Quiz 2 much better than Quiz I

- quiz 2 mean: 2.47; quiz I mean: 2.0

Concatenation - NFA

Theorem
The class of regular languages is CLOSED under concatenation.

- concatenation of regular languages is still regular

If L_{1} and L_{2} are regular then so is $L_{1} \circ L_{2}$.

PROOF
CANT DO 17 YET.
WE NEED...
NONDETERMINISM

Non-Determinism

11
Given the current state, there "Now we will allow maY be multiple next states.

- Multiple edges

WITH THE

- The next state is chosen at random.
- All next states are chosen in parallel
and pursued simultaneously.
FSM means Deterministic
Finite State Antomaton/Machine
DFA means DETERMINISTIC Finite State Automaton

NFA means NONDETERMINISTIC
Finite State Automaton

SAME LABEL OUT OF A NODE.

Which edge should you take???

- Epsilon Edges

Can take an t-edge without scanning a symbol.
If is "OPTIONAL"!

Any path to accept is accepted

EXAMPLE
All strings that contain 011110

EXAMPLE STRING: 0100,011110,101
Lots of bad choices
that don't work,
that don't reach an accept state
All we need is one way to reach ACCEPT.
If there is any way to run the machine that ends with ACCEPT,
Then the accepts.
MFA

- DFA is much harder (see HWI)
- but does NFA help for the complement?

As long as there is (at least) one path...

LOTS OF CHOICES - WHICH ONE TO TRY?

* Try them all. \qquad
* Make the right choice at each point.

EXAMPLE

STRING:
010110
\{"Computation Tree"
"Choice Tree"
-

NFA == DFA, but often a lot easier
tHEOREM
For every
NONDETERMINISTIC F.S.M.
There is an equivalent
DETERMINISTIC F.S.M.
... But it may be large, and hard to find!
ExAmple
All strings over $\{0,1\}^{*}$ that have a " O " in the second to the last position.
NF

Q: how to use NFA for union? for intersection? ${ }_{5}$

EXAMPLE
String contains either

$$
\begin{array}{r}
\ldots 0100 \ldots \\
\\
\text { or } \quad \ldots 0111 \ldots
\end{array}
$$

When to start looking?
Which string to look for?
NONDETERMINISM!

CHALLENGE:
Build/Design a DFA to recognize this language.

Power set (all subsets of a set)

POWERSET The set of all subsets. $P(\{a, b, c\})$
$\varnothing\{a\}\{b\}\{c\}\{a, b\}\{a, c\}\{b, c\}\{a, b, c\}$

If you are
in state q_{6}
... And you see an "a" $\left\{q_{1}, q_{5}, q_{6}, q_{8}\right\}$
And you see a "b" A $\left._{4}, q_{6}, q_{7}\right\}$ And you see " f " $\left\{q_{7}, q_{3}\right\}$

- power set is one of the most important \& beautiful mathematical concepts
- $\mathrm{P}(\mathrm{Q})$ is often written as 2^{Q} since $\left|2^{\mathrm{Q}}\right|=2^{|\mathrm{Q}|}$

$$
2^{Q} \triangleq\{A \mid A \subseteq Q\}
$$

Formal Definition of NFA

- two differences on δ

Formal Definition of
Nondeterministic Finite State Machine
$M=\left(Q, \Sigma, \delta, q_{0}, F\right)\left\{\begin{array}{l}\sum=\text { Alphabet } \\ Q=\text { States }\end{array}=\sum \cup\{\varepsilon\}\right\}$
$\Sigma=$ Alphabet
$q_{0}=$ Start State, $q_{0} \in Q$
$F=$ Accept States, $F \subseteq Q$
$\delta=$ Transition Function

$$
\delta: Q \times \Sigma_{t} \rightarrow P(Q)
$$

Q : is every DFA also an NFA??
A: technically, no!

$$
\delta_{N F A}(p, a)=\left\{\delta_{D F A}(p, a)\right\}
$$

- $\mathrm{Q} \times(\Sigma \cup\{\varepsilon\})$
- $\mathrm{P}(\mathrm{Q})$
- is δ total or partial function?
- no difference, since $\varnothing \in \mathrm{P}(\mathrm{Q})$
- no need to define trap state

Computation of NFA w/o epsilon

- string w is accepted iff. $\delta^{*}\left(q_{0}, w\right) \cap F \neq \varnothing$
- without epsilon transitions, δ^{*} is easy to define
- with epsilon transitions, you need to define epsilon-closure (very hard; will come back later)

$$
\begin{aligned}
\delta^{*}(q, \epsilon) & =\{q\} \\
\delta^{*}(q, x a) & =\bigcup_{p \in \delta^{*}(q, x)} \delta(p, a)
\end{aligned}
$$

alternatively

$$
\delta^{*}(q, a x)=\bigcup_{p \in \delta(q, a)} \delta^{*}(p, x)
$$

NFA => DFA w/o epsilon

EXAMPLE
Accept all strings over $\{0,1\}^{*}$ ending with "00."

String to check: 00100
Simulate the execution. Put a finger on any state we could be in. $\phi \quad A B C A B \quad B C \quad A C C$

Let $N=$ Number of states in NFA.
What is the (worst case) number of states in the equivalent DFA?

- how to convert NFA to DFA?

$=(\overline{A B})=0 \rightarrow A B C$
(B)
(C)

NFA => DFA w/o epsilon

Theorem
Every Nondeterministic FSM has an Equivalent Deterministic FSM.
"EQUIVALENT" = Recognizes the same language.
Proof By construction
Given a NFA, let's show how to build an equivalent $D F A$.
Let $M=\left(Q, \Sigma, \delta, q_{0}, F\right)^{K} \begin{aligned} & \text { This is } \\ & \text { the } N F A\end{aligned}$ were given.
Construct

$$
M^{\prime}=\left(Q^{\prime}, \Sigma, \delta^{\prime}, q_{0}^{\prime}, F^{\prime}\right) \ll
$$

Where...
$Q^{\prime}=P(Q)$
Assume NFA has K states.
Then the DFA will have 2^{k} states.

- try make a NFA for $\{\mathrm{ab}, \mathrm{aba}\}^{*}$ and then convert to DFA

Formally: subset construction

$F^{\prime}=\left\{R \in Q^{\prime} \left\lvert\, \begin{array}{l}R \text { contains an accept } \\ \text { state from the NFA }\end{array}\right.\right\}$
"If the set contains a final state then it is final, too."

NA $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$
DEA $M^{\prime}=\left(Q^{\prime}, \Sigma, \delta^{\prime}, q_{0}^{\prime}, F^{\prime}\right)$
where $Q^{\prime}=P(Q)$

$$
q_{0}^{\prime}=\left\{q_{0}\right\}
$$

$$
F^{\prime}=\{A \in P(Q) \mid A \cap F \neq \emptyset\}
$$

$$
\delta^{\prime}(R, a)=\bigcup_{r \in R} \delta(r, a)
$$

The.: $L(M)=L\left(M^{\prime}\right)$
Idea: $\forall w \in L(M), \exists p \in F$,
s.t. $\delta^{*}\left(q_{0}, w\right)=p$.
want to show: $p \in \delta^{\prime *}\left(q_{0}, w\right)$
also need the other direction

$$
\begin{aligned}
& q^{\prime}=\left\{q_{0}\right\} \quad \text { 曹 (B) (c) } \Rightarrow \text { (6) (A) (B) (C) } \\
& \text { M }
\end{aligned}
$$

Epsilon-Closure
But what about ϵ-EDGES?
Consider a state in the DFA that were building.
(BCD) \leftarrow A state " R " in the DFA is a set. of states from the NFA.
Look back at M, the NFA.
What states can we reach by going through ϵ-edges?
Also include the states were in. (i.e., include B, C, and E).

DEFINE "EPSILON-CLOSURE"
$E(R)=\left\{q \in Q \left\lvert\, \begin{array}{l}\text { q can be reached from } a^{-} \\ \text {state in } R\end{array}\right.\right.$ state in R by following
zero or more f-edges. zero or more t-edges.
EXAMPLE

$$
E((B C E)=\{B, C, D, E, G, H\}=B C D E G H
$$

