^*(q_0, w) \cap F \neq \emptyset \\ \iff \delta'^*(\{q_0\}, w) \cap F \neq \emptyset \\ \iff \delta'^*(\{q_0\}, w) \in F' \\ \iff w \in L(M')$$

(by I.H.)

3. Show that for an NFA w/o epsilons, the two definitions of δ^* are equivalent, i.e., if we use the standard definition (w = xa), you want to show:

 $\delta^*(q, ax) = \cup_{p \in \delta(q, a)} \delta^*(p, x)$

solution:

Prove by induction on |w|. Base Case: when $w = a, a \in \Sigma$,

$$\delta^*(q, a)$$

= $\cup_{p \in \delta^*(q, \epsilon)} \delta(p, a)$
= $\delta(q, a)$
= $\cup_{p \in \delta(q, a)} p$
= $\cup_{p \in \delta(q, a)} \delta^*(p, \epsilon)$

Inductive Case: assume theorem holds for $|w| \le n, n \ge 1$. When |w| = n + 1, denote $|w| = axb, a, b \in \Sigma$.

$$\begin{split} \delta^*(q, axb) \\ &= \bigcup_{p \in \delta^*(q, ax)} \delta(p, b) \\ &= \bigcup_{p \in \bigcup_{p' \in \delta(q, a)} \delta^*(p', x)} \delta(p, b) \\ &= \bigcup_{p' \in \delta(q, a)} \left(\bigcup_{p \in \delta^*(p', x)} \delta(p, b) \right) \\ &= \bigcup_{p' \in \delta(q, a)} \delta^*(p, xb) \end{split}$$
(by I.H.)

i.e., theorem holds for |w| = n + 1.

4. Write at least three definitions of epsilon-closure. Also define the epsilon-closure of a set of states. solution:

(also see slides "week4", page 2)

def 0: $E(q) = \{p | p \text{ is reachable from } q \text{ by } 0 \text{ or more } \epsilon \text{ edges } \}.$

def 1: E(q) is the smallest set s.t.

•
$$q \in E(q)$$

• if
$$q \in E(q)$$
, then $\delta(p, \epsilon) \subseteq E(q)$.

def 2: $E(q) = \bigcup_i E_i(q)$

•
$$E_0(q) = \{q\}$$

• $E_{i+1}(q) = \bigcup_{p \in E_i(q)} \delta(p, \epsilon)$

closure of a set of states: $E(R) = \bigcup_{q \in R} E(q)$.

(by I.H.)

- 5. (Redo 2 for epsilons) For any given NFA with epsilons $M = (Q, \Sigma, \delta, q_0, F)$,
 - (a) construct a DFA M' such that L(M) = L(M').
 - (b) prove that L(M) = L(M'). i.e., $\forall w \in L(M)$, you want to show $w \in L(M')$, and $\forall w \in L(M')$, you want to show $w \in L(M)$.

solution:

(a)

$$M' = (Q', \Sigma, \delta', q'_0, F'),$$

where

$$\begin{aligned} Q' &= P(Q), \\ q'_0 &= \{q_0\}, \\ F' &= \{A \in P(Q) | A \cap F \neq \emptyset\}, \\ \delta'(R, a) &= E(\cup_{r \in R} \delta(r, a)), a \in \Sigma \end{aligned}$$

(b) Proof:

Lemma: $\delta^*(q, w) = \delta'^*(\{q\}, w).$

Proof of Lemma: Do induction on |w|.

Base case: when $w = \epsilon$, $\delta^*(q, \epsilon) = E(\{q\})$, $\delta'^*(\{q\}, \epsilon) = E(\cup_{r \in \{q\}} \delta(r, \epsilon)) = E(\delta(q, \epsilon)) = E(\{q\})$, i.e. lemma holds. Inductive case: assume lemma holds for $|w| \le n, n \ge 0$. When |w| = n + 1, denote $w = xb, b \in \Sigma$. Then

$$\delta'^{*}(\{q\}, xb) \\ = \delta'(\delta'^{*}(\{q\}, x), b) \\ = \delta'(\delta^{*}(q, x), b) \\ = E(\cup_{r \in \delta^{*}(q, x)}\delta(r, b)) \\ = \delta^{*}(q, xb)$$

i.e., lemma holds for |w| = n + 1.

By lemma, we have L(M) = L(M') because

$$\begin{aligned} \forall w \in \Sigma^*, \\ & w \in L(M) \\ \iff \delta^*(q_0, w) \cap F \neq \emptyset \\ \iff \delta'^*(\{q_0\}, w) \cap F \neq \emptyset \\ \iff \delta'^*(\{q_0\}, w) \in F' \\ \iff w \in L(M') \end{aligned}$$

(Hint 1: this definition of δ' is equivalent as the one on textbook (since $E(\cup_i S_i) = \cup_i (E(S_i))$.)) (Hint 2: From the definition of E, we can prove $E(\cup_i S_i) = \cup_i (E(S_i))$ and E(E(S)) = E(S).) 6. (Redo 3 for epsilons) Figure out an alternative definition of δ^* for NFA with epsilons, and prove the equivalence.

solution:

Alternative definition of δ^* on |w| > 0:

$$\delta^*(q,w) = \bigcup_{p \in E(\delta(q,a))} \delta^*(p,x), w = ax, a \in \Sigma.$$

Now prove for the original definition of δ^* , and |w| > 0, we have

$$\delta^*(q,w) = \cup_{p \in E(\delta(q,a))} \delta^*(p,x), w = ax, a \in \Sigma.$$

Prove by induction on |w|.

Base Case: when $w = a, a \in \Sigma$,

$$\delta^*(q, a)$$

= $E(\cup_{p \in \delta^*(q, \epsilon)} \delta(p, a))$
= $E(\delta(q, a))$

$$\begin{split} & \cup_{p \in E(\delta(q,a))} \delta^*(p,\epsilon) \\ &= \cup_{p \in E(\delta(q,a))} E(\{p\}) \\ &= E(\cup_{p \in E(\delta(q,a))} \{p\}) \qquad (E \cup = \cup E) \\ &= E(E(\delta(q,a))) \\ &= E(\delta(q,a)) \qquad (E \cdot E = E) \end{split}$$

i.e., theorem holds w = a. Inductive Case: assume theorem holds for $|w| \le n, n \ge 1$. When |w| = n + 1, denote $|w| = axb, a, b \in \Sigma$.

$$\delta^{*}(q, axb)$$

$$=E(\cup_{p\in\delta^{*}(q,ax)}\delta(p,b))$$

$$=E(\cup_{p\in(\cup_{p'\in E(\delta(q,a))}\delta^{*}(q',x))}\delta(p,b))$$

$$=E(\cup_{p'\in E(\delta(q,a))}\cup_{p\in\delta^{*}(p',x)}\delta(p,b))$$

$$=\cup_{p'\in E(\delta(q,a))}E(\cup_{p\in\delta^{*}(p',x)}\delta(p,b))$$

$$=\cup_{p'\in E(\delta(q,a))}\delta^{*}(p,xb)$$

$$(E\cup=\cup E)$$

i.e., theorem holds for |w| = n + 1.

7. Devise an algorithm to convert an NFA with epsilons to an epsilon-free NFA. **solution:**

Algorithm 1 Algorithm for converting an NFA to an ϵ -free NFA

Input: an NFA $M = \{Q, \Sigma, \delta, q_0, F\}$ Outout: an NFA $M' = \{Q', \Sigma, \delta', q'_0, F'\}, \delta' : Q \times \Sigma \mapsto P(Q)$ 1: repeat flag := False2: 3: for $q \in Q$ do if flag = True then 4: break 5: end if 6: 7:S := E(q)if $S \neq \{q\}$ then 8: for $a \in \Sigma$ do 9: $\delta(q,a) := \bigcup_{p \in S} \delta(p,a)$ 10:end for 11: $\delta(q,\epsilon) := \delta(q,\epsilon) - S$ 12:if $S \cap F \neq \emptyset$ then 13: $F := F \cup \{q\}$ 14: end if 15:flag := True16:end if 17:end for 18: 19: **until** flag = False20: return $(Q, \Sigma, \delta, q_0, F)$

(Hint: a faster version would be processing all the states in S in one loop, instead of processing q only. (from line 8 to line 17))

8. Convert the NFAs from the last two questions in Quiz 3 to DFAs. Quiz 3 solutions are on canvas. solution:

(a) NFA:

conversion:

	a
$A = \{q_0, q_1, q_4\}$	В
$B = \{q_2, q_5\}$	C
$C = \{q_3, q_4\}$	D
$D = \{q_1, q_5\}$	E
$E = \{q_2, q_4\}$	F
$F = \{q_3, q_5\}$	G
$G = \{q_1, q_4\}$	C

DFA:

(Hint: states A and G could be merged here.)

(b) NFA:

conversion:

 $\begin{array}{c} A = \{q_0\} & \ B \\ B = \{q_1, q_3\} & \ C \\ C = \{q_2, q_3, q_4\} & \ D \\ D = \{q_0, q_3, q_4\} & \ E \\ E = \{q_1, q_3, q_4\} & \ C \\ \end{array}$

DFA:

(Hint: states B, C, D and E could be merged here.

9. Why it is important to add "the smallest set" in Def. 1 of epsilon-closure? Give an example where dropping "the smallest" doesn't make sense.

solution:

"the smallest set" guarantees that all states in E(q) would be reachable from q by only using zero to many numbers of ϵ .

Consider NFA in question 8 (b). If "the smallest" is dropped, q_1, q_3, q_4 satisfies the definition of $E(q_1)$. However, q_1 cannot reach q_4 by only using any number of ϵ .

- 10. For each of the following NFAs, do
 - (a) compute epsilon-closure for each state,
 - (b) convert it to a DFA,
 - (c) explain the intuitive meaning of the language
 - (d) try to find a smaller but equivalent DFA, if any.

Now flip the two links between s and v and redo everything. (i.e., from s on a goes to v, from v on b goes back to s).

Now further add an ϵ link from t to r and redo everything.

solution:

$\begin{array}{c c} \text{(a1)} \\ \hline x & E(x) \\ \hline q & \{q,r,s,t\} \\ r & \{r,t\} \\ s & \{s,t\} \\ t & \{t\} \\ v & \{t\} \\ v & \{v\} \end{array}$			
(b1)			
conversion:			
	a b		
$A = \{q, r, s, t\}$ $B = \{r, t, y\}$			
$D = \{r, t, v\}$ $C = \{s, t\}$			
$D = \{r, t\}$	D		
$E = \{v\}$	C		
DFA:			
->(A)-	b B	an C	$\frac{b}{a}$ E

(c1)

This languages contains strings with the format b^* or strings with the format $(ba)^*$, but not other strings.

(d1)

DFA in (b1) is the smallest.

(a2) same as (a1).

(b2)

conversion:		
	a	b
$A = \{q, r, s, t\}$	В	С
$B = \{v\}$		D
$C = \{r, t\}$		\mathbf{C}
$D = \{s, t\}$	В	

DFA:

(c2)

This languages contains strings with the format b^* or strings with the format $(ab)^*$, but not other strings.

(d2)

DFA in (b2) is the smallest.

	x	E(x)
	q	$\{q, r, s, t\}$
(a3)	r	$\{r,t\}$
	s	$\{r, s, t\}$
	t	$\{r,t\}$
	v	$\{v\}$
(b3)		

conversion:		
	a	b
$A = \{q, r, s, t\}$	В	С
$B = \{v\}$		D
$C = \{r, t\}$		C
$D = \{r, s, t\}$	В	C

DFA:

(c3)

This language contains strings with the format $(ab)^*b^*$, but not other strings. (d3)

State A and D could be merged.

DFA:

