1. Convert the following NFAs from HW3 to DFA:
(a) $\{a b, a b a\}^{*}$
(b) bitstrings with 0 as the third last symbol
(c) bitstrings that contain 0100

How do these converted DFAs compare to your own DFAs in HW3?

Solution:

(a) NFA:

conversion:

	a	b
$A=\left\{q_{0}\right\}$	B	
$B=\left\{q_{1}, q_{2}\right\}$		C
$C=\left\{q_{0}, q_{3}\right\}$	D	
$D=\left\{q_{0}, q_{1}, q_{2}\right\}$	B	C

DFA:

(b) NFA:

conversion:

	0	1
$A=\left\{q_{0}\right\}$	B	A
$B=\left\{q_{0}, q_{1}\right\}$	C	D
$C=\left\{q_{0}, q_{1}, q_{2}\right\}$	E	F
$D=\left\{q_{0}, q_{2}\right\}$	G	H
$E=\left\{q_{0}, q_{1}, q_{2}, q_{3}\right\}$	E	F
$F=\left\{q_{0}, q_{2}, q_{3}\right\}$	G	H
$G=\left\{q_{0}, q_{1}, q_{3}\right\}$	C	D
$H=\left\{q_{0}, q_{3}\right\}$	B	A

DEA:

(c) NFA:

conversion:

	0	1
$A=\left\{q_{0}\right\}$	B	A
$B=\left\{q_{0}, q_{1}\right\}$	B	C
$C=\left\{q_{0}, q_{2}\right\}$	D	A
$D=\left\{q_{0}, q_{1}, q_{3}\right\}$	E	C
$E=\left\{q_{0}, q_{1}, q_{4}\right\}$	E	F
$F=\left\{q_{0}, q_{2}, q_{4}\right\}$	G	H
$G=\left\{q_{0}, q_{1}, q_{3}, q_{4}\right\}$	E	F
$H=\left\{q_{0}, q_{4}\right\}$	E	H

DFA:

Hint: this DFA is not likely to be same as your own DFA in HW3; 4 acceptance states could be merged to one.
2. For any given epsilon-free NFA $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$,
(a) construct a DFA M^{\prime} such that $L(M)=L\left(M^{\prime}\right)$.
(b) prove that $L(M)=L\left(M^{\prime}\right)$.
i.e., for all $w \in L(M)$, you want to show $w \in L\left(M^{\prime}\right)$, and for all $w \in L\left(M^{\prime}\right)$, you want to show $w \in L(M)$.
Hint: first prove a lemma by induction:
$\forall q \in Q, \forall w \in \Sigma^{*}, \delta^{*}(q, w)=\delta^{*}(\{q\}, w)$.

Solution:

(also see slides "week3 (NFA) ", page 12)
(a)

$$
M^{\prime}=\left(Q^{\prime}, \Sigma, \delta^{\prime}, q_{0}^{\prime}, F^{\prime}\right)
$$

where

$$
\begin{gathered}
Q^{\prime}=P(Q), \\
q_{0}^{\prime}=\left\{q_{0}\right\}, \\
F^{\prime}=\{A \in P(Q) \mid A \cap F \neq \emptyset\}, \\
\delta^{\prime}(R, a)=\cup_{r \in R} \delta(r, a) .
\end{gathered}
$$

(b) Proof:

Lemma: $\delta^{*}(q, w)=\delta^{*}(\{q\}, w)$.
Proof of Lemma: Do induction on $|w|$.
Base case: when $w=\epsilon, \delta^{*}(q, w)=\{q\}=\delta^{*}(\{q\}, w)$.
Inductive case: assume lemma holds for $|w| \leq n, n \geq 0$. When $|w|=n+1$, denote $w=x b, b \in \Sigma$.
Then

$$
\begin{aligned}
& \delta^{\prime *}(\{q\}, x b) \\
= & \delta^{\prime}\left(\delta^{*}(\{q\}, x), b\right) \\
= & \delta^{\prime}\left(\delta^{*}(q, x), b\right) \\
= & \cup_{r \in \delta^{*}(q, x)} \delta(r, b) \\
= & \delta^{*}(q, x b)
\end{aligned}
$$

i.e., lemma holds for $|w|=n+1$.

By lemma, we have $L(M)=L\left(M^{\prime}\right)$ because

$$
\begin{aligned}
& \forall w \in \Sigma^{*} \\
& w \in L(M) \\
& \Longleftrightarrow \delta^{*}\left(q_{0}, w\right) \cap F \neq \emptyset \\
& \Longleftrightarrow \delta^{\prime *}\left(\left\{q_{0}\right\}, w\right) \cap F \neq \emptyset \\
& \Longleftrightarrow \delta^{\prime *}\left(\left\{q_{0}\right\}, w\right) \in F^{\prime} \\
& \Longleftrightarrow w \in L\left(M^{\prime}\right)
\end{aligned}
$$

3. Show that for an NFA w/o epsilons, the two definitions of δ^{*} are equivalent, i.e., if we use the standard definition $(w=x a)$, you want to show:

$$
\delta^{*}(q, a x)=\cup_{p \in \delta(q, a)} \delta^{*}(p, x)
$$

solution:

Prove by induction on $|w|$.
Base Case: when $w=a, a \in \Sigma$,

$$
\begin{aligned}
& \delta^{*}(q, a) \\
= & \cup_{p \in \delta^{*}(q, \epsilon)} \delta(p, a) \\
= & \delta(q, a) \\
= & \cup_{p \in \delta(q, a)} p \\
= & \cup_{p \in \delta(q, a)} \delta^{*}(p, \epsilon)
\end{aligned}
$$

Inductive Case: assume theorem holds for $|w| \leq n, n \geq 1$.
When $|w|=n+1$, denote $|w|=a x b, a, b \in \Sigma$.

$$
\begin{aligned}
& \delta^{*}(q, a x b) \\
= & \cup_{p \in \delta^{*}(q, a x)} \delta(p, b) \\
= & \cup_{p \in \cup} \cup_{p^{\prime} \in \delta(q, a) \delta^{*}\left(p^{\prime}, x\right)} \delta(p, b) \\
= & \cup_{p^{\prime} \in \delta(q, a)}\left(\cup_{p \in \delta^{*}\left(p^{\prime}, x\right)} \delta(p, b)\right) \\
= & \cup_{p^{\prime} \in \delta(q, a)} \delta^{*}(p, x b)
\end{aligned}
$$

i.e., theorem holds for $|w|=n+1$.
4. Write at least three definitions of epsilon-closure. Also define the epsilon-closure of a set of states. solution:
(also see slides "week4", page 2)
def 0 : $E(q)=\{p \mid p$ is reachable from q by 0 or more ϵ edges $\}$.
def 1: $E(q)$ is the smallest set s.t.

- $q \in E(q)$
- if $q \in E(q)$, then $\delta(p, \epsilon) \subseteq E(q)$.
$\operatorname{def} 2: E(q)=\cup_{i} E_{i}(q)$
- $E_{0}(q)=\{q\}$
- $E_{i+1}(q)=\cup_{p \in E_{i}(q)} \delta(p, \epsilon)$
closure of a set of states: $E(R)=\cup_{q \in R} E(q)$.

5. (Redo 2 for epsilons) For any given NFA with epsilons $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$,
(a) construct a DFA M^{\prime} such that $\mathrm{L}(\mathrm{M})=\mathrm{L}\left(\mathrm{M}^{\prime}\right)$.
(b) prove that $L(M)=L\left(M^{\prime}\right)$. i.e., $\forall w \in L(M)$, you want to show $w \in L\left(M^{\prime}\right)$, and $\forall w \in L\left(M^{\prime}\right)$, you want to show $w \in L(M)$.

solution:

(a)

$$
M^{\prime}=\left(Q^{\prime}, \Sigma, \delta^{\prime}, q_{0}^{\prime}, F^{\prime}\right)
$$

where

$$
\begin{gathered}
Q^{\prime}=P(Q) \\
q_{0}^{\prime}=\left\{q_{0}\right\} \\
F^{\prime}=\{A \in P(Q) \mid A \cap F \neq \emptyset\} \\
\delta^{\prime}(R, a)=E\left(\cup_{r \in R} \delta(r, a)\right), a \in \Sigma
\end{gathered}
$$

(b) Proof:

Lemma: $\delta^{*}(q, w)=\delta^{*}(\{q\}, w)$.
Proof of Lemma: Do induction on $|w|$.
Base case: when $w=\epsilon, \delta^{*}(q, \epsilon)=E(\{q\}), \delta^{*}(\{q\}, \epsilon)=E\left(\cup_{r \in\{q\}} \delta(r, \epsilon)\right)=E(\delta(q, \epsilon))=E(\{q\})$, i.e. lemma holds.

Inductive case: assume lemma holds for $|w| \leq n, n \geq 0$. When $|w|=n+1$, denote $w=x b, b \in \Sigma$. Then

$$
\begin{aligned}
& \delta^{\prime *}(\{q\}, x b) \\
= & \delta^{\prime}\left(\delta^{\prime *}(\{q\}, x), b\right) \\
= & \delta^{\prime}\left(\delta^{*}(q, x), b\right) \\
= & E\left(\cup_{r \in \delta^{*}(q, x)} \delta(r, b)\right) \\
= & \delta^{*}(q, x b)
\end{aligned}
$$

$$
=\delta^{\prime}\left(\delta^{*}(q, x), b\right)
$$

i.e., lemma holds for $|w|=n+1$.

By lemma, we have $L(M)=L\left(M^{\prime}\right)$ because

$$
\begin{aligned}
& \forall w \in \Sigma^{*} \\
& w \in L(M) \\
& \Longleftrightarrow \delta^{*}\left(q_{0}, w\right) \cap F \neq \emptyset \\
& \Longleftrightarrow \delta^{\prime *}\left(\left\{q_{0}\right\}, w\right) \cap F \neq \emptyset \\
& \Longleftrightarrow \delta^{\prime *}\left(\left\{q_{0}\right\}, w\right) \in F^{\prime} \\
& \Longleftrightarrow w \in L\left(M^{\prime}\right)
\end{aligned}
$$

(Hint 1: this definition of δ^{\prime} is equivalent as the one on textbook (since $E\left(\cup_{i} S_{i}\right)=\cup_{i}\left(E\left(S_{i}\right)\right)$.)) (Hint 2: From the definition of E, we can prove $E\left(\cup_{i} S_{i}\right)=\cup_{i}\left(E\left(S_{i}\right)\right)$ and $E(E(S))=E(S)$.)
6. (Redo 3 for epsilons) Figure out an alternative definition of δ^{*} for NFA with epsilons, and prove the equivalence.

solution:

Alternative definition of δ^{*} on $|w|>0$:

$$
\delta^{*}(q, w)=\cup_{p \in E(\delta(q, a))} \delta^{*}(p, x), w=a x, a \in \Sigma
$$

Now prove for the original definition of δ^{*}, and $|w|>0$, we have

$$
\delta^{*}(q, w)=\cup_{p \in E(\delta(q, a))} \delta^{*}(p, x), w=a x, a \in \Sigma
$$

Prove by induction on $|w|$.
Base Case: when $w=a, a \in \Sigma$,

$$
\begin{aligned}
& \delta^{*}(q, a) \\
= & E\left(\cup_{p \in \delta^{*}(q, \epsilon)} \delta(p, a)\right) \\
= & E(\delta(q, a))
\end{aligned}
$$

$$
\begin{aligned}
& \cup_{p \in E(\delta(q, a))} \delta^{*}(p, \epsilon) \\
= & \cup_{p \in E(\delta(q, a))} E(\{p\}) \\
= & E\left(\cup_{p \in E(\delta(q, a))}\{p\}\right) \\
= & E(E(\delta(q, a))) \\
= & E(\delta(q, a))
\end{aligned}
$$

$$
(E \cup=\cup E)
$$

$$
(E \cdot E=E)
$$

i.e., theorem holds $w=a$.

Inductive Case: assume theorem holds for $|w| \leq n, n \geq 1$.
When $|w|=n+1$, denote $|w|=a x b, a, b \in \Sigma$.

$$
\begin{align*}
& \delta^{*}(q, a x b) \\
= & E\left(\cup_{p \in \delta^{*}(q, a x)} \delta(p, b)\right) \\
= & E\left(\cup_{p \in\left(\cup_{p^{\prime} \in E(\delta(q, a))} \delta^{*}\left(q^{\prime}, x\right)\right)} \delta(p, b)\right) \tag{byI.H.}\\
= & E\left(\cup_{p^{\prime} \in E(\delta(q, a))} \cup_{p \in \delta^{*}\left(p^{\prime}, x\right)} \delta(p, b)\right) \\
= & \cup_{p^{\prime} \in E(\delta(q, a))} E\left(\cup_{p \in \delta^{*}\left(p^{\prime}, x\right)} \delta(p, b)\right) \\
= & \cup_{p^{\prime} \in E(\delta(q, a))} \delta^{*}(p, x b)
\end{align*}
$$

$$
(E \cup=\cup E)
$$

i.e., theorem holds for $|w|=n+1$.
7. Devise an algorithm to convert an NFA with epsilons to an epsilon-free NFA.

solution:

```
Algorithm 1 Algorithm for converting an NFA to an \(\epsilon\)-free NFA
Input: an NFA \(M=\left\{Q, \Sigma, \delta, q_{0}, F\right\}\)
Outout: an NFA \(M^{\prime}=\left\{Q^{\prime}, \Sigma, \delta^{\prime}, q_{0}^{\prime}, F^{\prime}\right\}, \delta^{\prime}: Q \times \Sigma \mapsto P(Q)\)
    repeat
        flag \(:=\) False
        for \(q \in Q\) do
        if flag \(=\) True then
            break
        end if
        \(S:=E(q)\)
        if \(S \neq\{q\}\) then
            for \(a \in \Sigma\) do
                    \(\delta(q, a):=\cup_{p \in S} \delta(p, a)\)
            end for
            \(\delta(q, \epsilon):=\delta(q, \epsilon)-S\)
            if \(S \cap F \neq \emptyset\) then
                \(F:=F \cup\{q\}\)
            end if
                flag := True
        end if
        end for
    until flag \(=\) False
    return \(\left(Q, \Sigma, \delta, q_{0}, F\right)\)
```

(Hint: a faster version would be processing all the states in S in one loop, instead of processing q only. (from line 8 to line 17))
8. Convert the NFAs from the last two questions in Quiz 3 to DFAs. Quiz 3 solutions are on canvas. solution:
(a) NFA:

conversion:

	a
$A=\left\{q_{0}, q_{1}, q_{4}\right\}$	B
$B=\left\{q_{2}, q_{5}\right\}$	C
$C=\left\{q_{3}, q_{4}\right\}$	D
$D=\left\{q_{1}, q_{5}\right\}$	E
$E=\left\{q_{2}, q_{4}\right\}$	F
$F=\left\{q_{3}, q_{5}\right\}$	G
$G=\left\{q_{1}, q_{4}\right\}$	C

DFA:

(Hint: states A and G could be merged here.)
(b) NFA:

conversion:

$A=\left\{q_{0}\right\}$	a
$B=\left\{q_{1}, q_{3}\right\}$	C
$C=\left\{q_{2}, q_{3}, q_{4}\right\}$	D
$D=\left\{q_{0}, q_{3}, q_{4}\right\}$	E
$E=\left\{q_{1}, q_{3}, q_{4}\right\}$	C

DFA:

(Hint: states B, C, D and E could be merged here.
9. Why it is important to add "the smallest set" in Def. 1 of epsilon-closure? Give an example where dropping "the smallest" doesn't make sense.

solution:

"the smallest set" guarantees that all states in $E(q)$ would be reachable from q by only using zero to many numbers of ϵ.

Consider NFA in question $8(\mathrm{~b})$. If "the smallest" is dropped, q_{1}, q_{3}, q_{4} satisfies the definition of $E\left(q_{1}\right)$. However, q_{1} cannot reach q_{4} by only using any number of ϵ.
10. For each of the following NFAs, do
(a) compute epsilon-closure for each state,
(b) convert it to a DFA,
(c) explain the intuitive meaning of the language
(d) try to find a smaller but equivalent DFA, if any.

Now flip the two links between s and v and redo everything. (i.e., from s on a goes to v, from v on b goes back to s).
Now further add an ϵ link from t to r and redo everything.

solution:

(a1)

x	$E(x)$
q	$\{q, r, s, t\}$
r	$\{r, t\}$
s	$\{s, t\}$
t	$\{t\}$
v	$\{v\}$

(b1)
conversion:

	a	b
$A=\{q, r, s, t\}$		B
$B=\{r, t, v\}$	C	D
$C=\{s, t\}$		E
$D=\{r, t\}$		D
$E=\{v\}$	C	

DFA:

(c1)
This languages contains strings with the format b^{*} or strings with the format $(b a)^{*}$, but not other strings.
(d1)
DFA in (b1) is the smallest.
(a2)
same as (a1).
(b2)
conversion:

	a	b
$A=\{q, r, s, t\}$	B	C
$B=\{v\}$		D
$C=\{r, t\}$		C
$D=\{s, t\}$	B	

DFA:

(c2)
This languages contains strings with the format b^{*} or strings with the format $(a b)^{*}$, but not other strings.
(d2)
DFA in (b2) is the smallest.

	x
q	$E(x)$
(a3)	$\{q, r, s, t\}$
s	$\{r, t\}$
t	$\{r, s, t\}$
v	$\{r, t\}$
	$\{v\}$

(b3)
conversion:

	a	b
$A=\{q, r, s, t\}$	B	C
$B=\{v\}$		D
$C=\{r, t\}$		C
$D=\{r, s, t\}$	B	C

DFA:

(c3)
This language contains strings with the format $(a b)^{*} b^{*}$, but not other strings.
(d3)
State A and D could be merged.
DFA:

